首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions of outer membrane proteins (OMPs) with the periplasmic chaperone Skp from Escherichia coli are not well understood. We have examined the binding of Skp to various OMPs of different origin, size, and function. These were OmpA, OmpG, and YaeT (Omp85) from Escherichia coli, the translocator domain of the autotransporter NalP from Neisseria meningitides, FomA from Fusobacterium nucleatum, and the voltage-dependent anion-selective channel, human isoform 1 (hVDAC1) from mitochondria. Binding of Skp was observed for bacterial OMPs, but neither for hVDAC1 nor for soluble bovine serum albumin. The Skp trimer formed 1:1 complexes, OMP·Skp3, with bacterial OMPs, independent of their size or origin. The dissociation constants of these OMP·Skp3 complexes were all in the nanomolar range, indicating that they are stable. Complexes of Skp3 with YaeT displayed the smallest dissociation constants, complexes with NalP the largest. OMP binding to Skp3 was pH-dependent and not observed when either Skp or OMPs were neutralized at very basic or very acidic pH. When the ionic strength was increased, the free energies of binding of Skp to OmpA or OmpG were reduced. Electrostatic interactions were therefore necessary for formation and stability of OMP·Skp3 complexes. Light-scattering and circular dichroism experiments demonstrated that Skp3 remained a stable trimer from pH 3 to pH 11. In the OmpA·Skp3 complex, Skp efficiently shielded tryptophan residues of the transmembrane strands of OmpA against fluorescence quenching by aqueous acrylamide. Lipopolysaccharide (LPS), a major component of the outer membrane of Gram-negative bacteria, bound to OmpA·Skp3 complexes at low stoichiometries. Acrylamide quenching of fluorescence indicated that in this ternary complex, the tryptophan residues of the transmembrane domain of OmpA were located closer to the surface than in binary OmpA·Skp3 complexes. This may explain previous observations that folding of Skp-bound OmpA into lipid bilayers is facilitated in presence of LPS.  相似文献   

2.
The Escherichia coli SurA protein is a periplasmic molecular chaperone that facilitates correct folding of outer membrane porins. The peptide binding specificity of SurA has been characterized using phage display of heptameric peptides of random sequence. The consensus binding pattern of aromatic-polar-aromatic-nonpolar-proline amino acids emerges for both SurA and a SurA "core domain," which remains after deletion of a peripheral peptidyl-proline isomerase domain. Isothermal titration calorimetry with a high affinity heptameric peptide of sequence WEYIPNV yields peptide affinities in the range of 1-14 microm for both SurA and its core domain. Although the peptide consensus aromatic-polar-aromatic-nonpolar-proline occurs infrequently in E. coli proteins, the less restrictive tripeptide motif aromatic-random-aromatic appears with greater-than-random frequency in outer membrane proteins and is prevalent in the "aromatic bands" of the porin beta barrel structures. Thus, SurA recognizes a peptide motif that is characteristic of integral outer membrane proteins.  相似文献   

3.
Using a cross-linking approach, we have analyzed the function of Skp, a presumed molecular chaperone of the periplasmic space of Escherichia coli, during the biogenesis of an outer membrane protein (OmpA). Following its transmembrane translocation, OmpA interacts with Skp in close vicinity to the plasma membrane. In vitro, Skp was also found to bind strongly and specifically to pOmpA nascent chains after their release from the ribosome suggesting the ability of Skp to recognize early folding intermediates of outer membrane proteins. Pulse labeling of OmpA in spheroplasts prepared from an skp null mutant revealed a specific requirement of Skp for the release of newly translocated outer membrane proteins from the plasma membrane. Deltaskp mutant cells are viable and show only slight changes in the physiology of their outer membranes. In contrast, double mutants deficient both in Skp and the periplasmic protease DegP (HtrA) do not grow at 37 degrees C in rich medium. We show that in the absence of an active DegP, a lack of Skp leads to the accumulation of protein aggregates in the periplasm. Collectively, our data demonstrate that Skp is a molecular chaperone involved in generating and maintaining the solubility of early folding intermediates of outer membrane proteins in the periplasmic space of Gram-negative bacteria.  相似文献   

