首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Error-free repair by homologous recombination of DNA double-strand breaks induced by ionizing radiation (IR) requires the Rad52 group proteins, including Rad51 and Rad54, in the yeast Saccharomyces cerevisiae [1]. The formation of a 'joint' molecule between the damaged DNA and the homologous repair template is a key step in recombination mediated by Rad51 and stimulated by Rad54 [2] [3] [4] [5]. Mammalian homologs of Rad51 and Rad54 have been identified [2] [3] [6]. Here, we demonstrate that mouse Rad54 (mRad54) formed IR-induced nuclear foci that colocalized with mRad51. Interaction between mRad51 and mRad54 was induced by genotoxic stress, but only when lesions that required mRad54 for their repair were formed. Interestingly, mRad54 was essential for the formation of IR-induced mRad51 foci. Rad54 belongs to the SWI2/SNF2 protein family, members of which modulate protein-DNA interactions in an ATP-driven manner [7]. Results of a topological assay suggested that purified human Rad54 (hRad54) protein can unwind double-stranded (ds) DNA at the expense of ATP hydrolysis. Unwinding of the homologous repair template could promote the formation or stabilization of hRad51-mediated joint molecules. Rad54 appears to be required downstream of other Rad52 group proteins, such as Rad52 and the Rad55-Rad57 heterodimer, that assist Rad51 in interacting with the broken DNA [2] [3] [4].  相似文献   

2.
The RAD52 epistasis group of proteins, including Rad51, Rad52, and Rad54, plays an important role in the homologous recombination repair of double strand breaks. A well characterized feature associated with the ability of these proteins to repair double strand breaks is inducible nuclear foci formation at the sites of damage. How the process is functionally regulated in response to DNA damage, however, remains elusive. We show here that c-Abl tyrosine kinase associates with and phosphorylates Rad52 on tyrosine 104. Importantly, the very same site of Rad52 is phosphorylated on exposure of cells to ionizing radiation (IR). The functional significance of c-Abl-dependent phosphorylation of Rad52 is underscored by our findings that cells that express the phosphorylation-resistant Rad52 mutant, in which tyrosine 104 is replaced by phenylalanine, exhibit compromised nuclear foci formation in response to IR. Furthermore, IR-induced Rad52 nuclear foci formation is markedly suppressed by the expression of dominant-negative c-Abl. Together our data support a mode of post-translational regulation of Rad52 mediated by the c-Abl tyrosine kinase.  相似文献   

3.
Synthetic single-stranded DNA vectors have been used to correct point and frameshift mutations in episomal or chromosomal targets in the yeast Saccharomyces cerevisiae. Certain parameters, such as the length of the vector and the genetic background of the organism, have a significant impact on the process of targeted gene repair, and point mutations are corrected at a higher frequency than frameshift mutations. Genetic analyses reveal that expression levels of the recombination/repair genes RAD51, RAD52 and RAD54 can affect the frequency of gene repair. Overexpression of RAD51 enhances the frequency 4-fold for correction of an episomal target and 5-fold for correction of a chromosomal target; overexpression of RAD54 is also effective in stimulating gene repair, to the same extent as RAD51 in the chromosomal target. In sharp contrast, RAD52 gene expression serves to reduce gene repair activity in rescue experiments and in experiments where RAD52 is overexpressed in a wild-type strain. This may suggest an antagonist role for Rad52p. Consistent with this notion, the highest level of targeted repair occurs when the RAD51 gene is overexpressed in a strain of yeast deficient in RAD52 gene function.  相似文献   

4.
Repairing a double-strand break by homologous recombination requires binding of the strand exchange protein Rad51p to ssDNA, followed by synapsis with a homologous donor. Here we used chromatin immunoprecipitation to monitor the in vivo association of Saccharomyces cerevisiae Rad51p with both the cleaved MATa locus and the HML alpha donor. Localization of Rad51p to MAT precedes its association with HML, providing evidence of the time needed for the Rad51 filament to search the genome for a homologous sequence. Rad51p binding to ssDNA requires Rad52p. The absence of Rad55p delays Rad51p binding to ssDNA and prevents strand invasion and localization of Rad51p to HML alpha. Lack of Rad54p does not significantly impair Rad51p recruitment to MAT or its initial association with HML alpha; however, Rad54p is required at or before the initiation of DNA synthesis after synapsis has occurred at the 3' end of the invading strand.  相似文献   

