首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutagenesis of the 3' nontranslated region of Sindbis virus RNA.   总被引:8,自引:20,他引:8       下载免费PDF全文
R J Kuhn  Z Hong    J H Strauss 《Journal of virology》1990,64(4):1465-1476
A cDNA clone from which infectious RNA can be transcribed was used to construct 42 site-specific mutations in the 3' nontranslated region of the Sindbis virus genome. The majority of these mutations were made in the 3'-terminal 19-nucleotide conserved sequence element and consisted of single nucleotide substitutions or of small (1 to 8) nucleotide deletions. An attempt was made to recover mutant viruses after transfection of SP6-transcribed RNA into chicken cells. In most cases, viable virus was recovered, but almost all mutants grew more poorly than wild-type virus when tested under a number of culture conditions. In the case of mutations having only a moderate effect, the virus grew as well as the wild type but was slightly delayed in growth. Mutations having a more severe effect led to lower virus yields. In many cases, virus growth was more severely impaired in mosquito cells than in chicken cells, but the opposite phenotype was also seen, in which the mutant grew as well as or better than the wild type in mosquito cells but more poorly in chicken cells. One substitution mutant, 3NT7C, was temperature sensitive for growth in chicken cells and severely crippled for growth in mosquito cells. Insertion mutations were also constructed which displaced the 19-nucleotide element by a few nucleotides relative to the poly(A) tail. These mutations had little effect on virus growth. Deletion of large regions (31 to 293 nucleotides long) of the 3' nontranslated region outside of the 19-nucleotide element resulted in viruses which were more severely crippled in mosquito cells than in chicken cells. From these results, the following principles emerge. (i) The entire 3' nontranslated region is important for efficient virus replication, although there is considerable plasticity in this region in that most nucleotide substitutions or deletions made resulted in viable virus and, in some cases, in virus that grew quite efficiently. Replication competence was particularly sensitive to changes involving the C at position 1, the A at position 7, and a stretch of 9 U residues punctuated by a G at position 14. (ii) The panel of mutants examined collectively deleted the entire 3' nontranslated region. Only mutants in which 8 nucleotides in the 3' terminal 19 nucleotides had been deleted or in which the 3' terminal C was deleted were nonviable. Although the 3' terminal C was essential for replication, it could be displaced by at least 7 nucleotides from its 3' terminal position adjacent to the poly(A) tract.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Yi M  Lemon SM 《Journal of virology》2003,77(6):3557-3568
We describe a mutational analysis of the 3' nontranslated RNA (3'NTR) signals required for replication of subgenomic hepatitis C virus (HCV) RNAs. A series of deletion mutants was constructed within the background of an HCV-N replicon that induces the expression of secreted alkaline phosphatase in order to examine the requirements for each of the three domains comprising the 3'NTR, namely, the highly conserved 3' terminal 98-nucleotide (nt) segment (3'X), an upstream poly(U)-poly(UC) [poly(U/UC)] tract, and the variable region (VR) located at the 5' end of the 3'NTR. Each of these domains was found to contribute to efficient replication of the viral RNA in transiently transfected hepatoma cells. Replication was not detected when any of the three putative stem-loop structures within the 3'X region were deleted. Similarly, complete deletion of the poly(U/UC) tract abolished replication. Replacement of a minimum of 50 to 62 nt of poly(U/UC) sequence was required for detectable RNA replication when the native sequence was restored in a stepwise fashion from its 3' end. Lengthier poly(U/UC) sequences, and possibly pure homopolymeric poly(U) tracts, were associated with more efficient RNA amplification. Finally, while multiple deletion mutations were tolerated within VR, each led to a partial loss of replication capacity. The impaired replication capacity of the deletion mutants could not be explained by reduced translational activity or by decreased stability of the RNA, suggesting that each of these mutations may impair recognition of the RNA by the viral replicase during an early step in negative-strand RNA synthesis. The results indicate that the 3'-most 150 nt of the HCV-N genome [the 3'X region and the 3' 52 nt of the poly(U/UC) tract] contain RNA signals that are essential for replication, while the remainder of the 3'NTR plays a facilitating role in replication but is not absolutely required.  相似文献   