4.
We have studied the folding pathway of a beta-barrel membrane protein using outer membrane protein A (OmpA) of Escherichia coli as an example. The deletion of the gene of periplasmic Skp impairs the assembly of outer membrane proteins of bacteria. We investigated how Skp facilitates the insertion and folding of completely unfolded OmpA into phospholipid membranes and which are the biochemical and biophysical requirements of a possible Skp-assisted folding pathway. In refolding experiments, Skp alone was not sufficient to facilitate membrane insertion and folding of OmpA. In addition, lipopolysaccharide (LPS) was required. OmpA remained unfolded when bound to Skp and LPS in solution. From this complex, OmpA folded spontaneously into lipid bilayers as determined by electrophoretic mobility measurements, fluorescence spectroscopy, and circular dichroism spectroscopy. The folding of OmpA into lipid bilayers was inhibited when one of the periplasmic components, either Skp or LPS, was absent. Membrane insertion and folding of OmpA was most efficient at specific molar ratios of OmpA, Skp, and LPS. Unfolded OmpA in complex with Skp and LPS folded faster into phospholipid bilayers than urea-unfolded OmpA. Together, these results describe a first assisted folding pathway of an integral membrane protein on the example of OmpA.  相似文献   

5.
The periplasmic chaperones Skp, SurA, and DegP are implicated in the biogenesis of outer membrane proteins (OMPs) in Escherichia coli. Here, we investigated whether these chaperones exert similar functions in Neisseria meningitidis. Although N. meningitidis does not contain a homolog of the protease/chaperone DegP, it does possess a homolog of another E. coli protein, DegQ, which can functionally replace DegP when overproduced. Hence, we examined whether in N. meningitidis, DegQ acts as a functional homolog of DegP. Single skp, surA, and degQ mutants were easily obtained, showing that none of these chaperones is essential in N. meningitidis. Furthermore, all combinations of double mutants were generated and no synthetic lethality was observed. The absence of SurA or DegQ did not affect OMP biogenesis. In contrast, the absence of Skp resulted in severely lower levels of the porins PorA and PorB but not of other OMPs. These decreased levels were not due to proteolytic activity of DegQ, since porin levels remained low in a skp degQ double mutant, indicating that neisserial DegQ is not a functional homolog of E. coli DegP. The absence of Skp resulted in lower expression of the porB gene, as shown by using a P(porB)-lacZ fusion. We found no cross-species complementation when Skp of E. coli or N. meningitidis was heterologously expressed in skp mutants, indicating that Skp functions in a species-specific manner. Our results demonstrate an important role for Skp but not for SurA or DegQ in OMP biogenesis in N. meningitidis.  相似文献   

6.
Rhizobium leguminosarum cells were separated into four distinct fractions by using density gradient centrifugation for the separation of the outer and cytoplasmic membranes and lysozyme-EDTA treatment of whole cells for the isolation of the periplasmic and cytoplasmic fractions. These methods allowed the subcellular localization of R. leguminosarum proteins.  相似文献   

7.
K88 fimbriae are ordered polymeric protein structures at the surface of enterotoxigenic Escherichia coli cells. Their production and assembly requires a molecular chaperone located in the periplasm (FaeE) and a molecular usher located in the outer membrane (FaeD). FaeC is the tip component of the K88 fimbriae. We studied the expression of the subcloned faeC gene, the subcellular localization of FaeC and its interaction with the chaperone and the outer membrane usher. In the absence of the chaperone or the usher, FaeC could not be detected in E. coli cells harbouring the faeC gene and its ribosome binding site under contol of the IPTG inducible lpp/lac promoter/operator. The expression of FaeC was detectable in the presence of chaperone FaeE, but a direct interaction between the chaperone and FaeC was not found. The expression of FaeC was also detectable in cells co-expressing the outer membrane usher FaeD. Overexpression of FaeC after changing the faeC ribosome binding site appeared to induce lethality. Expression of subcloned FaeC in the absence of FaeE or FaeD could be detected when faeC was cloned under the tight control of the ara promoter/operator and when lethality induction was avoided. The direct interaction of FaeC with outer membranes containing the usher FaeD was studied by cell fractionation, isopycnic sucrose density gradient centrifugation, SDS-PAGE and immunoblotting. FaeC was found to bind to outer membranes containing FaeD or a FaeD-PhoA hybrid construct containing 215 amino-terminal residues of FaeD. This binding was not observed when control outer membranes without FaeD were used. No other K88 specific proteins were required for this interaction. The direct interaction between FaeC and FaeD in the outer membranes was shown by affinity blotting experiments. FaeE was not required for this interaction. Together these data indicate that the minor fimbrial subunit FaeC, unlike FaeG, H and F, does not have a strong interaction with the chaperone FaeE in the E. coli periplasm, but directly binds to the outer membrane molecular usher FaeD.  相似文献   

