首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombination catalyzed by the gamma delta resolvase requires assembly of a nucleo-protein complex, the synaptosome, whose structure is determined by resolvase-res and resolvase-resolvase interactions. In crystals of the resolvase catalytic domain, monomers of resolvase were closely associated with one another across three different dyad axes; one of these subunit contacts was shown to be an essential inter-dimer interaction. To investigate the relevance of the remaining two interfaces, we have made site-directed mutations at positions suggested by the structure. Cysteine substitutions were designed to link the interfaces covalently, mutations to arginine were used to disrupt intersubunit contacts, and mutations to tryptophan were used to study the hydrophobicity and solvent accessibility of potential interfaces by fluorescence quenching. Characterization of the mutant proteins has allowed us to identify the dimer interface of resolvase and to assign a structural role to a second intersubunit contact. The data presented here, together with our previous results, suggest that all three of the dyad-related intersubunit interactions observed in the crystal play specific roles in synapsis and recombination.  相似文献   

2.
Resolvases from Tn3-like transposons catalyse site-specific recombination at res sites. Each res site has 3 binding sites for resolvase, I, II, and III. The res sites in Tn3 and Tn21 have similar structures at I and II but they differ at III. Mutagenesis of the Tn21 res site showed that sub-site III is essential for recombination though the sequences in III that are recognized by Tn21 resolvase are positioned differently from the equivalent sequences in the Tn3 site. The deletion of III caused a 1,000-fold drop in the rate of recombination. But other mutations at III, changing 3 or 4 consecutive base pairs, caused only 1.5- to 4-fold decreases in rate, even when the mutations were in target sequences for this helix-turn-helix protein. The reason why Tn21 resolvase has similar activities at a number of different DNA sequences may be due to the multiplicity of protein-protein and protein-DNA interactions in its recombinogenic complex. This lack of precision may be a general feature of nucleoprotein complexes.  相似文献   

3.
Resolvase, a site-specific recombination enzyme involved in transposition of movable elements of DNA, has been crystallized. The space group is P6222 (or enantiomorph P6422, a = b = 59.7 A?, c = 169.4 A?), with a monomer in the crystallographic asymmetric unit.  相似文献   

4.
Previously, we isolated several inhibitors that block the site-specific recombination reaction mediated by the Tn3-encoded resolvase protein. One class of inhibitors blocks resolvase binding to the recombination (res) sitc, and a second class inhibits synapse formation between resolvase and two directly repeated res sites. In this report, we identify an inhibitor, A20832, that does not inhibit resolvase binding to res, as measured by filter binding, or synapse formation. Inhibition of resolvase-promoted site-specific recombination by A20832 occurs postsynaptically at strand cleavage. DNase I analysis in the presence of A20832 indicates that only site I of res is bound by resolvase.  相似文献   

5.
The Tn3-encoded resolvase protein promotes a site-specific recombination reaction between two directly repeated copies of the recombination site res. Several inhibitors that block this event in vitro have been isolated. In this study four of these inhibitors were tested on various steps in the recombination reaction. Two inhibitors. A9387 and A1062, inhibit resolvase binding to the res site. Further, DNase I footprinting revealed that at certain concentrations of A9387 and A1062, resolvase was preferentially bound to site I of res, the site containing the recombinational crossover point. The two other inhibitors, A20812 and A21960, do not affect resolvase binding and bending of the DNA but inhibit synapse formation between resolvase and two directly repeated res sites.  相似文献   

6.
"Looping" interactions of distant sites on DNA molecules, mediated by DNA-binding proteins, feature in many regulated genetic processes. We used plasmids containing up to six res recombination sites for Tn3 resolvase to analyse looping interactions (synapsis) in this system. We observed that in plasmids with four or more res sites, certain pairs of sites recombine faster than others. The relative rates of recombination depend on the number, relative orientation, and arrangement of the sites. To account for the differences in rate, we propose that pairing interactions between resolvase-bound res sites are in a state of rapid flux, leading to configurations in which the maximum number of sites within each supercoiled substrate molecule are synapsed in a topologically simple arrangement. Recombination rates reflect the steady state concentrations of these synapse configurations. Our results are at variance with models for selective synapsis that rely on ordered motions within supercoiled DNA, "slithering" or "tracking", but are compatible with models that call for reversible synapsis of pairs of sites by random collision, followed by formation of an interwound productive synapse.  相似文献   