3.
The genome of the hepatitis C virus (HCV) is a plus-strand RNA molecule that carries a single long open reading frame. It is flanked at either end by highly conserved nontranslated regions (NTRs) that mediate crucial steps in the viral life cycle. The 3' NTR of HCV has a tripartite structure composed of an about 40-nucleotide variable region, a poly(U/UC) tract that has a heterogeneous length, and a highly conserved 98-nucleotide 3'-terminal sequence designated the X tail or 3'X. Conflicting data as to the role the sequences in the 3' NTR play in RNA replication have been reported. By using the HCV replicon system, which is based on the self-replication of subgenomic HCV RNAs in human hepatoma cell line Huh-7, we mapped in this study the sequences in the 3' NTR required for RNA replication. We found that a mutant with a complete deletion of the variable region is viable but that replication is reduced significantly. Only replicons in which the poly(U/UC) tract was replaced by a homouridine stretch of at least 26 nucleotides were able to replicate, whereas RNAs with homopolymeric guanine, adenine, or cytosine sequences were inactive. Deletions of individual or all stem-loop structures in 3'X were not tolerated, demonstrating that this region is most crucial for efficient RNA replication. Finally, we found that none of these deletions or substitutions within the 3' NTR affected RNA stability or translation, demonstrating that the primary effect of the mutations was on RNA replication. These data represent the first detailed mapping of sequences in the 3' NTR assumed to act as a promoter for initiation of minus-strand RNA synthesis.  相似文献   

4.
The 3' nontranslated region (NTR) of the pestivirus Bovine viral diarrhea virus (BVDV), a close relative of human Hepatitis C virus, consists of three stem-loops which are separated by two single-stranded regions. As in other positive-stranded RNA viruses, the 3' NTR of pestiviruses is involved in crucial processes of the viral life cycle. While several studies characterized cis-acting elements within the 3' NTR of a BVDV replicon, there are no studies addressing the significance of these elements in the context of a replicating virus. To examine the functional importance of 3' NTR elements, a set of 4-base deletions and deletions of each of the three stem-loops were introduced into an infectious BVDV cDNA clone. Emerging mutant viruses were characterized with regard to plaque phenotype, growth kinetics, and synthesis of viral RNA. The results indicated that presence of stem-loop (SL) I and the 3'-terminal part of the single-stranded region between stem-loops I and II are indispensable for pestiviral replication. In contrast, deletions within SL II and SL III as well as absence of either SL II or SL III still allowed efficient viral replication; however, a mutant RNA lacking both SL II and SL III was not infectious. The results of this study provide a detailed map of the essential and nonessential elements within the 3' NTR of BVDV and contribute to our understanding of sequence and structural elements important for efficient viral replication of pestiviruses in natural host cells.  相似文献   

5.
6.
The genomes of positive-strand RNA viruses strongly resemble cellular mRNAs. However, besides operating as a messenger to generate the virus-encoded proteins, the viral RNA serves also as a template during replication. A central issue of the viral life cycle, the coordination of protein and RNA synthesis, is yet poorly understood. Examining bovine viral diarrhea virus (BVDV), we report here on the role of the variable 3'V portion of the viral 3' nontranslated region (3'NTR). Genetic studies and structure probing revealed that 3'V represents a complex RNA motif that is composed of synergistically acting sequence and structure elements. Correct formation of the 3'V motif was shown to be an important determinant of the viral RNA replication process. Most interestingly, we found that a proper conformation of 3'V is required for accurate termination of translation at the stop-codon of the viral open reading frame and that efficient termination of translation is essential for efficient replication of the viral RNA. Within the viral 3'NTR, the complex 3'V motif constitutes also the binding site of recently characterized cellular host factors, the so-called NFAR proteins. Considering that the NFAR proteins associate also with the 5'NTR of the BVDV genome, we propose a model where the viral 3'NTR has a bipartite functional organization: The conserved 3' portion (3'C) is part of the nascent replication complex; the variable 5' portion (3'V) is involved in the coordination of the viral translation and replication. Our data suggest the accuracy of translation termination as a sophisticated device determining viral adaptation to the host.  相似文献   

