首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The six proteins of the CCN family have important roles in development, angiogenesis, cell motility, proliferation, and other fundamental cell processes. To date, CCN5 distribution in developing rodents and humans has not been mapped comprehensively. CCN5 strongly inhibits adult smooth muscle cell proliferation and motility. Its anti-proliferative action predicts that CCN5 would not be present in developing tissues until the proliferation phase of tissue morphogenesis is complete. However, estrogen induces CCN5 expression in epithelial and smooth muscle cells, suggesting that CCN5 might be widely expressed in embryonic tissues exposed to high levels of estrogen. 9–16 day murine embryos and fetuses and 3–7 month human fetal tissues were analyzed by immunohistochemistry. CCN5 was detected in nearly all developing tissues. CCN5 protein expression was initially present in most tissues, and at later times in development tissue-specific expression differences were observed. CCN5 expression was particularly strong in vascular tissues, cardiac muscle, bronchioles, myotendinous junctions, and intestinal smooth muscle and epithelium. CCN5 expression was initially absent in bone cartilaginous forms but was increasingly expressed during bone endochondral ossification. Widespread CCN5 mRNA expression was detected in GD14.5 mice. Although CCN2 and CCN5 protein expression patterns in some adult pathologic conditions are inversely expressed, this expression pattern was not found in developing mouse and human tissues. The widespread expression pattern of CCN5 in most embryonic and fetal tissues suggests a diverse range of functions for CCN5. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
The matricellular protein connective tissue growth factor (CTGF, CCN2) is overexpressed in several forms of cancer and may represent a novel target in anti-cancer therapy. However, whether CCN2 is expressed in melanoma cells is unknown. The highly metastatic murine melanoma cell line B16(F10) was used for our studies. Real time polymerase chain reaction analysis was used to detect mRNA expression of CCN1, CCN2, CCN3 and CCN4 in Western blot and immunofluorescence analyses were used to detect CCN2 protein. Inhibitors of signal transduction cascades were used to probe the mechanism underlying CCN2 expression in B16(F10) cells. CCN2 was expressed in B16(F10) cells, and was reduced by the FAK/src inhibitor PP2 and the MEK/ERK inhibitor U0126 indicating that CCN2 acts downstream of these pathways in B16(F10) murine melanoma cells. Expression of CCN1, CCN3 and CCN4 was not reduced by PP2 or U0126; in fact, expression of CCN4 mRNA was elevated by PP2 or U0126 treatment. To our surprise, CCN2 protein was detected in the nuclei of B16(F10) cells, and was undetectable in the cytoplasm. CCN2 was expressed in B16(F10) melanoma cells, adding to the list of cancer cells in which CCN2 is expressed. Of the CCN family members tested, only CCN2 is downstream of the highly oncogenic MEK/ERK pathway. CCN2 should be further evaluated for a possible role in melanoma growth and progression.  相似文献   

3.
Trial by CCN2: a standardized test for fibroproliferative disease?   总被引:1,自引:0,他引:1       下载免费PDF全文
A major issue concerning clinical trials is the availability of standardized assays to evaluate drug efficacy. Ideally, such assays should test the effect of a putative drug on the expression of a biomarker in biological fluids. In a recent study by Kuiper et al. (PLOS One, 3(7): e2675). The relative levels of vascular endothelial growth factor (VEGF) and CCN2 (connective tissue growth factor [CTGF]) were examined in proliferative diabetic retinopathy (PDR). This paper is the subject of this commentary.  相似文献   

4.
Mice lacking the pro-adhesive matricellular protein connective tissue growth factor (CTGF/CCN2) display an embryonic lethal phenotype due to defects in bone and cartilage. However, the specific role of CCN2 in skin development is unknown. Here, we generated mice deleted for CCN2 in the entire body (using a cre/lox system in which CCN2 is deleted in the entire body due to the presence of a constitutively expressed cre recombinase). We found that CCN2 was not required for the development of skin as defined by skin thickness measurements, trichrome staining and immunostaining with anti-CD31 (to detect endothelial cells) and anti-α−SMA (to detect smooth muscle cells and pericytes) antibodies. Thus, although recently we have shown that CCN2 is required for fibrogenesis in postnatal mice, CCN2 is not required for skin development during embryogenesis.  相似文献   

5.
Fibrotic disease is a significant cause of mortality. CCN2 (connective tissue growth factor [CTGF]), a member of the CCN family of matricellular proteins, plays a significant role in driving the fibrogenic effects of cytokines such as transforming growth factor β (TGFβ). It has been proposed that other members of the CCN family can either promote or antagonize the action of CCN2, depending on the context. A recent elegant study published by Bruce Riser and colleagues (Am J Pathol. 174:1725–34, 2009) illustrates that CCN3 (nov) antagonizes the fibrogenic effects of CCN2. This paper, the subject of this commentary, raises the intriguing possibility that CCN3 may be used as a novel anti-fibrotic therapy.  相似文献   