5.
The DNA double-strand breaks are particularly deleterious, especially when an error-free repair pathway is unavailable, enforcing the error-prone recombination pathways to repair the lesion. Cells can resume the cell cycle but at the expense of decreased viability due to genome rearrangements. One of the major players involved in recombinational repair of DNA damage is Rad51 recombinase, a protein responsible for presynaptic complex formation. We previously showed that an increased level of this protein promotes the usage of illegitimate recombination. Here we show that the level of Rad51 is regulated via the ubiquitin-dependent proteolytic pathway. The ubiquitination of Rad51 depends on multiple E3 enzymes, including SUMO-targeted ubiquitin ligases. We also demonstrate that Rad51 can be modified by both ubiquitin and SUMO. Moreover, its modification with ubiquitin may lead to opposite effects: degradation dependent on Rad6, Rad18, Slx8, Dia2, and the anaphase-promoting complex, or stabilization dependent on Rsp5. We also show that post-translational modifications with SUMO and ubiquitin affect Rad51's ability to form and disassemble DNA repair foci, respectively, influencing cell cycle progression and cell viability in genotoxic stress conditions. Our data suggest the existence of a complex E3 ligases network that regulates Rad51 recombinase's turnover, its molecular activity, and access to DNA, limiting it to the proportions optimal for the actual cell cycle stage and growth conditions, e.g., stress. Dysregulation of this network would result in a drop in cell viability due to uncontrolled genome rearrangement in the yeast cells. In mammals would promote the development of genetic diseases and cancer.  相似文献   

6.
Coordinated response of mammalian Rad51 and Rad52 to DNA damage   总被引:3,自引:0,他引:3       下载免费PDF全文
Liu Y  Maizels N 《EMBO reports》2000,1(1):85-90
Biochemical analysis has shown that mammalian Rad51 and Rad52 interact and synergize in DNA recombination reactions in vitro, but these proteins have not been shown to function together in response to DNA damage in vivo. By analysis of murine cells expressing murine Rad52 tagged with green fluorescent protein (GFP)–Rad52, we now show that DNA damage causes Rad51 and GFP–Rad52 to colocalize in distinct nuclear foci. Cells expressing GFP–Rad52 show both increased survival and an increased number of Rad51 foci, raising the possibility that Rad52 is limiting for repair. These observations provide evidence of coordinated function of Rad51 and Rad52 in vivo and support the hypothesis that Rad52 plays an important role in the DNA damage response in mammalian cells.  相似文献   

7.
Homologous recombination is a versatile DNA damage repair pathway requiring Rad51 and Rad54. Here we show that a mammalian Rad54 paralog, Rad54B, displays physical and functional interactions with Rad51 and DNA that are similar to those of Rad54. While ablation of Rad54 in mouse embryonic stem (ES) cells leads to a mild reduction in homologous recombination efficiency, the absence of Rad54B has little effect. However, the absence of both Rad54 and Rad54B dramatically reduces homologous recombination efficiency. Furthermore, we show that Rad54B protects ES cells from ionizing radiation and the interstrand DNA cross-linking agent mitomycin C. Interestingly, at the ES cell level the paralogs do not display an additive or synergic interaction with respect to mitomycin C sensitivity, yet animals lacking both Rad54 and Rad54B are dramatically sensitized to mitomycin C compared to either single mutant. This suggests that the paralogs possibly function in a tissue-specific manner. Finally, we show that Rad54, but not Rad54B, is needed for a normal distribution of Rad51 on meiotic chromosomes. Thus, even though the paralogs have similar biochemical properties, genetic analysis in mice uncovered their nonoverlapping roles.  相似文献   