7.
Xer site-specific recombination functions in the stable maintenance of circular replicons in Escherichia coli. Each of two related recombinase proteins, XerC and XerD, cleaves a specific pair of DNA strands, exchanges them, and rejoins them to the partner DNA molecule during a complete recombination reaction. The rejoining activity of recombinase XerC has been analyzed using isolated covalent XerC-DNA complexes resulting from DNA cleavage reactions upon Holliday junction substrates. These covalent protein-DNA complexes are competent in the rejoining reaction, demonstrating that covalently bound XerC can catalyze strand rejoining in the absence of other proteins. This contrasts with a recombinase-mediated cleavage reaction, which requires the presence of both recombinases, the recombinase mediating catalysis at any given time requiring activation by the partner recombinase. In a recombining nucleoprotein complex, both cleavage and rejoining can occur prior to dissociation of the complex.  相似文献   

8.
The resolvases from the transposons Tn3 and Tn21 are homologous proteins but they possess distinct specificities for the DNA sequence at their respective res sites. The DNA binding domain of resolvase contains an amino acid sequence that can be aligned with the helix-turn-helix motif of other DNA binding proteins. Mutations in the gene for Tn21 resolvase were made by replacing the section of DNA that codes for the helix-turn-helix with synthetic oligonucleotides. Each mutation substituted one amino acid in Tn21 resolvase with either the corresponding residue from Tn3 resolvase or a residue that lacks hydrogen bonding functions. The ability of these proteins to mediate recombination between res sites from either Tn21 or Tn3 was measured in vivo and in vitro. With one exception, where a glutamate residue had been replaced by leucine, the activity of these mutants was similar to that of wild-type Tn21 resolvase. A further mutation was made in which the complete recognition helix of Tn21 resolvase was replaced with that from Tn3 resolvase. This protein retained activity in recombining Tn21 res sites, though at a reduced level relative to wild-type; the reduction can be assigned entirely to weakened binding to this DNA. Neither this mutant nor any other derivative of Tn21 resolvase had any detectable activity for recombination between res sites from Tn3. The exchange of this section of amino acid sequence between the two resolvases is therefore insufficient to alter the DNA sequence specificity for recombination.  相似文献   

9.
The small serine resolvase ParA from bacterial plasmids RK2 and RP4 catalyzes the recombination of two identical 133 bp recombination sites known as MRS. Previously, we reported that ParA is active in the fission yeast Schizosaccharomyces pombe. In this work, the parA recombinase gene was placed under the control of the Arabidopsis OXS3 promoter and introduced into Arabidopsis lines harboring a chromosomally integrated MRS-flanked target. The ParA recombinase excised the MRS-flanked DNA and the excision event was detected in subsequent generations in the absence of ParA, indicating germinal transmission of the excision event. The precise site-specific deletion by the ParA recombination system in planta demonstrates that the ParA recombinase can be used to remove transgenic DNA, such as selectable markers or other introduced transgenes that are no longer desired in the final product.  相似文献   

10.
Many natural DNA site-specific recombination systems achieve directionality and/or selectivity by making recombinants with a specific DNA topology. This property requires that the DNA architecture of the synapse and the mechanism of strand exchange are both under strict control. Previously we reported that Tn3 resolvase-mediated synapsis of the accessory binding sites from the Tn3 recombination site res can impose topological selectivity on Cre/loxP recombination. Here, we show that the topology of these reactions is profoundly affected by subtle changes in the hybrid recombination site les. Reversing the orientation of loxP relative to the res accessory sequence, or adding 4 bp to the DNA between loxP and the accessory sequence, can switch between two-noded and four-noded catenane products. By analysing Holliday junction intermediates, we show that the innate bias in the order of strand exchanges at loxP is maintained despite the changes in topology. We conclude that a specific synaptic structure formed by resolvase and the res accessory sequences permits Cre to align the adjoining loxP sites in several distinct ways, and that resolvase-mediated intertwining of the accessory sequences may be less than has been assumed previously.  相似文献   

