首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method is described for the concentration of Salmonella from water. As is done with enterovirus, Salmonella bacteria were concentrated from water in two steps: by pH 3.5 adsorption on and pH 9.5 elution from 8-micron porosity micro-fiber glass filter tubes. This method worked in less than 30 min, and Salmonella typhimurium was inactivated only slightly in spite of rapid pH variations (pH 3.5 to 9.5). It was demonstrated that the retention by the filters stems from two phenomena: a low retention in the micro-fiber glass labyrinth for small filtered volumes, and a high retention by adsorption at pH 3.5 for any filtered volume (experiments done with 15- and 80-liter samples). Addition in tap water of trivalent ions like Al3+ did not increase Salmonella adsorption. In most of the trials, Salmonella recovery varied from 42 to 93%. Preliminary field investigations indicate that enterovirus and Salmonella may both be concentrated from the same water sample by this procedure.  相似文献   

2.
A method using micro-fiber glass filters (8-micrometers porosity) at pH 3.5 was successfully used for simultaneous concentration of Salmonella and enterovirus from Meurthe River samples, collected 8 km south of Nancy, France. A concentration of 10-liter samples was indispensable and permitted recovery of several enterovirus and Salmonella serotypes in concentrations of 1.3 most probable number of cytopathogenic units per liter and 18 bacteria per liter, respectively.  相似文献   

3.
A method using micro-fiber glass filters (8-micrometers porosity) at pH 3.5 was successfully used for simultaneous concentration of Salmonella and enterovirus from Meurthe River samples, collected 8 km south of Nancy, France. A concentration of 10-liter samples was indispensable and permitted recovery of several enterovirus and Salmonella serotypes in concentrations of 1.3 most probable number of cytopathogenic units per liter and 18 bacteria per liter, respectively.  相似文献   

4.
To determine whether suspended solids interfere with enteric virus recovery from water by microporous filter methods, the effects of bentonite clay solids at a concentration of 10 nephelometric turbidity units on the recovery of poliovirus type 1 from seeded, activated carbon-treated, filtered tap water were studied. Volumes (500 ml) of virus-laden water at pH 5.5 or 7.5, with and without 50 mM MgCl2, were filtered through 47-mm-diameter, electropositive (Virosorb 1MDS) and electronegative (Filterite) filters that had been pretreated with Tween 80 to minimize direct virus adsorption to filter surfaces. Bentonite solids enhanced virus retention on both types of filters, even under conditions in which viruses were not solids associated. However, bentonite solids also interfered with elution of retained viruses when eluting with 0.3% beef extract-50 mM glycine (pH 9.5). Under some conditions, overall virus recoveries were lower from water with bentonite solids than from solids-free control water. The results of this study indicate that clay turbidity can interfere somewhat with virus recovery by current microporous filter methods.  相似文献   

5.
To determine whether suspended solids interfere with enteric virus recovery from water by microporous filter methods, the effects of bentonite clay solids at a concentration of 10 nephelometric turbidity units on the recovery of poliovirus type 1 from seeded, activated carbon-treated, filtered tap water were studied. Volumes (500 ml) of virus-laden water at pH 5.5 or 7.5, with and without 50 mM MgCl2, were filtered through 47-mm-diameter, electropositive (Virosorb 1MDS) and electronegative (Filterite) filters that had been pretreated with Tween 80 to minimize direct virus adsorption to filter surfaces. Bentonite solids enhanced virus retention on both types of filters, even under conditions in which viruses were not solids associated. However, bentonite solids also interfered with elution of retained viruses when eluting with 0.3% beef extract-50 mM glycine (pH 9.5). Under some conditions, overall virus recoveries were lower from water with bentonite solids than from solids-free control water. The results of this study indicate that clay turbidity can interfere somewhat with virus recovery by current microporous filter methods.  相似文献   

6.
A simple method for concentration and detection of rotavirus and enteroviruses in the blue crab is described. Virus was separated from tissue homogenates at pH 9.5, concentrated by adsorption to protein precipitates at pH 3.5, and recovered by elution of precipitates at pH 9.2. Test samples of 12 to 15 ml were produced from an initial 100 g of crab tissues. Cat-floc precipitation was used to remove sample toxicity for cell cultures. Recovery effectiveness averaged 52% with poliovirus 1, echovirus 7, and coxsackievirus B5 and 23% with rotavirus SA11.  相似文献   

7.
A simple method for concentration and detection of rotavirus and enteroviruses in the blue crab is described. Virus was separated from tissue homogenates at pH 9.5, concentrated by adsorption to protein precipitates at pH 3.5, and recovered by elution of precipitates at pH 9.2. Test samples of 12 to 15 ml were produced from an initial 100 g of crab tissues. Cat-floc precipitation was used to remove sample toxicity for cell cultures. Recovery effectiveness averaged 52% with poliovirus 1, echovirus 7, and coxsackievirus B5 and 23% with rotavirus SA11.  相似文献   