8.
The 17-kDa protein (Skp) of Escherichia coli is a homotrimeric periplasmic chaperone for newly synthesized outer-membrane proteins. Here we present its X-ray structure at a resolution of 2.35 A. Three hairpin-shaped alpha-helical extensions reach out by approximately 60 A from a trimerization domain, which is composed of three intersubunit beta-sheets that wind around a central axis. The alpha-helical extensions approach each other at their distal turns, resulting in a fold that resembles a 'three-pronged grasping forceps'. The overall shape of Skp is reminiscent of the cytosolic chaperone prefoldin, although it is based on a radically different topology. The peculiar architecture, with apparent plasticity of the prongs and distinct electrostatic and hydrophobic surface properties, supports the recently proposed biochemical mechanism of this chaperone: formation of a Skp(3)-Omp complex protects the outer membrane protein from aggregation during passage through the bacterial periplasm.  相似文献   

9.
The Escherichia coli periplasmic chaperone and peptidyl-prolyl isomerase (PPIase) SurA facilitates the maturation of outer membrane porins. Although the PPIase activity exhibited by one of its two parvulin-like domains is dispensable for this function, the chaperone activity residing in the non-PPIase regions of SurA, a sizable N-terminal domain and a short C-terminal tail, is essential. Unlike most cytoplasmic chaperones SurA is selective for particular substrates and recognizes outer membrane porins synthesized in vitro much more efficiently than other proteins. Thus, SurA may be specialized for the maturation of outer membrane proteins. We have characterized the substrate specificity of SurA based on its natural, biologically relevant substrates by screening cellulose-bound peptide libraries representing outer membrane proteins. We show that two features are critical for peptide binding by SurA: specific patterns of aromatic residues and the orientation of their side chains, which are found more frequently in integral outer membrane proteins than in other proteins. For the first time this sufficiently explains the capability of SurA to discriminate between outer membrane protein and non-outer membrane protein folding intermediates. Furthermore, peptide binding by SurA requires neither an active PPIase domain nor the presence of proline, indicating that the observed substrate specificity relates to the chaperone function of SurA. Finally, we show that SurA is capable of associating with the outer membrane. Together, our data support a model in which SurA is specialized to interact with non-native periplasmic outer membrane protein folding intermediates and to assist in their maturation from early to late outer membrane-associated steps.  相似文献   

10.
The VirB4 ATPase of Agrobacterium tumefaciens, a putative component of the T-complex transport apparatus, associates with the cytoplasmic membrane independently of other products of the Ti plasmid. VirB4 was resistant to extraction from membranes of wild-type strain A348 or a Ti-plasmidless strain expressing virB4 from an IncP replicon. To evaluate the membrane topology of VirB4, a nested deletion method was used to generate a high frequency of random fusions between virB4 and 'phoA, which encodes a periplasmically active alkaline phosphatase (AP) deleted of its signal sequence. VirB4::PhoA hybrid proteins exhibiting AP activity in Escherichia coli and A. tumefaciens had junction sites that mapped to two regions, between residues 58 and 84 (region 1) and between residues 450 and 514 (region 2). Conversely, VirB4::beta-galactosidase hybrid proteins with junction sites mapping to regions 1 and 2 exhibited low beta-galactosidase activities and hybrid proteins with junction sites elsewhere exhibited high beta-galactosidase activities. Enzymatically active VirB5::PhoA hybrid proteins had junction sites that were distributed throughout the length of the protein. Proteinase K treatment of A. tumefaciens spheroplasts resulted in the disappearance of the 87-kDa VirB4 protein and the concomitant appearance of two immunoreactive species of approximately 35 and approximately 45 kDa. Taken together, our data support a model in which VirB4 is topologically configured as an integral cytoplasmic membrane protein with two periplasmic domains.  相似文献   

11.
Gram-negative bacteria shed outer membrane vesicles composed of outer membrane and periplasmic components. Since vesicles from pathogenic bacteria contain virulence factors and have been shown to interact with eukaryotic cells, it has been proposed that vesicles behave as delivery vehicles. We wanted to determine whether heterologously expressed proteins would be incorporated into the membrane and lumen of vesicles and whether these altered vesicles would associate with host cells. Ail, an outer membrane adhesin/invasin from Yersinia enterocolitica, was detected in purified outer membrane and in vesicles from Escherichia coli strains DH5alpha, HB101, and MC4100 transformed with plasmid-encoded Ail. In vesicle-host cell co-incubation assays we found that vesicles containing Ail were internalized by eukaryotic cells, unlike vesicles without Ail. To determine whether lumenal vesicle contents could be modified and delivered to host cells, we used periplasmically expressed green fluorescent protein (GFP). GFP fused with the Tat signal sequence was secreted into the periplasm via the twin arginine transporter (Tat) in both the laboratory E. coli strain DH5alpha and the pathogenic enterotoxigenic E. coli ATCC strain 43886. Pronase-resistant fluorescence was detectable in vesicles from Tat-GFP-transformed strains, demonstrating that GFP was inside intact vesicles. Inclusion of GFP cargo increased vesicle density but did not result in morphological changes in vesicles. These studies are the first to demonstrate the incorporation of heterologously expressed outer membrane and periplasmic proteins into bacterial vesicles.  相似文献   

