首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Differences in the mRNA species were observed when cDNA complementary to HnRNA from normal liver was hybridized with mRNA from hepatocellular carcinoma induced by aflatoxin B1. The hybridizations between cDNA complementary to HnRNA from liver cell carcinoma and HnRNA from normal liver indicate that there is homology between their sequences. The findings in this paper suggest that mRNA species normally restricted to the cell nucleus are present in the cytoplasm of liver carcinoma cells.  相似文献   

3.
The concentrations, in copies per cell, of viral RNA sequences complementary to different regions of the genome were determined at 8, 18 and 32 hours after infection of human cells with adenovirus type 2: separated strands of fragments of 32P-labelled adenovirus 2 DNA, generated by cleavage with restriction endonucleases EcoR1, Hpa1 and BamH1, were added to reaction mixtures at sufficient concentrations to drive hybridizations with infected or transformed cell RNA. Under these conditions, the fraction of 32P-labelled DNA entering hybrid is directly proportional to the absolute amount of complementary RNA in the reaction.At 8 hours after infection in the presence of cytosine arabinoside, “early” viral messenger RNA sequences are present at a frequency of 300 to 1000 copies per cell. The abundance of early mRNA sequences in different lines of adenovirus 2-transformed rat cells is markedly lower than their concentration in lytically infected cells. Moreover, the abundance of early mRNA in a given transformed rat cell line reflects the number of copies of its template DNA sequences per diploid quantity of cell DNA. After the onset of the late phase of the lytic cycle, the abundance of one early mRNA species, that coding for a single-stranded DNA binding protein required for viral DNA replication, is amplified. Viral RNA sequences complementary to regions of the genome coding for other early mRNA sequences remain at the level observed at 8 hours after infection.Exclusively “late” viral mRNA sequences are present over a range of concentrations, 500 to 10,000 copies per cell, depending on the region of the genome. By 18 hours after infection, the nucleus contains approximately three times as much total, viral RNA as the cytoplasm. The abundant nuclear, viral RNA sequences at 18 hours are transcribed from a contiguous region, 65% of the genome in length. In some cases, viral RNA sequences complementary to mRNA sequences are very abundant in the nucleus. When cytoplasmic and nuclear fractions are mixed and incubated under annealing conditions, some mRNA sequences will anneal with more abundant, anti-messenger nuclear RNA sequences to form double-stranded RNA. Such annealing of nuclear, viral RNA to early, cytoplasmic mRNA sequences probably accounts for the inability to detect, by filter hybridization, certain classes of early mRNA sequences during the late stage of infection.  相似文献   

4.
5.
6.
Normal diploid human cells with a limited life-span in culture, as well as primary or secondary cell cultures of mouse or rat embryos, can be transformed in vitro (i.e. grow in soft-agar or low-serum medium) after a single exposure to metaphase chromosomes from SV40-transformed human or rat cells, Ad5-transformed human cells and several spontaneous human or mouse tumor cells. Chromosomes from normal diploid cells do not show any such transforming activity. As judged from the number of colonies formed in selective medium, the efficiency of transformation is, with some exceptions, of the order of 10(-5)--10(-6) and is generally higher for homologous than for heterologous transfers. A fraction of the colonies demonstrate abortive transformation. Nevertheless, using chromosomes from all but one donor cell population, at least one transferent cell line expressing a stable transformed phenotype has been established. Our results demonstrate that transformation of normal diploid cells by a presumptive chromosome-mediated gene transfer can be obtained with a variety of donor and recipient cells.  相似文献   