8.
A method is described for efficiently concentrating enteroviruses from soil. Viruses were eluted from soil by mechanical agitation in high pH glycine buffer containing ethylenediaminetetraacetic acid. The eluted viruses were concentrated on a floc that formed de novo upon adjustment of the soil eluate to 0.06 M aluminum chloride and pH 3.5. Viruses not pelleted with the floc were concentrated by adsorption to and elution from membrane filters. This method yielded an average efficiency of 66% recovery from loamy sand soil for four enteroviruses. Virus recovery from soil was consistently high, with samples ranging in size from 25 to 500 g. The method was used successfully to isolate naturally occurring viruses from soil beneath a wastewater land treatment site. Recovery of enteroviruses by this method form different types of soil was dependent on percentage of clay, surface area, and cation exchange capacity. Recovery was not dependent on soil saturation pH or on percentage of organic matter. This method should prove useful for studying enterovirus migration and survival during the land application of domestic sewage.  相似文献   

9.
A method is described for efficiently concentrating enteroviruses from soil. Viruses were eluted from soil by mechanical agitation in high pH glycine buffer containing ethylenediaminetetraacetic acid. The eluted viruses were concentrated on a floc that formed de novo upon adjustment of the soil eluate to 0.06 M aluminum chloride and pH 3.5. Viruses not pelleted with the floc were concentrated by adsorption to and elution from membrane filters. This method yielded an average efficiency of 66% recovery from loamy sand soil for four enteroviruses. Virus recovery from soil was consistently high, with samples ranging in size from 25 to 500 g. The method was used successfully to isolate naturally occurring viruses from soil beneath a wastewater land treatment site. Recovery of enteroviruses by this method form different types of soil was dependent on percentage of clay, surface area, and cation exchange capacity. Recovery was not dependent on soil saturation pH or on percentage of organic matter. This method should prove useful for studying enterovirus migration and survival during the land application of domestic sewage.  相似文献   

10.
Poliovirus concentration from tap water with electropositive adsorbent filters   总被引:10,自引:0,他引:10  
Simple, reliable, and efficient concentration of poliovirus from tap water was obtained with two types of electropositive filter media, one of which is available in the form of a pleated cartridge filter (Virozorb 1MDS). Virus adsorption from tap water between pH 3.5 and 7.5 was more efficient with electropositive filters than with Filterite filters. Elution of adsorbed viruses was more efficient with beef extract in glycine, pH 9.5, than with glycine-NaOH, pH 11.0. In paired comparative studies, electropositive filters, with adsorption at pH 7.5 and no added polyvalent cation salts, gave less variable virus concentration efficiencies than did Filterite filters with adsorption at pH 3.5 plus added MgCl2. Recovery of poliovirus from 1,000-liter tap water volumes was approximately 30% efficient with both Virozorb 1MDS and Filterite pleated cartridge filters, but the former were much simpler to use. The virus adsorption behavior of these filters appears to be related to their surface charge properties, with more electropositive filters giving more efficient virus adsorption from tap water at higher pH levels.  相似文献   

11.
Simple, reliable, and efficient concentration of poliovirus from tap water was obtained with two types of electropositive filter media, one of which is available in the form of a pleated cartridge filter (Virozorb 1MDS). Virus adsorption from tap water between pH 3.5 and 7.5 was more efficient with electropositive filters than with Filterite filters. Elution of adsorbed viruses was more efficient with beef extract in glycine, pH 9.5, than with glycine-NaOH, pH 11.0. In paired comparative studies, electropositive filters, with adsorption at pH 7.5 and no added polyvalent cation salts, gave less variable virus concentration efficiencies than did Filterite filters with adsorption at pH 3.5 plus added MgCl2. Recovery of poliovirus from 1,000-liter tap water volumes was approximately 30% efficient with both Virozorb 1MDS and Filterite pleated cartridge filters, but the former were much simpler to use. The virus adsorption behavior of these filters appears to be related to their surface charge properties, with more electropositive filters giving more efficient virus adsorption from tap water at higher pH levels.  相似文献   