7.
Very little is known about the mechanisms mediating longevities of mRNAs. As a means of identifying potential cis- and trans-acting elements which stabilize an individual mRNA, naturally occurring mutations that decreased stability of the normally long-lived globin mRNA were analyzed. Our previous studies demonstrated that a subset of mutations which allowed the translating ribosome to read through into the alpha 2-globin 3' nontranslated region (NTR) targeted the mutant mRNAs for accelerated turnover in erythroid cells but not in several nonerythroid cell lines (I. M. Weiss and S. A. Liebhaber, Mol. Cell. Biol. 14:8123-8132, 1994). These results suggested that translational readthrough interfered with some feature of the alpha 2-globin 3' NTR required for message stability in erythroid cells. To define the cis-acting sequences which comprise this erythroid cell-specific stability determinant, scanning mutagenesis was performed on the alpha 2-globin 3' NTR, and the stability of each mutant mRNA was examined during transient expression. Three cytidine-rich regions which are required for longevity of the alpha 2-globin mRNA were identified. However, in contrast to the readthrough mutations, base substitutions in these elements destabilize the message through a translation-independent mechanism. To account for these results, we propose that the cis-acting elements form a complex or determinant in the normal alpha 2-globin mRNA which protects the message from degradation in erythroid cells. Disruption of this determinant, by translational readthrough or because mutations in an element prevent or inhibit its formation, targets the message for accelerated turnover in these cells.  相似文献   

8.
9.
K H Chang  E A Brown    S M Lemon 《Journal of virology》1993,67(11):6716-6725
The 5' nontranslated region (5'NTR) of hepatitis A virus (HAV) RNA contains structural elements which facilitate 5' cap-independent initiation of virus translation and are likely to interact with cellular proteins functioning as translation initiation factors. To define these interactions, we characterized the binding of ribosome-associated proteins from several cell types to synthetic RNAs representing segments of the 5'NTR by using a UV cross-linking/label transfer assay. Four major proteins (p30, p39, p57, and p110) were identified. p30 and p39 were present in ribosomal salt washes prepared only from HAV-permissive BS-C-1 and FRhK-4 cells, while p57 was found only in HeLa cells and rabbit reticulocyte lysates. p110 was present in all cell types. Both p30 and p39 bound to multiple sites within the 5'NTR. Efficient transfer of label to p30 occurred with minimal RNA probes representing nucleotides (nt) 96 to 155, 151 to 354, and, to a much lesser extent, 634 to 744, while label transfer to p39 occurred with probes representing nt 96 to 155 and 634 to 744. All of these probes represent regions of the 5'NTR which are rich in pyrimidines. Competitive inhibition studies indicated that both p30 and p39 bound with greater affinity to sites in the 5' half of the NTR (a probe representing nt 1 to 354) than to the more 3' site (nt 634 to 744). Binding of p39 to the probe representing nt 96 to 155 was inhibited in the presence of an equal amount of proteins derived from HeLa cells, suggesting that p39 shares binding site specificity with one or more HeLa cell proteins. A 57-kDa protein in HeLa cell protein extracts reacted with antibody to polypyrimidine tract-binding protein in immunoblots, but no immunoreactive protein was identified in a similar BS-C-1 protein fraction. These results demonstrate that ribosome-associated proteins which bind to the 5'NTR of HAV vary substantially among different mammalian cell types, possibly accounting for differences in the extent to which individual cell types support growth of the virus. Mutations in the 5'NTR which enhance the growth of HAV in certain cell types may reflect specific adaptive responses to these or other proteins.  相似文献   