6.
7.
There is no treatment for fibrotic disease is a significant cause of mortality. CCN2 Members of the CCN family of matricellular proteins have a characteristic four domain structure. CCN2 (connective tissue growth factor) is believed to play an essential role in fibrogenesis. In a recent paper, data are provided that CCN5 (wisp2), which lacks the carboxy-terminal heparin-binding domain shared by the other CCN proteins, may act as a dominant-negative protein to suppress CCN2-mediated fibrogenesis. These data are consistent with the notion that different CCN proteins may enhance or suppress each other's action and also suggest that CCN5, may be used as a novel anti-fibrotic therapy.  相似文献   

8.
The role of CCN proteins in vivo is only just becoming understood. A prototypical member of the CCN family, CCN3 suppresses proliferation. In a study in press, Shimoyama and colleagues show that mice lacking CCN3 have a hyperproliferative response to vascular injury. These data, along with other recent observations, suggest that CCN3 may represent a novel therapy for hyperproliferative diseases.  相似文献   

9.
10.
11.
12.
Wnt proteins elevate expression of the CCN family. For example, Wnt10b induces the fibrogenic pro-adhesive molecule connective tissue growth factor (CTGF, CCN2) in NIH 3T3 fibroblasts. Wnt10b activates the CCN2 minimal promoter. In this report, we map the Wnt10b response element in the CCN2 minimal promoter to the previously identified Smad response element. These results suggest that Wnts may cross-talk with the Smad signaling pathway to induce fibrotic responses in fibroblasts.  相似文献   

13.
In an attempt to find out a new molecular counterpart of CCN family protein 2 (CCN2), a matricellular protein with multiple functions, we performed an interactome analysis and found fibroblast growth factor (FGF) -1 as one of the candidates. Solid-phase binding assay indicated specific binding between CCN2 and FGF-1. This binding was also confirmed by surface plasmon resonance (SPR) analysis that revealed a dissociation constant (Kd) of 3.98 nM indicating strong molecular interaction between the two. RNA analysis suggested that both FGF-1 and CCN2 could be produced by chondrocytes and thus their interaction in the cartilage is possible. These findings for the first time indicate the direct interaction of CCN2 and FGF-1 and suggest the co-presence of these molecules in the cartilage microenvironment. CCN2 is a well-known promoter of cartilage development and regeneration, whereas the physiological and pathological role of FGF-1 in cartilage mostly remains unclear. Biological role of FGF-1 itself in cartilage is also suspected.  相似文献   

14.
Anterior cruciate ligament (ACL)-to-bone interface serves to minimize the stress concentrations that would arise between two different tissues. Mechanical stretch plays an important role in maintaining cell-specific features by inducing CCN family 2/connective tissue growth factor (CCN2/CTGF). We previously reported that cyclic tensile strain (CTS) stimulates α1(I) collagen (COL1A1) expression in human ACL-derived cells. However, the biological function and stress-related response of CCN2/CTGF were still unclear in ACL fibroblasts. In the present study, CCN2/CTGF was observed in ACL-to-bone interface, but was not in the midsubstance region by immunohistochemical analyses. CTS treatments induced higher increase of CCN2/CTGF expression and secretion in interface cells compared with midsubstance cells. COL1A1 expression was not influenced by CCN2/CTGF treatment in interface cells despite CCN2/CTGF stimulated COL1A1 expression in midsubstance cells. However, CCN2/CTGF stimulated the proliferation of interface cells. Our results suggest that distinct biological function of stretch-induced CCN2/CTGF might regulate region-specific phenotypes of ACL-derived cells.  相似文献   

15.
16.
CCN proteins play crucial roles in development, angiogenesis, cell motility, matrix turnover, proliferation, and other fundamental cell processes. Early embryonic lethality in CCN5 knockout and over-expressing mice led us to characterize CCN5 distribution in early development. Previous papers in this series showed that CCN5 is expressed widely in mice from E9.5 to adult; however, its distribution before E9.5 has not been studied. To fill this gap in our knowledge of CCN5 expression in mammals, RT-PCR was performed on preimplantation murine embryos: 1 cell, 2 cell, 4 cell, early morula, late morula, and blastocyst. CCN5 mRNA was not detected in 1, 2, or 4 cell embryos. It was first detected at the early morula stage and persisted to the preimplantation blastocyst stage. Immunohistochemical staining showed widespread CCN5 expression in post-implantation blastocysts (E4.5), E5.5, E6.5, and E7.5 stage embryos. Consistent with our previous study on E9.5 embryos, this expression was not limited to a particular germ layer or cell type. The widespread distribution of CCN5 in early embryos suggests a crucial role in development.  相似文献   

