首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trachelomonas hispida var. coronata Lemm. has a fibrous, mucilaginous, ovoid, mineralized envelope (lorica), the ornamentation and coloration of which are capricious in culture. Cells exhibit a radial distribution of most organelles: (i) A cortical endoplasmic reticulum, (ii) parietal chloroplasts, and (iii) a median vacuolar region surrounded by several Golgi bodies and diverse vesicles. Associated with the emergent flagellum is a “paraflagellar complex” that consists of dense globules, cross-striated ribbon-like structures, a paraflagellar body, and an array of parallel striated filaments. The stigma consists of a single layer of pigmented granules that partially surrounds the canal/reservoir transition zone where microtubular bands intersect. A microtubular cytoskeleton consists of pellicular microtubules, peri-canal microtubules, stigma-associated microtubules and para-reservoir microtubules. The thickenings on the posterior, concave margins of the pellicular strips suggest that this pellicle is of intermediate complexity between those of Euglena spirogyra (Ehrenb. and Trachelomonas volvocina (Ehrenb.).  相似文献   

2.
With Euglena gracilis neither the action spectrum for photokinesisnor that for phototaxis corresponds to the absorption spectrumof the stigma, as has been previously claimed. The phototaxisaction spectrum may be interpreted instead as a combinationof the photokinesis action spectrum, stigma absorption spectrum,and chloroplast absorption spectrum. This supports the contentionthat the paraflagellar body rather than the stigma is the probablephotoreceptor of the eyespot apparatus, and indicates that boththe stigma and chloroplasts provide the directional ‘lightscreen’. It also suggests that the absorption spectrumof this photoreceptor is the photokinesis action spectrum.  相似文献   

3.
The fluence-rate and time dependence for photoaccumulation and photodispersal ofEuglena gracilis was measured for the wild-type strain and three white mutants. For wavelengths of 453 or 463 nm the threshold for photoaccumulation was close to 6×10−2Wm−2. Photoaccumulation increased steadily with time and reached a maximum after about 4 hr. Red light elicited substantial photoaccumulation in the wild type and photodispersal in the white, non-photosynthetic mutant 1224-5/9f. The chromophore mediating the red-light response needs to be a non-photosynthetic pigment which remains presently unidentified. A whiteEuglena mutant, FB, which had retained a reduced stigma and a paraflagellar body, showed weak photoaccumulation. Two white mutants, 1224-5/1f and 1224-5/9f, both of which lacked the stigma and positive phototaxis, displayed during the first 90 min of irradiation photodispersal; after longer irradiations they showed instead photoaccumulation. These results contradict a widely held belief that the presence of a stigma represents a stringent requirement for photoaccumulation. Our results imply that phototaxis is not a prerequisite for photoaccumulation. Exogenous flavins and 5,10-methenyl-tetrahydrofolate (MTHF) influenced in a wavelength-dependent manner photoaccumulation and photodispersal. In the wild type FAD and riboflavin (RB) caused at 453 nm an increase of the responsiveness for photoaccumulation. The photoaccumulation of the white mutant FB, was sensitized by FMN and FAD. In the white mutant 1224-5/9f exogenous flavins lowered the threshold for photodispersal. FMN, which absorbs only blue light, altered also the responsiveness to red light: in the wild type FMN reduced photoaccumulation and in the white mutant 1224-5/9f it reduced photodispersal.  相似文献   

4.
The striations and the intervening filaments observed in the present study have been variously designated in the literature as: prodomal pattern, leptomeric myofibril, microladder, leptomeric organelle, leptofibril and zebra body. Electron microscope examinations of Purkinje fibers from the septa, papillaries, trabeculae carneae and small endocardial strands from chicken, sheep, dog and monkey hearts have revealed a close association between densely stained striations of supernumerary Z line material and successive parallel tubules in the network formed by the sarcoplasmic reticulum (SR). The striations appear to be linked together by filaments that somewhat resemble the part of thin filaments attached to Z lines in normal fibrils. The evidence for a close association of striations and SR tubules is derived from a similarity of spacing between striations and successive parallel tubules in the SR network and from a resemblance of striation and SR network patterns. The evidence for a structural relationship between striations and SR tubules is derived from the observation of electron-opaque strands traversing the space between striations and SR tubules.  相似文献   