10.
Hepatitis C virus (HCV) is a major cause of cirrhosis and hepatocellular carcinoma. Interferon alone or together with ribavirin is the only therapy for HCV infection; however, a significant number of HCV-infected individuals do not respond to this treatment. Therefore, the development of new therapeutic options against HCV is a matter of urgency. In the present study, we have examined vectors carrying short hairpin RNA (shRNA) targeting the 5' nontranslated conserved region of the HCV genome for inhibition of virus replication. Initially, three sequences were selected, and all three shRNAs (psh-53, psh-274, and psh-375) suppressed HCV internal ribosome entry site (IRES)-mediated translation to different degrees in Huh-7 cells. Next, we introduced siRNA into Huh-7.5 cells persistently infected with HCV genotype 2a (JFH1). The most efficient inhibition of JFH1 replication was observed with psh-274, targeted to the portion from subdomain IIId to IIIe of the IRES. Subsequently, Huh-7.5 cells stably expressing psh-274 further displayed a significant reduction in HCV JFH1 replication. The effect of psh-274 on cell-culture-grown HCV genotype 1a (H77) was also evaluated, and inhibition of virus replication and infectivity titers was observed. In the absence of a cell-culture-grown HCV genotype 1b, the effects of psh-274 on subgenomic and full-length replicons were examined, and efficient inhibition of genome replication was observed. Therefore, we have identified a conserved sequence targeted to the HCV genome that can inhibit replication of different genotypes, suggesting the potential of siRNA as an additional therapeutic modality against HCV infection.  相似文献   

11.
The specific recognition of genomic positive strand RNAS as templates for the synthesis of intermediate negative strands by the picornavirus replication machinery is presumably mediated by cis-acting sequences within the genomic RNA 3' non-coding region (NCR). A structure-infectivity analysis was conducted on the 44 nt human rhinovirus 14 (HRV14) 3' NCR to identify the primary sequence and/or secondary structure determinants required for viral replication. Using biochemical RNA secondary structure probing techniques, we have demonstrated the existence of a single stem-loop structure contained entirely within the 3' NCR, which appears to be phylogenetically conserved within the rhinovirus genus. We also report the in vivo analysis of a number of 3' NCR deletion mutations engineered into infectious cDNA clones which were designed to disrupt the stem-loop secondary structure to varying degrees. Large deletions (up to 37 nt) resulted in defective growth phenotypes, although they were not lethal. We propose that the absolute requirements for initiation of negative strand synthesis are less stringent than previously postulated, even though defined RNA secondary structure determinants may have evolved to facilitate and/or regulate the process of viral RNA replication.  相似文献   

12.
13.
Hepatitis C virus (HCV), a hepacivirus member of the Flaviviridae family, has a positive-stranded RNA genome, which consists of a single open reading frame (ORF) and nontranslated regions (NTRs) at the 5' and 3' ends. The 5'NTR was found to contain an internal ribosomal entry site (IRES), which is required for the translation of HCV mRNA. Moreover, the 5'NTR is likely to play a key role in the replication of viral RNA. To identify the cis-acting element required for viral RNA replication, chimeric subgenomic replicons of HCV were generated. Dissection of the replication element from the translation element was accomplished by inserting the polioviral IRES between the serially deleted 5'NTR of HCV and ORF encoding neomycin phosphotransferase. The deletions of the 5'NTR of HCV were performed according to the secondary structure of HCV. Replicons containing domains I and II supported RNA replication and further deletion toward the 5' end abolished replication. The addition of domain III and the pseudoknot structure of the 5'NTR to domains I and II augmented the colony-forming efficiency of replicons by 100-fold. This indicates that domains I and II are necessary and sufficient for replication of RNA and that almost all of the 5'NTR is required for efficient RNA replication.  相似文献   