12.
Four enteric viruses, poliovirus type 1, echovirus type 1, reovirus type 3, and simian adenovirus SV-11, were concentrated from seeded 1.3-liter volumes of raw, finished, and granular activated carbon-treated waters by adsorption to 47-mm-diameter (17 cm2), electropositive ( Virosorb 1MDS ) filters at pH 7.5 or electronegative ( Filterite ) filters at pH 3.5 with and without 5 mM added MgCl2, followed by elution with 0.3% beef extract in 50 mM glycine at pH 9.5. Removal of particulates from raw and finished waters by 0.2-micron prefiltration before virus addition and pH adjustment had little effect on virus concentration efficiencies. Soluble organic compounds reduced virus adsorption efficiencies from both raw and finished waters compared with granular activated carbon-treated water, but the extent of interference varied with virus type and adsorption conditions. For electropositive 1MDS filters, organic interference was similar with all virus types. For Filterite filters, organic interference was evident with poliovirus and echovirus, but could be overcome by adding MgCl2. Reovirus and SV-11 were not adversely affected by organics during adsorption to Filterite filters. Elution of reovirus and adenovirus was inefficient compared with that of poliovirus and echovirus. None of the three adsorption schemes ( 1MDS at pH 7.5 and Filterite with and without 5 mM MgCl2 at pH 3.5) could be judged superior for all viruses and water types tested.  相似文献   

13.
Four enteric viruses, poliovirus type 1, echovirus type 1, reovirus type 3, and simian adenovirus SV-11, were concentrated from seeded 1.3-liter volumes of raw, finished, and granular activated carbon-treated waters by adsorption to 47-mm-diameter (17 cm2), electropositive ( Virosorb 1MDS ) filters at pH 7.5 or electronegative ( Filterite ) filters at pH 3.5 with and without 5 mM added MgCl2, followed by elution with 0.3% beef extract in 50 mM glycine at pH 9.5. Removal of particulates from raw and finished waters by 0.2-micron prefiltration before virus addition and pH adjustment had little effect on virus concentration efficiencies. Soluble organic compounds reduced virus adsorption efficiencies from both raw and finished waters compared with granular activated carbon-treated water, but the extent of interference varied with virus type and adsorption conditions. For electropositive 1MDS filters, organic interference was similar with all virus types. For Filterite filters, organic interference was evident with poliovirus and echovirus, but could be overcome by adding MgCl2. Reovirus and SV-11 were not adversely affected by organics during adsorption to Filterite filters. Elution of reovirus and adenovirus was inefficient compared with that of poliovirus and echovirus. None of the three adsorption schemes ( 1MDS at pH 7.5 and Filterite with and without 5 mM MgCl2 at pH 3.5) could be judged superior for all viruses and water types tested.  相似文献   

14.
The development and evaluation of methods for the quantitative recovery of enteroviruses from sewage sludge are reported. Activated sewage sludge solids were collected by centrifugation, and elution of the solid-associated virus was accomplished by mechanical agitation in glycine buffer at pH 11.0. Eluted viruses were concentrated either onto an aluminum hydroxide floc or by association with a floc which formed de novo upon adjustment of the glycine eluate to pH 3.5. Viruses which remained in the liquid phase after lowering the pH of glycine eluate were concentrated by adsorption to and elution from membrane filters. The method of choice included high pH glycine elution and subsequent low pH concentration; it yielded an efficiency of recovery from activated sludge of 80% for poliovirus type 1, 68% for echovirus type 7, and 75% for coxsackievirus B3. This method was used to study the survival of naturally occurring virus in sludge at a sewage treatment plant and after subsequent land disposal of the solids after aerobic digestion. Reduction of enterovirus titers per gram (dry weight) of solids were modest during sludge activation but increased to a rate of 2 log 10/week after land disposal.  相似文献   

15.
The development and evaluation of methods for the quantitative recovery of enteroviruses from sewage sludge are reported. Activated sewage sludge solids were collected by centrifugation, and elution of the solid-associated virus was accomplished by mechanical agitation in glycine buffer at pH 11.0. Eluted viruses were concentrated either onto an aluminum hydroxide floc or by association with a floc which formed de novo upon adjustment of the glycine eluate to pH 3.5. Viruses which remained in the liquid phase after lowering the pH of glycine eluate were concentrated by adsorption to and elution from membrane filters. The method of choice included high pH glycine elution and subsequent low pH concentration; it yielded an efficiency of recovery from activated sludge of 80% for poliovirus type 1, 68% for echovirus type 7, and 75% for coxsackievirus B3. This method was used to study the survival of naturally occurring virus in sludge at a sewage treatment plant and after subsequent land disposal of the solids after aerobic digestion. Reduction of enterovirus titers per gram (dry weight) of solids were modest during sludge activation but increased to a rate of 2 log 10/week after land disposal.  相似文献   