7.
A chromosome that controls malignancy in Chinese hamster cells has been identified by analysis of the Giemsa banding pattern of a malignant cell line transformed by simian virus 40 (SV40), non-malignant revertants from this line, segregants from the revertants that were again malignant and a cell line transformed by methylcholanthrene. The malignant cell line transformed by SV40 was near diploid and had gained additional material of chromosome 3. Revertants with a suppression of malignancy and malignant revertants from which they were derived. Malignancy of these cells was associated with the ability to form colonies in agar. Cells of a line transformed by methylcholanthrene were malignant, formed almost no colonies in agar and the only chromosome change from the normal diploid chromosome banding complement was the addition of a long arm of chromosome 3. The results indicate that chromosome 3 carriers gene(s) that control malignancy in Chinese hamster cells in cell lines transformed by a viral or a chemical carcinogen and that malignancy was induced in both cell types by an increase of these genes.  相似文献   

8.
The levels of intramolecular plasmid recombination, following transfection of a plasmid substrate for homologous recombination into normal and immortally transformed cells, have been examined by two independent assays. In the first assay, recovered plasmid was tested for DNA rearrangements which regenerate a functional neomycin resistance gene from two overlapping fragments. Following transformation of bacteria, frequencies of recombinationlike events were determined from the ratio of neomycin-resistant (recombinant) colonies to ampicillin-resistant colonies (indicating total plasmid recovery). Such events, yielding predominantly deletions between the directly repeated sequences, were substantially more frequent in five immortal cell lines than in any of three normal diploid cell strains tested. Effects of plasmid replication or interaction with T antigen and of bacterially mediated rejoining of linear molecules generated in mammalian cells were excluded by appropriate controls. The second assay used limited coamplification of a control segment of plasmid DNA, and of the predicted recombinant DNA region, primed by two sets of flanking oligonucleotides. Each amplified band was quantitated by reference to a near-linear standard curve generated concurrently, and recombination frequencies were determined from the ratio of recombinant/control DNA regions. The results confirmed that recombinant DNA structures were generated within human cells at direct repeats in the transfected plasmid and were markedly more abundant in an immortal cell line than in the diploid normal cells from which that line was derived.  相似文献   

9.
The human genome contains one expressed argininosuccinate synthetase gene and ca. 14 pseudogenes that are dispersed to at least 11 human chromosomes. Eleven clones isolated from a human genomic DNA library were characterized extensively by restriction mapping, Southern blotting, and nucleotide sequencing. These 11 clones represent the entire expressed argininosuccinate synthetase gene that spans 63 kilobases and contains at least 13 exons. The expressed gene codes for two mRNAs that differ in their 5' untranslated sequences and arise by alternative splicing involving the inclusion or deletion of an entire exon. In normal human liver and cultured fibroblasts, the predominant mature argininosuccinate synthetase mRNA lacks sequences encoded by exon 2 in the expressed gene. In contrast, the predominant argininosuccinate synthetase mRNA in baboon liver contains exon 2 sequences. A transformed canavanine-resistant human cell line in which argininosuccinate synthetase activity is 180-fold higher than that in wild-type cells contains abundant amounts of both forms of the argininosuccinate synthetase mRNA. The mRNA lacking exon 2 sequences is the more abundant mRNA species in the canavanine-resistant cells. These observations show that splicing of the argininosuccinate synthetase mRNA is species specific in primates and varies among different human cell types.  相似文献   

10.
Constitutive heterochromatin and euchromatin fractions from normal and avian sarcoma virus transformed cells of Mus musculur and Microtus agrestis were isolated in order to characterize the site of integration of the viral specific DNA sequences. The transformed mouse (BALB/c 3T3-B77) and M. agrestis (UMMA-RSV-21) cell lines, as well as a revertant clone of the M. agrestis (UMMA-RSV-R-4) were found to have integrated 1–2 viral copies per diploid genome. The number of viral copies was studied by the technique of DNA-DNA hybridization in solution, and in all cases the viral sequences were located in the euchromatin fraction.  相似文献   