14.
15.
Coxsackievirus B3 (CVB3) infections can cause myocarditis in humans and are implicated in the pathogenesis of dilated cardiomyopathy. The natural genetic determinants of cardiovirulence for CVB3 have not been identified, although using strains engineered in the laboratory, cardiovirulence determinants have been identified in the CVB3 5' nontranslated region (5'NTR) and capsid. The myocarditic phenotypes of two CVB3 clinical isolates were determined using an established murine model of inflammatory heart disease. The 5'NTRs and capsid proteins of the noncardiovirulent CVB3/CO strain and cardiovirulent CVB3/AS strain were examined to determine their influence on the cardiovirulence phenotype. Six intratypic chimeric viruses were constructed in which 5'NTR and capsid sequences of the infectious cDNA copy of the cardiovirulent CVB3/20 genome were replaced by homologous sequences from CVB3/CO or CVB3/AS. Chimeric strains were tested for cardiovirulence by inoculation of C3H/HeJ mice. Sections of hearts removed at 10 days postinoculation were examined for evidence of myocarditis by light microscopy and assayed for the presence of virus. Replacement of the CVB3/20 capsid coding region by that from the homologous region of CVB3/CO resulted in no change in the cardiovirulent CVB3/20 phenotype, with virus recoverable from the heart at 10 days postinoculation. However, recombinant virus containing the CVB3/CO 5'NTR alone or the 5'NTR and capsid sequences together were not myocarditic, and infectious virus was not recovered from the myocardium. Chimeric viruses containing the CVB3/AS 5'NTR alone, capsid sequence alone, or both together preserved the myocarditic phenotype. These data support the 5'NTR as the primary site in the determination of the natural cardiovirulence phenotype of CVB3.  相似文献   

16.
Expression vectors that yield mono-, di-, and tricistronic mRNAs upon transfection of COS-1 cells were used to assess the influence of the 5' nontranslated regions (5'NTRs) on translation of reporter genes. A segment of the 5'NTR of encephalomyocarditis virus (EMCV) allowed translation of an adjacent downstream reporter gene (CAT) regardless of its position in the mRNAs. A deletion in the EMCV 5'NTR abolishes this effect. Poliovirus infection completely inhibits translation of the first cistron of a dicistronic mRNA that is preceded by the capped globin 5'NTR, whereas the second cistron preceded by the EMCV 5'NTR is still translated. We conclude that the EMCV 5'NTR contains an internal ribosomal entry site that allows cap-independent initiation of translation. mRNA containing the adenovirus tripartite leader is also resistant to inhibition of translation by poliovirus.  相似文献   

17.
Pestiviruses, such as bovine viral diarrhea virus (BVDV), share many similarities with hepatitis C virus (HCV) yet are more amenable to virologic and genetic analysis. For both BVDV and HCV, translation is initiated via an internal ribosome entry site (IRES). Besides IRES function, the viral 5' nontranslated regions (NTRs) may also contain cis-acting RNA elements important for viral replication. A series of chimeric RNAs were used to examine the function of the BVDV 5' NTR. Our results show that: (1) the HCV and the encephalomyocarditis virus (EMCV) IRES element can functionally replace that of BVDV; (2) two 5' terminal hairpins in BVDV genomic RNA are important for efficient replication; (3) replacement of the entire BVDV 5' NTR with those of HCV or EMCV leads to severely impaired replication; (4) such replacement chimeras are unstable and efficiently replicating pseudorevertants arise; (5) pseudorevertant mutations involve deletion of 5' sequences and/or acquisition of novel 5' sequences such that the 5' terminal 3-4 bases of BVDV genome RNA are restored. Besides providing new insight into functional elements in the BVDV 5' NTR, these chimeras may prove useful as pestivirus vaccines and for screening and evaluation of anti-HCV IRES antivirals.  相似文献   