8.
Homologous recombination (HR) is critical for DNA double-strand break (DSB) repair and genome stabilization. In yeast, HR is catalyzed by the Rad51 strand transferase and its “mediators,” including the Rad52 single-strand DNA-annealing protein, two Rad51 paralogs (Rad55 and Rad57), and Rad54. A Rad51 homolog, Dmc1, is important for meiotic HR. In wild-type cells, most DSB repair results in gene conversion, a conservative HR outcome. Because Rad51 plays a central role in the homology search and strand invasion steps, DSBs either are not repaired or are repaired by nonconservative single-strand annealing or break-induced replication mechanisms in rad51Δ mutants. Although DSB repair by gene conversion in the absence of Rad51 has been reported for ectopic HR events (e.g., inverted repeats or between plasmids), Rad51 has been thought to be essential for DSB repair by conservative interchromosomal (allelic) gene conversion. Here, we demonstrate that DSBs stimulate gene conversion between homologous chromosomes (allelic conversion) by >30-fold in a rad51Δ mutant. We show that Rad51-independent allelic conversion and break-induced replication occur independently of Rad55, Rad57, and Dmc1 but require Rad52. Unlike DSB-induced events, spontaneous allelic conversion was detected in both rad51Δ and rad52Δ mutants, but not in a rad51Δ rad52Δ double mutant. The frequencies of crossovers associated with DSB-induced gene conversion were similar in the wild type and the rad51Δ mutant, but discontinuous conversion tracts were fivefold more frequent and tract lengths were more widely distributed in the rad51Δ mutant, indicating that heteroduplex DNA has an altered structure, or is processed differently, in the absence of Rad51.  相似文献   

9.
Homologous recombinational repair of DNA double-strand breaks and crosslinks in human cells is likely to require Rad51 and the five Rad51 paralogs (XRCC2, XRCC3, Rad51B/Rad51L1, Rad51C/Rad51L2 and Rad51D/Rad51L3), as has been shown in chicken and rodent cells. Previously, we reported on the interactions among these proteins using baculovirus and two- and three-hybrid yeast systems. To test for interactions involving XRCC3 and Rad51C, stable human cell lines have been isolated that express (His)6-tagged versions of XRCC3 or Rad51C. Ni2+-binding experiments demonstrate that XRCC3 and Rad51C interact in human cells. In addition, we find that Rad51C, but not XRCC3, interacts directly or indirectly with Rad51B, Rad51D and XRCC2. These results argue that there are at least two complexes of Rad51 paralogs in human cells (Rad51C–XRCC3 and Rad51B–Rad51C–Rad51D–XRCC2), both containing Rad51C. Moreover, Rad51 is not found in these complexes. X-ray treatment did not alter either the level of any Rad51 paralog or the observed interactions between paralogs. However, the endogenous level of Rad51C is moderately elevated in the XRCC3-overexpressing cell line, suggesting that dimerization between these proteins might help stabilize Rad51C.  相似文献   

10.
Saccharomyces cerevisiae Rad51, Rad54, and replication protein A (RPA) proteins work in concert to make heteroduplex DNA joints during homologous recombination. With plasmid length DNA substrates, maximal DNA joint formation is observed with amounts of Rad51 substantially below what is needed to saturate the initiating single-stranded DNA template, and, relative to Rad51, Rad54 is needed in only catalytic quantities. RPA is still indispensable for optimal reaction efficiency, but its role in this instance is to sequester free single-stranded DNA, which otherwise inhibits Rad51 and Rad54 functions. We also demonstrate that Rad54 helps overcome various reaction constraints in DNA joint formation. These results thus shed light on the function of Rad54 in the Rad51-mediated homologous DNA pairing reaction and also reveal a novel role of RPA in the presynaptic stage of this reaction.  相似文献   

11.
Both Rad51 and Rad52 are required for homologous genetic recombination in Saccharomyces cerevisiae. Rad51 promotes heteroduplex joint formation, a general step in homologous recombination. Rad52 facilitates the binding of Rad51 to replication protein A (RPA)-coated single-stranded DNA. The requirement of RPA can be avoided in vitro, if the single-stranded DNA is short. Using short single-stranded DNA and homologous double-stranded DNA, in the absence of RPA, we found that Rad52 (optimal at three per Rad51) was still required for Rad51-promoted heteroduplex joint formation in vitro, as assayed by the formation of D-loops, suggesting another role for Rad52. Rad51 has to bind to the single-stranded DNA before the addition of double-stranded DNA for efficient D-loop formation. Immunoprecipitation and single-stranded DNA-bead precipitation analyses revealed the presence of the free and DNA-bound complexes of Rad51 and Rad52 at a 1 to 2 stoichiometry. In the presence of single-stranded DNA, in addition to Rad51, Rad52 was required for extensive untwisting that is an intermediate step toward D-loop formation. Thus, these results suggest that the formation of the stoichiometric complex of Rad52 with Rad51 on single-stranded DNA is required for the functional binding of the protein-single-stranded DNA complex to the double-stranded DNA to form D-loops.  相似文献   