5.
SYNOPSIS. The photoreceptor structures (eyespot-paraflagellar body-flagellum) for Euglena phototaxis were investigated by electron microscopy. The paraflagellar body—the photoreceptor—is a highly ordered crystalline lamellar structure. Optical diffraction of the electron micrographs and resulting filtered images of the paraflagellar body suggest that it is formed of rods in a helical arrangement. The action spectra for phototaxis, the in situ spectrum by microspectrophotometry of the paraflagellar body, and flavin analysis of the organism indicate that the photoreceptor molecule is a flavoprotein. The phototaxis action spectrum is similar to the spectrum for O2 evolution and implies that similar molecules participate in the photo-processes. As a result, a photochemical scheme is suggested in which a photo-excited flavin and a cytochrome participate in the photoprocess. The photochemistry and photoreceptor structures for Euglena phototaxis are likened to a photoneuro sensory cell.  相似文献   

6.
We have used a combination of quick-freezing/deep-etching and colloidal gold immunocytochemistry (i) to analyze the molecular organization of the microtubular membrane skeleton and the flagellum of Trypanosoma brucei, and (ii) to localize two defined cytoskeletal proteins within these structures. The cell body of trypanosomatids is enveloped by a membrane skeleton consisting of a tightly packed array of microtubules which are closely associated with the cell membrane. The membrane-oriented face of these microtubules is richly decorated with microtubule-associated proteins, which form intermicrotubule and microtubule-membrane linkers. In contrast, the cytoplasmic faces of the microtubules have a smooth, nondecorated appearance. A previously identified, highly repetitive microtubule-associated protein is confined to the membrane-oriented face of the microtubular array, suggesting that the function of this protein may be that of a microtubule-membrane linker. Quickfreezing has also been used to reveal the geometric organization of the paraflagellar rod structure in the flagellum, its interaction with the cell body, and a unique series of fleur-de-lis-like molecules which link this organelle to axonemal microtubules. Immunohistochemistry using an antibody against human erythrocyte spectrin suggests that these linker structures may contain ancestral spectrin-like molecules.  相似文献   

7.
SYNOPSIS. The biochemical effects of some detergents on the ATPase activity of isolated flagella from Euglena gracilis are related to morphologic obliterations induced by those detergents. Enzymic activity can be localized by electron microscopy along the microtubules and also on the paraflagellar rod. The nonionic detergent digitonin solubilizes the enzyme linked to dyneinic arms, whereas the activity linked to residual structures appears enhanced. These results support the hypothesis that the paraflagellar rod may be a structure actively related to the motility of this type of flagellum.  相似文献   

8.
Ochromonas danica, a freshwater, planktonic chrysophyte, is capable of sensing the light conditions of its environment. This biflagellate alga has a swelling near the base of the short flagellum and a chloroplastidic stigma in close association with it. A procedure is described for the isolation of this three dimensional flagellar swelling, the presumed photoreceptor. In contrast to an earlier method developed for the isolation of the paraflagellar swelling from Euglena gracilis, the protocol reported here for Ochromonas results in higher yields that should facilitate future biochemical investigations and could open avenues of investigation for the isolation and purification of the presumptive receptor protein. To verify the hypothesis that a rhodopsin-like protein might be present in this alga, we applied a standard extraction procedure successfully used in the identification of retinal. We here report the purification and identification of all-trans retinal in Ochromonas cells by column chromatography, HPLC and GC-MS. Since retinal is the chromophore of rhodopsin-like proteins, this finding may suggest that in these unicellular algae, too, a rhodopsin-like protein could be the photoreceptor pigment.  相似文献   

9.
In the chrysomonad Hymenomonas, a lamellar organelle of undefined function described previously in electron micrographs, is shown to be highly pigmented by absorption and fluorescence light microscopy. Absorption spectra of the lamellar organelle and the chloroplasts of Hymenomonas are presented. In comparison with the chloroplast the lamellar body appears to have an equal concentration of chlorophyll α and nearly three times the concentration of the 490 nm absorbing carotenoid. Fluorescence in the organelle is initially red as in the chloroplast; this is quickly replaced by an intense yellow emission. The rate at which the red fluorescence is replaced by the yellow is oxidation dependent and is quite rapid in the high intensity of the exciting light required for fluorescence micrographs. Possible roles of the organelle in cell metabolism or photochemistry which are considered and evaluated include: photosynthetic organelle, coccolithogenic organelle, symbiont and lysosome.  相似文献   