11.
We have examined the linking-number changes that occur during phage P1 Cre-mediated recombination in vitro between two loxP sites. Such recombination reactions can be divided into three types: intramolecular inversion, in which recombination occurs between two loxP sites in opposite orientations on the same DNA substrate; intramolecular excision, where recombination occurs between two loxP sites that are in the same orientation on the DNA substrate; and intermolecular recombination, which occurs between two loxP sites on separate DNA molecules. Our results indicate that inversion changes the linking number of the substrate DNA by two topological turns. With a negatively supercoiled substrate, the product is changed by +2 turns. A relaxed substrate yields products that have been changed by either +2 or -2 turns. For intermolecular reactions, the sum of the linking numbers of each of the two starting circles is equal to the linking number of the dimer circle generated by recombination, and no change occurs in linking number. For intramolecular excision reactions, the data are most consistent, with no change in linking number during recombination. These results are discussed in terms of models for alignment and synapsis of the recombining sites and the mechanism of strand exchange.  相似文献   

12.
The bacteriophage P1 Cre recombinase catalyzes site-specific recombination between 34-base-pair loxP sequences in a variety of topological contexts. This reaction is widely used to manipulate DNA molecules in applications ranging from benchtop cloning to genome modifications in transgenic animals. Despite the simple, highly symmetric nature of the Cre-loxP system, there is strong evidence that the reaction is asymmetric; the 'bottom' strands in the recombining loxP sites are preferentially exchanged before the 'top' strands. Here, we address the mechanistic basis for ordered strand exchange in the Cre-loxP recombination pathway. Using suicide substrates containing 5'-bridging phosphorothioate linkages at both cleavage sites, fluorescence resonance energy transfer between synapsed loxP sites and a Cre mutant that can cleave the bridging phosphorothioate linkage but not a normal phosphodiester linkage, we showed that preferential formation of a specific synaptic complex between loxP sites imposes ordered strand exchange during recombination and that synapsis stimulates cleavage of loxP sites.  相似文献   

13.
14.
Ip SC  Bregu M  Barre FX  Sherratt DJ 《The EMBO journal》2003,22(23):6399-6407
DNA replication results in interlinked (catenated) sister duplex molecules as a consequence of the intertwined helices that comprise duplex DNA. DNA topoisomerases play key roles in decatenation. We demonstrate a novel, efficient and directional decatenation process in vitro, which uses the combination of the Escherichia coli XerCD site-specific recombination system and a protein, FtsK, which facilitates simple synapsis of dif recombination sites during its translocation along DNA. We propose that the FtsK-XerCD recombination machinery, which converts chromosomal dimers to monomers, may also function in vivo in removing the final catenation links remaining upon completion of DNA replication.  相似文献   

15.
Ruth M. Hall  H. W. Stokes 《Genetica》1993,90(2-3):115-132
Integrons are unusual DNA elements which include a gene encoding a site-specific DNA recombinase, a DNA integrase, and an adjacent site at which a wide variety of antibiotic resistance and other genes are found as inserts. One or more genes can be found in the insert region, but each gene is part of an independent gene cassette. The inserted genes are expressed from a promoter in the conserved sequences located 5 to the genes, and integrons are thus natural expression vectors. A model for gene insertion in which circular gene cassettes are inserted individually via a single site-specific recombination event has been proposed and verified experimentally. The gene cassettes include a gene coding region and, at the 3 end of the gene an imperfect inverted repeat, a 59-base element. The 59-base elements are a diverse family of elements which function as sites recognized by the DNA integrase. Site-specific insertion of individual genes thus represents a further mechanism which contributes to the evolution of the genomes of Gram-negative bacteria and their plasmids and transposons.Members of the most studied class of integrons, which include thesulI gene in the conserved sequences, are believed to be mobile DNA elements on the basis that they are found in many independent locations, and a discrete boundary is found at the outer end of the 5-conserved segment. However, the length of the 3-conserved segment is variable in the integrons examined to date, and it is likely that this variability has arisen as the result of insertion and deletion events. Though the true extent of the 3-conserved segment remains to be determined, it seems likely that these integrons are mobile DNA elements. The second known class of integrons comprises members of the Tn7 transposon family.  相似文献   