16.
Current virus-recovery procedures using negatively charged microporous filters provide an inexpensive, reliable method for the recovery and detection of enteroviruses from water and wastewater; however, adjustment of the test samples to pH 3.5 to promote enterovirus adsorption results in significant inactivation of bacteriophage and an inability to simultaneously recover them from large volumes of water using this procedure. Procedures specifically designed for the detection of bacteriophage are currently in use but generally are only effective for small volumes of water. Positively charged filters can be used to recover both enteroviruses and bacteriophage from large volumes of water at neutral pH; however, the filters are expensive. The addition of manganese chloride to test solutions at pH 3.5 prior to filtration through negatively charged Filterite filters allowed for sampling of larger volumes of water by reducing the inactivation of bacteriophage and increasing the recovery of PRD1, MS2, and naturally isolated bacteriophage by a factor of four or five when compared with recoveries from solutions without MnCl2. This method provides an inexpensive, reliable alternative to large-volume bacteriophage recovery procedures that use positively charged filters at neutral pH.  相似文献   

17.
As part of our studies on the ecology of human enteric viruses, an improved method for detection of rotaviruses in water was developed, and their presence in Galveston Bay was monitored. Samples (378 liters) of estuarine water adjusted to pH 3.5 and a final AlCl3 molarity of 0.001 were filtered through 25-cm pleated cartridge-type filters (Filterite Corp., Timonium, Md.) of 3.0- and 0.45-micron porosity. Adsorbed virus was eluted with 1 liter of 10% tryptose phosphate broth, pH 9.5. Primary eluates were reconcentrated to a final volume of 10 to 20 ml by a simple and rapid magnetic iron oxide adsorption and elution procedure. Two percent casein at pH 8.5 effectively eluted rotavirus from iron oxide. A total of 21 of 72 samples of water, suspended solids, fluffy sediments, and compact sediments collected in different seasons in Galveston Bay yielded rotaviruses. Recovery of rotaviruses varied from 119 to 1,000 PFU/378 liters of water, 1,200 PFU/1,000 g of compact sediment, 800 to 3,800 PFU/378 liters of fluffy sediment, and 1,800 to 4,980 PFU from suspended solids derived from 378 liters of water based on immunofluorescent foci counts on cover slip cultures of fetal monkey kidney cells.  相似文献   

18.
As part of our studies on the ecology of human enteric viruses, an improved method for detection of rotaviruses in water was developed, and their presence in Galveston Bay was monitored. Samples (378 liters) of estuarine water adjusted to pH 3.5 and a final AlCl3 molarity of 0.001 were filtered through 25-cm pleated cartridge-type filters (Filterite Corp., Timonium, Md.) of 3.0- and 0.45-micron porosity. Adsorbed virus was eluted with 1 liter of 10% tryptose phosphate broth, pH 9.5. Primary eluates were reconcentrated to a final volume of 10 to 20 ml by a simple and rapid magnetic iron oxide adsorption and elution procedure. Two percent casein at pH 8.5 effectively eluted rotavirus from iron oxide. A total of 21 of 72 samples of water, suspended solids, fluffy sediments, and compact sediments collected in different seasons in Galveston Bay yielded rotaviruses. Recovery of rotaviruses varied from 119 to 1,000 PFU/378 liters of water, 1,200 PFU/1,000 g of compact sediment, 800 to 3,800 PFU/378 liters of fluffy sediment, and 1,800 to 4,980 PFU from suspended solids derived from 378 liters of water based on immunofluorescent foci counts on cover slip cultures of fetal monkey kidney cells.  相似文献   

19.
Acid-resistant, nonenveloped viruses belonging to the enterovirus, reovirus, and adenovirus groups were readily concentrated on PE60, an insoluble cross-linked polyelectrolyte based on isobutylene maleic anhydride. Hydrolysis of PE60 by NaOH increased its capacity to adsorb viruses. Hydrogen ion levels played an important role in virus concentration; optimal pH levels for maximal virus adsorption were between pH 3.0 and 4.5. Undiluted virus was easily concentrated from large volumes on PE60, and the adsorbed virus was readily eluted at pH 8 to 9.  相似文献   

20.
By using recently developed cultivation and assay systems, currently available methods for concentrating enteric viruses from drinking water by adsorption to and subsequent elution from microporous filters followed by organic flocculation were evaluated for their ability to recover hepatitis A virus (HAV). Cell culture-adapted HAV (strain HM-175) in seeded tapwater was efficiently adsorbed by both electronegative (Filterite) and electropositive (Virosorb 1MDS) filters at pH and ionic conditions previously used for other enteric viruses. Adsorbed HAV was efficiently eluted from these filters by beef extract eluents at pH 9.5. Eluted HAV was further concentrated efficiently by acid precipitation (organic flocculation) of eluents containing beef extract made from powdered, but not paste, sources. By using optimum adsorption conditions for each type of filter, HAV was concentrated greater than 100-fold from samples of seeded tapwater, with about 50% recovery of the initial infectious virus added to the samples. The ability to recover and quantify HAV in contaminated drinking water with currently available methods should prove useful in further studies to determine the role of drinking water in HAV transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号