12.
The outer membrane of Borrelia burgdorferi, the causative agent of Lyme disease, contains very few integral membrane proteins, in contrast to other gram-negative bacteria. BBA74, a Borrelia burgdorferi plasmid-encoded protein, was proposed to be an integral outer membrane protein with putative porin function and designated as a 28-kDa outer membrane-spanning porin (Oms28). In this study, the biophysical properties of BBA74 and its subcellular localization were investigated. BBA74 is posttranslationally modified by signal peptidase I cleavage to a mature 25-kDa protein. The secondary structure of BBA74 as determined by circular dichroism spectroscopy consists of at least 78% alpha-helix with little beta-sheet structure. BBA74 in intact B. burgdorferi cells was insensitive to proteinase K digestion, and indirect immunofluorescence microscopy showed that BBA74 was not exposed on the cell surface. Triton X-114 extraction of outer membrane vesicle preparations indicated that BBA74 is not an integral membrane protein. Taken together, the data indicate that BBA74 is a periplasmic, outer membrane-associated protein that lacks properties typically associated with porins.  相似文献   

13.
The 'seventeen kilodalton protein' Skp confers transient solubility on outer membrane proteins during biogenesis in Gram-negative bacteria. Here we report a first biophysical characterization of this chaperone itself, which also possesses biotechnological potential in the production of recombinant proteins. Using cross-linking and gel filtration methods, we found that Skp forms a stable homo-trimer in solution. Following thermal denaturation, monitored by CD spectroscopy, this chaperone refolds with high efficiency but exhibits a pronounced hysteresis between the un- and refolding transitions. Using the recombinant protein equipped with the Strep-tag II at its N-terminus, suitable crystallization conditions for Skp were found. A first data set was collected to 2.60 A resolution.  相似文献   

14.
Prion protein (PrP), normally a cell surface protein, has been detected in the cytosol of a subset of neurons. The appearance of PrP in the cytosol could result from either retro-translocation of misfolded PrP from the endoplasmic reticulum (ER) or impaired import of PrP into the ER. Transgenic mice expressing cytoplasmic PrP (cyPrP) developed neurodegeneration in cerebellar granular neurons, although no detectable pathology was observed in other brain regions. In order to understand why granular neurons in the cerebellum were most susceptible to cyPrP-induced degeneration, we investigated the subcellular localization of cyPrP. Interestingly, we found that cyPrP is membrane-bound. In transfected cells, it binds to the ER and plasma/endocytic vesicular membranes. In transgenic mice, it is associated with synaptic and microsomal membranes. Furthermore, the cerebellar neurodegeneration in transgenic mice correlates with the interaction between cyPrP and the hydrophobic lipid core of the membrane but not with either the aggregation status or the dosage of cyPrP. These results suggest that lipid membrane perturbation could be a cellular mechanism for cyPrP-induced neurotoxicity and explain the seemingly conflicting results concerning cyPrP.  相似文献   

15.
Leptospirosis is a world spread zoonosis caused by members of the genus Leptospira. Although leptospires were identified as the causal agent of leptospirosis almost 100 years ago, little is known about their biology, which hinders the development of new treatment and prevention strategies. One of the several aspects of the leptospiral biology not yet elucidated is the process by which outer membrane proteins (OMPs) traverse the periplasm and are inserted into the outer membrane. The crystal structure determination of the conserved hypothetical protein LIC12922 from Leptospira interrogans revealed a two domain protein homologous to the Escherichia coli periplasmic chaperone SurA. The LIC12922 NC-domain is structurally related to the chaperone modules of E. coli SurA and trigger factor, whereas the parvulin domain is devoid of peptidyl prolyl cis-trans isomerase activity. Phylogenetic analyses suggest a relationship between LIC12922 and the chaperones PrsA, PpiD and SurA. Based on our structural and evolutionary analyses, we postulate that LIC12922 is a periplasmic chaperone involved in OMPs biogenesis in Leptospira spp. Since LIC12922 homologs were identified in all spirochetal genomes sequenced to date, this assumption may have implications for the OMPs biogenesis studies not only in leptospires but in the entire Phylum Spirochaetes.  相似文献   