10.
Comparative Study of the Structure of Gas Vacuoles   总被引:12,自引:8,他引:4       下载免费PDF全文
The fine structure of gas vacuoles was examined in two blue-green algae, two green bacteria, three purple sulfur bacteria, and two halobacteria. The gas vacuole is a compound organelle, composed of a variable number of gas vesicles. These are closed, cylindrical, gas-containing structures with conical ends, about 80 to 100 nm in width and of variable length, ranging from 0.2 to over 1.0 mum. The wall of the gas vesicle is a non-unit membrane 2 to 3 nm in thickness, bearing very regular striations with a periodicity of 4 nm, oriented more or less at right angles to the long axis of the cylinder. This fine structure could be clearly resolved in isolated gas vesicles prepared from a blue-green alga and from Halobacterium halobium, and its presence in the gas vesicles of the green bacterium Pelodictyon clathratiforme was inferred from thin sections. The gas vacuole thus appears to be a homologous organelle in all of these procaryotic groups. Minor differences with respect to the length and arrangement of the gas vesicles were observed. In blue-green algae and green bacteria, the vesicles are relatively long and tend to be arrayed in parallel bundles; in purple sulfur bacteria and Halobacterium, they are shorter and more irregularly distributed in the cell.  相似文献   

11.
The pigments associated with the flagellum of the phytoflagellateEuglena gracllis were characterized by HPLC. The pigment pattern of the wild-type strain was compared with a set of white mutants which did not display phototaxis and photoaccumulation in response to blue light. Flagella of the wild type contained FMN and FAD. Two mutants which lacked the stigma but retained a small paraxonemal body (PAB) contained less flavins. The whiteEuglena mutant FB, which retained a residual stigma and also a PAB, and the white phytoflagellateAstasia longa, a close relative ofEuglena, had normal amounts of flagellar flavins. Cells and flagella ofEuglena wild type contained an unldentified pterin-like pigment, called Pt16, which was substantially reduced inAstasia and theEuglena mutants. A third pigment, designated P528 with major absorption at 528 nm and fluorescence emission at 550 nm was present mainly in flagella. The association of the three pigment types with flagella and their respective alterations in the white strains indicates their possible role in photoreception. Dedicated to Pill-Soon Song on the occasion of his 60th birthday.  相似文献   

12.
K. Lundin 《Zoomorphology》1997,117(2):81-92
 The fine morphology of epidermal ciliary structures in four species of the Nemertodermatida and four species of the Acoela was studied, with emphasis on Meara stichopi (Nemertodermatida). The cilium of M. stichopi has a distal shelf and is proximally separated from the basal body by a cup-shaped structure. The bottom of the cup consists of a bilayered dense plate, or basal plate. The basal body consists of peripheral microtubule doublets continuous with those of the cilium. In the upper part of the basal body, the doublets are set at an angle and are anchored to the enclosing cell membrane by Y-shaped structures. The lower part of the basal body tapers eventually. The striated main rootlet arises on the anterior face of the basal body, initially like a flattened strap, and continues along the basal body shaped as a tube which further down becomes solid. The hour-glass-shaped posterior rootlet arises on the posterior face of the basal body. Contrary to the main rootlet, the striations in the proximal part of the posterior rootlet run parallel to the microtubule doublets of the basal body. A pair of microtubule bundles lead from the posterior rootlet to the two main rootlets in the hind ciliary row, and follow these to their lower tip. In the other species of the Nemertodermatida studied, the structure of the ciliary basal body and the ciliary rootlets is similar to that of M. stichopi. Structural differences in the species of the Acoela are that the lowermost end of the basal body is narrow and bent forwards, the proximal part of the main rootlet is trough-shaped, the main rootlet is accompanied by a pair of lateral rootlets and the posterior rootlet with associated microtubule bundles is thin. The epidermal ciliary structures in species of the Nemertodermatida and Acoela have a number of shared characters which are unique within the Plathelminthes. However, almost all of these characters are found in Xenoturbella bocki (Xenoturbellida), and some even in species of other ”phyla” of the ”lower” Metazoa. Hence, these characters cannot be considered apomorphic for the Acoelomorpha. A character seemingly present only in species of the Nemertodermatida and Acoela is the bilayered dense plate. This feature might represent an autapomorphic character state for the Acoelomorpha. Accepted: 7 March 1997  相似文献   