16.
A kinetic analysis of site specific recombination by Tn21 resolvase has been carried out using DNA substrates of varying superhelicities. The rates for the formation of the recombinant product increased with increasing superhelicity up to a maximum value, after which further increases in superhelicity caused no further increase in rate. The reactions with DNA of reduced superhelicity were extremely slow, yet they eventually led to virtually all of the substrate being converted to product. Hence, the level of DNA superhelicity must determine the activation energy barrier for at least one of the steps within the reaction pathway that can be rate-limiting. In the presence (but not in the absence) of Mg2+ ions, the DNA was fully saturated with resolvase whenever the protein was in stoichiometric excess over resolvase binding sites on the DNA. Thus the process affected by DNA supercoiling cannot be coupled to the binding of resolvase. Instead, the step whose rate is determined by supercoiling seems to be located within the reaction pathway after the synapse. However, these reactions may involve two forms of the synaptic complex that are converted to the recombinant product at different rates.  相似文献   

17.
The Flp site-specific recombinase functions in the copy number amplification of the yeast 2 microm plasmid. The recombination reaction is catalyzed by four monomers of Flp bound to two separate, but identical, recombination sites (FRT sites) and occurs in two sequential pairs of strand exchanges. The relative orientation of the two recombination sites during synapsis was examined. Topoisomerase relaxation and nick ligation were used to detect topological nodes introduced by the synapse prior to the chemical steps of recombination. A single negative supercoil was found to be trapped by Flp in substrates with inverted FRT sites whereas no trapped supercoils were observed with direct repeats. The topology of products resulting from Flp-mediated recombination adjacent to a well characterised synapse, that of Tn3 resolvase/res, was analyzed. The deletion and inversion reactions yielded the four noded catenane and the three noded knot, respectively, as the simplest and the most abundant products. The linking number change introduced by the Flp-mediated inversion reaction was determined to be +/-2. The most parsimonious explanation of these results is that Flp aligns its recombination sites with antiparallel geometry. The majority of synapses appear to occur without entrapment of additional random plectonemic DNA supercoils between the sites and no additional crossings are introduced as a result of the chemical steps of recombination.  相似文献   

18.
The tnpR gene of transposon Tn3 encodes a site-specific recombination enzyme that acts at res, a DNA region adjacent to tnpR, to convert co-integrate intermediates of interreplicon transposition to the normal transposition end-products. We have used two complementary approaches to study the nature of the Tn3 recombination region, res. Firstly, the DNA-binding sites for tnpR protein were determined in DNase I protection experiments. These identified a 120-bp region between the tnpA and tnpR genes that can be subdivided into three separate protein-binding sites. Genetic dissection experiments indicate that few, if any, other sequences in addition to this 120-bp region are required for res function. Moreover, we have shown that the two directly repeated res regions within a molecule are unequal partners in the recombination reaction: a truncated res region, which is unable to recombine with a second identical res region, can recombine efficiently with an intact res region. This demonstration, along with the observation that tnpR/res recombination acts efficiently on directly repeated res regions within a molecule but inefficiently both on inverted res regions in the same molecule and in the fusion reaction between res regions in different molecules, leads us to propose that one-dimensional diffusion (tracking) of tnpR protein along DNA is used to locate an initial res region, and then to bring a second directly repeated res region into a position that allows recombination between the res regions.  相似文献   

19.
Engineering the mouse genome by site-specific recombination.   总被引:8,自引:0,他引:8  
Site-specific recombination systems are powerful tools for introducing predetermined modifications into eukaryotic genomes. Recent advances allow the manipulation of chromosomal DNA in a spatially and temporally controlled manner in mice, offering unprecedented possibilities for studying mammalian genome function and for generating animal models for human diseases.  相似文献   

20.
Tn4430 is a distinctive transposon of the Tn3 family that encodes a tyrosine recombinase (TnpI) to resolve replicative transposition intermediates. The internal resolution site of Tn4430 (IRS, 116 bp) contains two inverted repeats (IR1 and IR2) at the crossover core site, and two additional TnpI binding motifs (DR1 and DR2) adjacent to the core. Deletion analysis demonstrated that DR1 and DR2 are not required for recombination in vivo and in vitro. Their function is to provide resolution selectivity to the reaction by stimulating recombination between directly oriented sites on a same DNA molecule. In the absence of DR1 and/or DR2, TnpI-mediated recombination of supercoiled DNA substrates gives a mixture of topologically variable products, while deletion between two wild-type IRSs exclusively produces two-noded catenanes. This demonstrates that TnpI binding to the accessory motifs DR1 and DR2 contributes to the formation of a specific synaptic complex in which catalytically inert recombinase subunits act as architectural elements to control recombination sites pairing and strand exchange. A model for the organization of TnpI/IRS recombination complex is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号