16.
Autotransporters are single polypeptides consisting of an outer membrane translocation domain mediating the translocation of a passenger domain. The periplasmic folding state of the passenger domain is controversial. By comparisons of passenger domains differing in their folding properties, our results suggest that periplasmic folding of passenger domains interferes with translocation.  相似文献   

17.
An xps gene cluster composed of 11 open reading frames is required for the type II protein secretion in Xanthomonas campestris pv. campestris. Immediately upstream of the xpsD gene, which encodes an outer membrane protein that serves as the secretion channel by forming multimers, there exists an open reading frame (previously designated ORF2) that could encode a protein of 261 amino acid residues. Its N-terminal hydrophobic region is a likely membrane-anchoring sequence. Antibody raised against this protein could detect in the wild-type strain of X. campestris pv. campestris a protein band with an apparent molecular mass of 36 kDa by Western blotting. Its aberrant slow migration in sodium dodecyl sulfate-polyacrylamide gels might be due to its high proline content. We designated this protein XpsN. By constructing a mutant strain with an in-frame deletion of the chromosomal xpsN gene, we demonstrated that it is required for the secretion of extracellular enzyme by X. campestris pv. campestris. Subcellular fractionation studies indicated that the XpsN protein was tightly associated with the membrane. Sucrose gradient sedimentation followed by immunoblot analysis revealed that it primarily appeared in the cytoplasmic membrane fractions. Immune precipitation experiments indicated that the XpsN protein was coprecipitated with the XpsD protein. In addition, the XpsN protein was co-eluted with the (His)(6)-tagged XpsD protein from the metal affinity chromatography column. All observations suggested that the XpsN protein forms a stable complex with the XpsD protein. In addition, immune precipitation analysis of the XpsN protein with various truncated XpsD proteins revealed that the C-terminal region of the XpsD protein between residues 650 and 759 was likely to be involved in complex formation between the two.  相似文献   

18.
Ahuja U  Thöny-Meyer L 《FEBS letters》2006,580(1):216-222
The cytochrome c maturation system of Escherichia coli contains two monotopic membrane proteins with periplasmic, functional domains, the heme chaperone CcmE and the thioredoxin CcmG. We show in a domain swap experiment that the membrane anchors of these proteins can be exchanged without drastic loss of function in cytochrome c maturation. By contrast, the soluble periplasmic forms produced with a cleavable OmpA signal sequence have low biological activity. Both the chimerical CcmE (CcmG'-'E) and the soluble periplasmic CcmE produce low levels of holo-CcmE and thus are impaired in their heme receiving capacity. Also, both forms of CcmE can be co-precipitated with CcmC, thus restricting the site of interaction of CcmE with CcmC to the C-terminal periplasmic domain. However, the low level of holo-CcmE formed in the chimera is transferred efficiently to cytochrome c, indicating that heme delivery from CcmE does not involve the membrane anchor.  相似文献   

19.
A search was performed for a periplasmic molecular chaperone which may assist outer membrane proteins of Escherichia coli on their way from the cytoplasmic to the outer membrane. Proteins of the periplasmic space were fractionated on an affinity column with sepharose-bound outer membrane porin OmpF. A 17kDa polypeptide was the predominant protein retained by this column. The corresponding gene was found in a gene bank; it encodes the periplasmic protein Skp. The protein was isolated and it could be demonstrated that it bound outer membrane proteins, following SDS-PAGE, with high selectivity. Among these were OmpA, OmpC, OmpF and the maltoporin LamB. The chromosomal skp gene was inactivated by a deletion causing removal of most of the signal peptide plus 107 residues of the 141-residue mature protein. The mutant was viable but possessed much-reduced concentrations of outer membrane proteins. This defect was fully restored by a plasmid-borne skp gene which may serve as a periplasmic chaperone.  相似文献   

20.
Within minutes of Bdellovibrio bacteriovorus attack on prey cells, such as Escherichia coli, the cytoplasmic membrane of the prey is altered. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified invaded prey cell (bdelloplast) membranes revealed the appearance of a noncytoplasmic membrane protein. This protein is not observed in preparations of noninvaded E. coli membranes and migrates in a manner similar to that of E. coli OmpF. Isoelectric focusing and two-dimensional gel electrophoresis of bdelloplast cytoplasmic membrane preparations also revealed the presence of a protein with electrophoretic properties similar to those of OmpF and the major Bdellovibrio outer membrane proteins. The protein appears in cytoplasmic membrane preparations within minutes of attack and persists throughout most of the intraperiplasmic developmental cycle. The appearance of this protein is consistent with our hypothesis that bdellovibrios translocate a pore protein into the bdelloplast cytoplasmic membrane to kill their prey and to gain access to the cytoplasmic contents for growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号