18.
The NS5B protein, or RNA-dependent RNA polymerase of the hepatitis virus type C, catalyzes the replication of the viral genomic RNA. Little is known about the recognition domains of the viral genome by the NS5B. To better understand the initiation of RNA synthesis on HCV genomic RNA, we used in vitro transcribed RNAs as templates for in vitro RNA synthesis catalyzed by the HCV NS5B. These RNA templates contained different regions of the 3' end of either the plus or the minus RNA strands. Large differences were obtained depending on the template. A few products shorter than the template were synthesized by using the 3' UTR of the (+) strand RNA. In contrast the 341 nucleotides at the 3' end of the HCV minus-strand RNA were efficiently copied by the purified HCV NS5B in vitro. At least three elements were found to be involved in the high efficiency of the RNA synthesis directed by the HCV NS5B with templates derived from the 3' end of the minus-strand RNA: (a) the presence of a C residue as the 3' terminal nucleotide; (b) one or two G residues at positions +2 and +3; (c) other sequences and/or structures inside the following 42-nucleotide stretch. These results indicate that the 3' end of the minus-strand RNA of HCV possesses some sequences and structure elements well recognized by the purified NS5B.  相似文献   

19.
V I Kruys  M G Wathelet  G A Huez 《Gene》1988,72(1-2):191-200
We have previously reported that the 3' untranslated region (UTR) of the human interferon-beta mRNA has an inhibitory effect on the mRNA translation both in vitro, in a rabbit reticulocyte lysate, and in vivo, in the Xenopus oocyte. In the present study, we identify the sequence in the 3' UTR which is responsible for this translation inhibition. We show that this sequence is located between the 100th and 161st nucleotides downstream from the translation stop codon. It contains several repeats of the A + U-rich consensus octanucleotide UUAUUUAU, which is also present in the 3' UTR of several mRNAs involved in the inflammatory response. We also demonstrate here that the inhibitory effect of the sequence on the mRNA translation does not depend on its position in relation to the termination codon. However, no inhibition of translation is observed when this sequence is inserted in the 5' UTR of the mRNA. The removal of the translation inhibitory sequence not only improves the mRNA translation in Xenopus oocytes but it also strongly decreases the IFN-beta mRNA stability in those cells. This suggests that, in this system at least, the mRNA degradation is linked to its translational efficiency.  相似文献   

20.
Shen R  Miller WA 《Journal of virology》2004,78(9):4655-4664
RNAs of many viruses are translated efficiently in the absence of a 5' cap structure. The tobacco necrosis virus (TNV) genome is an uncapped, nonpolyadenylated RNA whose translation mechanism has not been well investigated. Computational analysis predicted a cap-independent translation element (TE) within the 3' untranslated region (3' UTR) of TNV RNA that resembles the TE of barley yellow dwarf virus (BYDV), a luteovirus. Here we report that such a TE does indeed exist in the 3' UTR of TNV strain D. Like the BYDV TE, the TNV TE (i) functions both in vitro and in vivo, (ii) requires additional sequence for cap-independent translation in vivo, (iii) has a similar secondary structure and the conserved sequence CGGAUCCUGGGAAACAGG, (iv) is inactivated by a four-base duplication in this conserved sequence, (v) can function in the 5' UTR, and (vi) when located in its natural 3' location, may form long-distance base pairing with the viral 5' UTR that is conserved and probably required. The TNV TE differs from the BYDV TE by having only three helical domains instead of four. Similar structures were found in all members of the Necrovirus genus of the Tombusviridae family, except satellite tobacco necrosis virus, which harbors a different 3' cap-independent translation domain. The presence of the BYDV-like TE in select genera of different families indicates that phylogenetic distribution of TEs does not follow standard viral taxonomic relationships. We propose a new class of cap-independent TE called BYDV-like TE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号