11.
12.
13.
14.
We have examined the arrangement of integrated avian sarcoma virus (ASV) DNA sequences in several different avian sarcoma virus transformed mammalian cell lines, in independently isolated clones of avian sarcoma virus transformed rat liver cells, and in morphologically normal revertants of avian sarcoma virus transformed rat embryo cells. By using restriction endonuclease digestion, agarose gel electrophoresis, Southern blotting, and hybridization with labeled avian sarcoma virus complementary DNA probes, we have compared the restriction enzyme cleavage maps of integrated viral DNA and adjacent cellular DNA sequences in four different mouse and rat cell lines transformed with either Bratislava 77 or Schmidt-Ruppin strains of avian sarcoma virus. The results of these experiments indicated that the integrated viral DNA resided at a different site within the host cell genome in each transformed cell line. A similar analysis of several independently derived clones of Schmidt-Ruppin transformed rat liver cells also revealed that each clone contained a unique cellular site for the integration of proviral DNA. Examination of several morphologically normal revertants and spontaneous retransformants of Schmidt-Ruppin transformed rat embryo cells revealed that the internal arrangement and cellular integration site of viral DNA sequences was identical with that of the transformed parent cell line. The loss of the transformed phenotype in these revertant cell lines, therefore, does not appear to be the result of rearrangement or deletions either within the viral genome or in adjacent cellular DNA sequences. The data presented support a model for ASV proviral DNA integration in which recombination can occur at multiple sites within the mammalian cell genome. The integration and maintenance of at least one complete copy of the viral genome appear to be required for continuous expression of the transformed phenotype in mammalian cells.  相似文献   

15.
A mouse SPARC cDNA clone was used to elucidate the expression of SPARC mRNA in normal diploid human cells as well as in tumor cells. Among 40 cell lines examined, 19 showed expression. The mRNA transcribed by the majority of the expressors are 2.1 kb with a trace amount of 3 kb. However, three cell types, undifferentiated basal keratinocytes, their differentiated derivatives, and breast adenocarcinoma cells, showed an expression pattern distinct from the typical one, having abundant 3-kb mRNA but no detectable 2.1-kb mRNA. The mRNA was translated and the product secreted. This expression pattern was not observed before in human cells and was not found in tumor cells of keratinocytes, squamous carcinoma cells, or many other adenocarcinoma cells. We showed by Northern hybridization that the SPARC-expressing melanocytic melanoma cell lines produced laminin, a component of extracellular matrix. Other cell types expressing the SPARC mRNA were also reported to synthesize extracellular matrix components. Thus, our results indicate an association between SPARC gene expression and production of extracellular matrix. However, the opposite is not true since non-SPARC-producers may or may not produce extracellular matrix. For example, A431 cell line, which does not express SPARC mRNA, is known to produce extracellular matrix components while the normal diploid melanocytes and undifferentiated embryonal carcinoma cells, which do not express SPARC mRNA, do not produce extracellular matrix component.  相似文献   

16.
The tumorigenicity in nude mice of human carcinoma-derived D98AH2 (D98) cells is suppressed when cell hybrids are made by fusing these cells with normal human diploid cells. Selection for hybrids that have segregated chromosomes results in the recovery of tumorigenic segregants. These segregants have all lost at least one copy of chromosome 11 of the diploid cell parent. Earlier we found that the parental D98 cells had detectable levels of mRNA specific for 13 of 21 proto-oncogenes examined. To determine if transregulation of proto-oncogenes by genes of the normal cell occurs in such hybrids, the steady-state levels of mRNA specific to 22 proto-oncogenes in the parental cells were compared with those of nontumorigenic D98 X human diploid hybrids as well as with those of their tumorigenic segregants and with the cells of the resulting tumors. The only chromosome consistently segregated in the latter was chromosome 11 of the diploid cell. fos and ets2 RNA levels and the amount of fos protein were consistently elevated in the segregants compared with amounts in the original hybrids. An unexpected finding was the inverse relationship for myb RNA that was barely detected in the parental D98 cells but was at least 10-fold elevated in hybrids that did not have segregated chromosomes compared with those that did. These patterns were evident in RNAs prepared from both subconfluent and confluent cell cultures. The findings suggest that genes of the normal cell parent can affect proto-oncogene expression. Whether the genes affecting fos, ets2, and myb RNA levels are on chromosome 11 and whether these alterations are causally related to the tumorigenic phenotype of the hybrid remain to be determined.  相似文献   