17.
CCN family proteins 2 and 3 (CCN2 and CCN3) belong to the CCN family of proteins, all having a high level of structural similarity. It is widely known that CCN2 is a profibrotic molecule that mediates the development of fibrotic disorders in many different tissues and organs. In contrast, CCN3 has been recently suggested to act as an anti-fibrotic factor in several tissues. This CCN3 action was shown earlier to be exerted by the repression of the CCN2 gene expression in kidney tissue, whereas different findings were obtained for liver cells. Thus, the molecular action of CCN3 yielding its anti-fibrotic effect is still controversial. Here, using a general model of fibrosis, we evaluated the effect of CCN3 overexpression on the gene expression of all of the CCN family members, as well as on that of fibrotic marker genes. As a result, repression of CCN2 gene expression was modest, while type I collagen and α-smooth muscle actin gene expression was prominently repressed. Interestingly, not only CCN2, but also CCN4 gene expression showed a decrease upon CCN3 overexpression. These findings indicate that fibrotic gene induction is under the control of a complex molecular network conducted by CCN family members functioning together.  相似文献   

18.
The matricellular protein CCN2 (connective tissue growth factor, CTGF) has been previously implicated in tumorigenesis. In pancreatic cancer cells, CCN2 expression occurs downstream of ras/MEK/ERK. Direct evidence that CCN2 mediates tumor progression in pancreatic cancer has been lacking. An exciting recent report by Bennewith et al. (Cancer Res 69:775–784, 2009) has used shRNA knockdown of CCN2 to illustrate that CCN2 contributes to growth of pancreatic tumor cells, both in vitro and in vivo. This report briefly summarizes these findings.  相似文献   

19.
CCN family protein 2/connective tissue growth factor (CCN2/CTGF) consists of 4 conserved modules that are highly interactive with a number of biomolecules. With such interaction, CCN2 exerts multiple functions by forming an extracellular information network. In the present study, we screened for dodecapeptide sequences that bound to each module of human CCN2 by using a bacteriophage display library. Thereafter, consensus amino acid sequences for the binding to individual modules were extracted in silico and utilized to design anchor peptide aptamers that would facilitate the interaction between CCN2 and other molecules. Direct binding of a few peptides to CCN2 was confirmed by surface plasmon resonance analysis. Subsequent biological assay indicated that one such peptide was capable of promoting the proliferation of CCN2-producing chondrocytic cells. This cell biological activity was found to be sequence specific and CCN2 dependent. Since CCN2/CTGF was shown to be effective in articular cartilage/bone regeneration in vivo, utility of such peptide aptamers in CCN2-associated regenerative therapeutics is suggested herein.  相似文献   

20.
CCN2 plays a central role in the development and growth of mesenchymal tissue and promotes the regeneration of bone and cartilage in vivo. Of note, abundant CCN2 is contained in platelets, which is thought to play an important role in the tissue regeneration process. In this study, we initially pursued the possible origin of the CCN2 in platelets. First, we examined if the CCN2 in platelets was produced by megakaryocyte progenitors during differentiation. Unexpectedly, neither megakaryocytic CMK cells nor megakaryocytes that had differentiated from human haemopoietic stem cells in culture showed any detectable CCN2 gene expression or protein production. Together with the fact that no appreciable CCN2 was detected in megakaryocytes in vivo, these results suggest that megakaryocytes themselves do not produce CCN2. Next, we suspected that mesenchymal cells situated around megakaryocytes in the bone marrow were stimulated by the latter to produce CCN2, which was then taken up by platelets. To evaluate this hypothesis, we cultured human chondrocytic HCS-2/8 cells with medium conditioned by differentiating megakaryocyte cultures, and then monitored the production of CCN2 by the cells. As suspected, CCN2 production by HCS-2/8 was significantly enhanced by the conditioned medium. We further confirmed that human platelets were able to absorb/uptake exogenous CCN2 in vitro. These findings indicate that megakaryocytes secrete some unknown soluble factor(s) during differentiation, which factor stimulates the mesenchymal cells to produce CCN2 for uptake by the platelets. We also consider that, during bone growth, such thrombopoietic-mesenchymal interaction may contribute to the hypertrophic chondrocyte-specific accumulation of CCN2 that conducts endochondral ossification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号