13.
The flagellum of almost every member of the Kinetoplastida contains, next to its canonical 'nine-plus-two' axoneme, structure, a unique, complex and highly organized lattice-like structure called the paraflagellar rod or paraxial rod. Here, Philippe Bastin, Keith Matthews and Keith Gull summarize the latest findings on its structure, the nature of its protein components and their corresponding genes. They also consider the possible functions of this intriguing organelle.  相似文献   

14.
ABSTRACT. The Müller vesicle is a characteristic organelle of loxodid ciliates. Its structure and development have been investigated using light microscopy and TEM. The organelle consists of a membrane-covered mineral body (the statolith), a vacuole, and various structures derived from the overlying kinety. There is strong evidence that the vesicle functions as a gravity sensor: a) its structure and relative dimensions fulfil the minimum requirements of a functional statocyst; b) its structure bears a close resemblance to the statocysts of some higher animals; c) re-orientation of the cell with respect to gravity produces a gravity-induced displacement of the mineral body, and d) geotaxis in Loxodes can be demonstrated experimentally. The transduction of the signal probably takes place at the level of the two kinetosomes of the organelle, one of which is in close contact with the cell membrane, while the other is connected to the statolith by a fairly rigid stalk containing a bundle of microtubules.  相似文献   

15.
A review of the literature on the flagellar undulations and phototactic movements of Euglena indicates that the flagellum functions as an ATP-using motor, triggered and mediated by cations, especially H3O+, K+, Mg2+ and Ca2+, and driven by energy from ATP. The undulatory waves are assumed to be started by means of repetitive pulses due to a redox reaction at the base of the flagellum. It is also assumed that the axoneme and paraflagellar rod are composed of asymmetrically-crystalline proteinaceous fibrils which are piezoelectric, i.e. they bend when energy passes through or along them, thus acting as a motor, and when bending they deliver a current, thus acting as a generator. This piezoelectric activity displaces cations and drives them ahead of it, triggering sequential bending and straightening of segments of the flagellum from base to tip. The paraflagellar swelling (“photoreceptor”) is also assumed to be piezoelectric, reactive to light, acting as a capacitor. It discharges as the intensity of light striking it is changed by the alternative shading effect of the stigma (“eyespot”) and exposure to light as the Euglena gyrates in swimming. The charge delivered by the photoreceptor augments the effects of ion-movements along the flagellum, also augmenting the amplitude and force of the flagellar undulations and altering the position of the flagellum relative to the body and the direction of swimming. The body is tipped away from the original path and swims either toward or away from the light, depending on the ultimate alteration of the path of swimming.  相似文献   

16.
The photoreceptor structures (eyespot-paraflagellar body-flagellum) for Euglena phototaxis were investigated by electron microscopy. The paraflagellar body--the photoreceptor--is a highly ordered crystalline lamellar structure. Optical diffraction of the electron micrographs and resulting filtered images of the paraflagellar body suggest that it is formed of rods in a helical arrangement. The action spectra for phototaxis, the in situ spectrum by microspectrophotometry of the paraflagellar body, and flavin analysis of the organism indicate that the photoreceptor molecule is a flavoprotein. The phototaxis action spectrum is similar to the spectrum for O2 evolution and implies that similar molecules participate in the photo processes. As a result, a photochemical scheme is suggested in which a photo-excited flavin and a cytochrome participate in the photoprocess. The photochemistry and photoreceptor structures for Euglena phototaxis are likened to a photoneuro sensory cell.  相似文献   

17.
A Nonidet P 40 insoluble fraction was isolated from Trypanosoma brucei and was used to raise a monoclonal antibody (5E9). The antigen was localized by indirect immunofluorescence in the flagellum of T. brucei and of two species of euglenoids, Euglena gracilis and Distigma proteus. In immunoblot analysis, 5E9 appeared to bind to paraflagellar rod proteins PFR1 and PFR2 of T. brucei (72000 and 75000 mol. wt.) and of E. gracilis (67000 and 76000 mol. wt.). The presence of a common epitope in paraflagellar rod proteins from species of trypanosomes and euglenoids shows that despite distinct structures of the rods some identical domain exists in the proteins that could be involved in their supramolecular assembly into a similar organelle. The antigenic determinant defined by 5E9 was also shown to be present in a 87000 molecular weight polypeptide located in the proximal part of the flagellum of Crithidia oncopelti in which a paraflagellar rod is not detectable at the ultrastructural level.  相似文献   