17.
We have analyzed cellular DNA sequences at the viral genome integration site in a human fibroblast cell line VA13 immortalized by simian virus 40 (SV40). The computer analysis of the junctional cellular DNA sequences did not show any homology to the DNA sequences previously reported. This suggests that immortalization by SV40 was not induced by the destruction of any known oncogene or anti-oncogene at the integration site. We did not find the precise substantial sequence homology at the junctional site between the cellular DNA and SV40 DNA, indicating that the recombination mechanism involved does not require precise sequence homology and therefore, SV40 genome was probably not integrated by homologous recombination. Short direct and inverted repeats of 5 to 29 nucleotides were found in the junctional cellular and SV40 DNA. Cellular DNA abutting SV40 DNA was found by the Northern blot analysis to be expressed in diploid human fibroblasts and SV40-transformed cells. The nature of this RNA is now under study.  相似文献   

18.
The simian sarcoma virus (SSV) oncogene (v-sis) has a high degree of homology to the cellular gene coding for the B peptide of human platelet-derived growth factor (PDGF), a potent fibroblast mitogen. The cellular homolog of v-sis is activated in some mesenchymal human tumors and cell lines derived from them. To determine the phenotype produced by v-sis in diploid human fibroblasts, we constructed plasmids containing the SSV provirus and drug-resistance markers and transfected them into early-passage human cells. Fibroblasts that had integrated the plasmid were selected for drug resistance and shown to contain and express the v-sis oncogene by DNA and RNA hybridization. The v-sis-expressing cells grew to higher saturation densities than control cells transfected with the vector plasmid alone and formed large, well defined foci. This allowed selection of transfectants directly for focus formation. The v-sis transformed cells continued to grow well in the absence of serum, whereas age-matched, vector-transfected control cells ceased replicating under these conditions so that the final difference in density between the two populations was tenfold. Incorporation of thymidine in serum-free medium by the v-sis-transformed cells was independent of exogenous PDGF. In contrast, PDGF increased thymidine incorporation in such medium by the control cells to the level found in the v-sis-transformed cells with or without added PDGF. These results suggest that expression of the v-sis oncogene in diploid human fibroblasts causes sufficient endogenous synthesis of the B chain of PDGF to allow transformants to grow to abnormally high cell densities. When individual v-sis-transformed cells were grown on a background of normal cells, this higher cell density at confluence could be visualized as a focus.  相似文献   

19.
20.
The lowering of extracellular Ca2+ concentration in the growth medium reversibly blocks normal, but not SV40-transformed WI38 diploid fibroblasts in the early G1/G0 phase of the cell cycle. This growth response is characterized by specific changes in ionic content and transport. Ca2+ deprivation (0.03 mM) has little effect on the K+ content of either normal or transformed cells. Na+ content, however, is increased nearly 2-fold in the normal cells. This increase is presumably due to a 3-fold increase in unidirectional Na+ influx in Ca2+-deprived cells. The increased intracellular Na+ also gives rise to a nearly 3-fold enhancement of the active (ouabain-sensitive) Na+ efflux. Ca2+ deprivation causes only slight increases in Na+ influx, ouabain-sensitive Na+ efflux and intracellular Na+ in the transformed cell. In contrast, the transformed cells lose nearly 60% of their intracellular Ca2+ on deprivation, whereas normal WI38 cells lose only 10%. The data suggest that the growth arrest exhibited by the normal cell but not the transformed cell may be related to different membrane-transport and permeability changes in response to Ca2+ deprivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号