12.
Interaction of human recombination proteins Rad51 and Rad54.   总被引:11,自引:5,他引:6       下载免费PDF全文
The cDNA for human protein HsRad54, which is a structural homolog of Saccharomyces cerevisiae recombination/repair protein Rad54, was cloned and expressed in Escherichia coli. As demonstrated by analysis in vitro and in vivo, HsRad54 protein interacts with human Rad51 recombinase. The interaction is mediated by the N-terminal domain of HsRad54 protein, which interacts with both free and DNA-bound HsRad51 protein.  相似文献   

13.
Mozlin AM  Fung CW  Symington LS 《Genetics》2008,178(1):113-126
Rad51 requires a number of other proteins, including the Rad51 paralogs, for efficient recombination in vivo. Current evidence suggests that the yeast Rad51 paralogs, Rad55 and Rad57, are important in formation or stabilization of the Rad51 nucleoprotein filament. To gain further insights into the function of the Rad51 paralogs, reporters were designed to measure spontaneous or double-strand break (DSB)-induced sister or nonsister recombination. Spontaneous sister chromatid recombination (SCR) was reduced 6000-fold in the rad57 mutant, significantly more than in the rad51 mutant. Although the DSB-induced recombination defect of rad57 was suppressed by overexpression of Rad51, elevated temperature, or expression of both mating-type alleles, the rad57 defect in spontaneous SCR was not strongly suppressed by these same factors. In addition, the UV sensitivity of the rad57 mutant was not strongly suppressed by MAT heterozygosity, even though Rad51 foci were restored under these conditions. This lack of suppression suggests that Rad55 and Rad57 have different roles in the recombinational repair of stalled replication forks compared with DSB repair. Furthermore, these data suggest that most spontaneous SCR initiates from single-stranded gaps formed at stalled replication forks rather than DSBs.  相似文献   

14.
Rad51 protein stimulates the branch migration activity of Rad54 protein   总被引:1,自引:0,他引:1  
The Rad51 and Rad54 proteins play important roles during homologous recombination in eukaryotes. Rad51 forms a nucleoprotein filament on single-stranded DNA and performs the initial steps of double strand break repair. Rad54 belongs to the Swi2/Snf2 family of ATP-dependent DNA translocases. We previously showed that Rad54 promotes branch migration of Holliday junctions. Here we find that human Rad51 (hRad51) significantly stimulates the branch migration activity of hRad54. The stimulation appears to be evolutionarily conserved, as yeast Rad51 also stimulates the branch migration activity of yeast Rad54. We further investigated the mechanism of this stimulation. Our results demonstrate that the stimulation of hRad54-promoted branch migration by hRad51 is driven by specific protein-protein interactions, and the active form of the hRad51 filament is more stimulatory than the inactive one. The current results support the hypothesis that the hRad51 conformation state has a strong effect on interaction with hRad54 and ultimately on the function of hRad54 in homologous recombination.  相似文献   

15.
In addition to the recombinase Rad51, vertebrates have five paralogs of Rad51, all members of the Rad51-dependent recombination pathway. These paralogs form two complexes (Rad51C/Xrcc3 and Rad51B/C/D/Xrcc2), which play roles in somatic recombination, DNA repair and chromosome stability. However, little is known of their possible involvement in meiosis, due to the inviability of the corresponding knockout mice. We have recently reported that the Arabidopsis homolog of one of these Rad51 paralogs (AtXrcc3) is involved in DNA repair and meiotic recombination and present here Arabidopsis lines carrying mutations in three other Rad51 paralogs (AtRad51B, AtRad51C and AtXrcc2). Disruption of any one of these paralogs confers hypersensitivity to the DNA cross-linking agent Mitomycin C, but not to gamma-irradiation. Moreover, the atrad51c-1 mutant is the only one of these to show meiotic defects similar to those of the atxrcc3 mutant, and thus only the Rad51C/Xrcc3 complex is required to achieve meiosis. These results support conservation of functions of the Rad51 paralogs between vertebrates and plants and differing requirements for the Rad51 paralogs in meiosis and DNA repair.  相似文献   