18.
Summary Details concerning the appearance and behaviour of blepharoplasts during spermatogenesis, and the assembly of the cytoskeletal motile apparatus of spermatids were elucidated by immunofluorescence microscopy using antibodies to tubulin and actin, applied to material prepared from antheridia of the fernPteridium aquilinum (L.) Kuhn. Blepharoplast immunofluorescence with antitubulin first appears as spheres at the future spindle poles prior to the last spermatogenous division. Developing spermatids each have one blepharoplast, which gives rise to a triangular layer corresponding to the incipient microtubule ribbon. Compared to the ribbon, immunoreactivity of the multilayered structure is relatively weak. Intensely fluorescing basal bodies appear, increase in number, and become arranged in rows along two edges of the microtubule ribbon as it widens and elongates. Along the dorsal edge is a dense file of basal bodies spaced at about 0.3 m intervals, parallel to each other and oriented at 145° to the multilayered structure. This spacing and orientation is maintained throughout spermatid development. Basal bodies at the opposite edge are initially oriented at 115° to the multilayered structure but become rearranged into small groups that rotate so that the angle is reduced to 55–70° by the time the assembly of flagella commences on both sets of basal bodies. By this stage the microtubule ribbon has encircled about 2/3 of the nuclear circumference and the nucleus is assuming a crescent shape. In fully developed spermatozoids the groups of basal bodies are oriented at 25° to the multilayered structure, parallel to the long body of the now helical nucleus. Immunofluorescence using antiactin showed that towards the completion of nuclear shaping, actin forms a strip along the helical multilayered structure. Detergent-extraction of mature spermatozoids revealed that actin is associated also with the flagellar band, particularly with basal bodies.Abbreviations MLS multilayered structure - MT microtubule  相似文献   

19.
Two arthropod trace fossils are described and analysed from the Carboniferous Lower Westphalian (C. communis and basal A. modiolaris chronozones) coal-bearing strata of Lancashire. The biserial trackway Diplichnites triassicus consists of five overlapping en echelon sets of 7–9 tracks preserved as epichnia and hypichnia in lacustrine siltstones. The trackway suggests subaqueous in-phase walking by a multi-segmented producer with a body length of 35–40 mm, width 17–22 mm, and 7–9 appendages. Curved, clustered, or laterally repeated, hypichnial lobes with transverse striations on the base of ripple cross-laminated sandstone are identified as Rusophycus versans. This trace fossil is interpreted as shallow resting or furrowing burrows of a homopodous arthropod, 30–60 mm long, 15–30 mm wide, and probably the same kind of arthropod as produced D. triassicus.A review of contemporary arthropod body fossils from Lagerstätten in Lancashire favours the onisciform, or Arthropleura like arthropod Camptophyllia as a potential producer of both of these trace fossils in a lacustrine palaeoenvironment.This study integrates the analysis of sediments, trace fossils and body fossils for reconstructing the arthropod biota and ecology in Westphalian lacustrine and crevasse splay fluvial palaeoenvironments.  相似文献   

20.
Summary The dermal melanophores ofFundulus heteroclitus L. have been investigated by light and electron microscopy with the purpose of revealing the mechanisms controlling pigment migration. As predicted by earlier studies, the nerve endings of a double innervation were found adjacent to and in synaptic relation to the melanophore surface. Not expected were the large number of small pits or invaginations present in the cell surface. These appear identical to the so-called micropinocytotic vesicles found generally in cells of the vascular endothalium and smooth muscle. In chromatophores they are more reasonably interpreted as receptor sites for neurohormones than as uptake and transport mechanisms.Observations made on the kinetics of pigment migration within the processes of these melanophores indicate that the granules move along relatively fixed channels arranged parallel to the long axes of the processes. Examined at fine structure levels, the zones of cytoplasm around these channels are found to be populated by microtubules about 225 Å in diameter aligned parallel to the direction of pigment movement. These long slender elements are present in the processes regardless of whether the melanin is concentrated in the cell center or dispersed. It is reasoned from these and other observations that the microtubules function as cytoskeletal elements which help maintain the extended form of the melanophore arms and at the same time define the channels in which the pigment moves. The possible role of the tubule in generating the motive force for pigment migration is discussed.Supported by US Public Health Service Training Grant, 5 TIGM-707.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号