16.
We have previously shown that the RAD50, RAD52, MRE11, XRS2, and HDF1 genes of Saccharomyces cervisiae are involved in the formation of deletions by illegitimate recombination on a monocentric plasmid. In this study, we investigated the effects of mutations of these genes on formation of deletions of a dicentric plasmid, in which DNA double-strand breaks are expected to occur frequently because the two centromeres are pulled to opposite poles in mitosis. We transformed yeast cells with a dicentric plasmid, and after incubation for a few division cycles, cells carrying deleted plasmids were detected using negative selection markers. Deletions occurred at a higher frequency than on the monocentric plasmid and there were short regions of homology at the recombination junctions as observed on the monocentric plasmid. In rad50, mre11, xrs2, and hdf1 mutants, the frequency of occurrence of deletions was reduced by about 50-fold, while in the rad52 mutant, it was comparable to that in the wild-type strain. The end-joining functions of Rad50, Mre11, Xrs2, and Hdf1, suggest that these proteins play important roles in the joining of DNA ends produced on the dicentric plasmid during mitosis. Received: 30 October 1996 / Accepted: 28 February 1997  相似文献   

17.
18.
The structures and properties of the Rad51 and Rad52 proteins in eukaryotes are described. Both proteins form a complex and are responsible for recombination and repair reactions. The N-terminal region of the Rad51 protein interacts with the C-terminal region of the Rad52 protein. Species-specific interaction is probably essential for the functioning of these genes.  相似文献   

19.
Rad51, Rad52, and replication protein-A (RPA) play crucial roles in the repair of DNA double-strand breaks in Saccharomyces cerevisiae. Rad51 mediates DNA strand exchange, a key reaction in DNA recombination. Rad52 recruits Rad51 into single-stranded DNAs (ssDNAs) that are saturated with RPA. Rad52 also promotes annealing of ssDNA strands that are complexed with RPA. Specific protein-protein interactions are involved in these reactions. Here we report new biochemical characteristics of these protein interactions. First, Rad52-RPA interaction requires multiple molecules of RPA to be associated with ssDNA, suggesting that multiple contacts between the Rad52 ring and RPA-ssDNA filament are needed for stable binding. Second, RPA-t11, which is a recombination-deficient mutant of RPA, displays a defect in interacting with Rad52 in the presence of salt above 50 mM, explaining the defect in Rad52-mediated ssDNA annealing in the presence of this mutation. Third, ssDNA annealing promoted by Rad52 is preceded by aggregation of multiple RPA-ssDNA complexes with Rad52, and Rad51 inhibits this aggregation. These results suggest a regulatory role for Rad51 that suppresses ssDNA annealing and facilitates DNA strand invasion. Finally, the Rad51-double-stranded DNA complex disrupts Rad52-RPA interaction in ssDNA and titrates Rad52 from RPA. This suggests an additional regulatory role for Rad51 following DNA strand invasion, where Rad51-double-stranded DNA may inhibit illegitimate second-end capture to ensure the error-free repair of a DNA double-strand break.  相似文献   

20.
Y. Tsukamoto  J. I. Kato    H. Ikeda 《Genetics》1996,142(2):383-391
To examine the mechanism of illegitimate recombination in Saccharomyces cerevisiae, we have developed a plasmid system for quantitative analysis of deletion formation. A can1 cyh2 cell carrying two negative selection markers, the CAN1 and CYH2 genes, on a YCp plasmid is sensitive to canavanine and cycloheximide, but the cell becomes resistant to both drugs when the plasmid has a deletion over the CAN1 and CYH2 genes. Structural analysis of the recombinant plasmids obtained from the resistant cells showed that the plasmids had deletions at various sites of the CAN1-CYH2 region and there were only short regions of homology (1-5 bp) at the recombination junctions. The results indicated that the deletion detected in this system were formed by illegitimate recombination. Study on the effect of several rad mutations showed that the recombination rate was reduced by 30-, 10-, 10-, and 10-fold in the rad52, rad50, mre11, and xrs2 mutants, respectively, while in the rad51, 54, 55, and 57 mutants, the rate was comparable to that in the wild-type strain. The rad52 mutation did not affect length of homology at junction sites of illegitimate recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号