首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new cellular model for the study of brown adipocyte development and differentiation in vitro is presented. Preadipocytes isolated from brown adipose tissue (BAT) of the djungarian dwarf hamster Phodopus sungorus are able to proliferate and differentiate in vitro into true brown adipocytes able to express the BAT marker protein the uncoupling protein (UCP). Whereas basal UCP expression is very low, its mRNA levels as well as the UCP detected by immunoblotting are highly increased by beta-adrenergic stimulation. The novel, atypical beta-adrenergic compound D7114 (ICI Pharmaceuticals, Macclesfield, Cheshire, England) was found to increase the number of adipocytes as well as UCP mRNA and UCP content of mitochondria, indicating the involvement of an atypical or beta 3 receptor. Insulin was found to play an important role in brown adipocyte differentiation and mitochondrial development, whereas T3 seemed to be implicated more directly in UCP expression. In a defined, serum-free medium a synergistic stimulatory action of insulin and T3 on UCP expression was found, which seems to involve a pathway different from that of beta-adrenergic UCP stimulation.  相似文献   

2.
Brown adipose tissue (BAT) is the specific site for metabolic heat production in mammals. To establish a novel immortal brown adipocyte cell line, the stromal-vascular fraction containing preadipocytes was obtained from interscapular BAT of mice deficient of a tumor-suppressor gene p53. The p53-deficient cells, tentatively named as HB2 cells, could be cultured in vitro after repeated passages and differentiated into adipocytes in the presence of insulin, T3 and/or troglitazone, expressing some adipocyte-specific genes and accumulating intracellular lipid droplets. The mRNA level of uncoupling protein 1 (UCP1), a mitochondrial protein specifically present in brown adipocytes, was undetectable in HB2 preadipocytes, but increased after adipose differentiation. In HB2 adipocytes, UCP1 mRNA expression was markedly activated after stimulation of the beta-adrenergic receptor pathway. The mRNA of UCP2 and UCP3, recently cloned isoforms of UCP1, were also detected in HB2 adipocytes, but their levels were not influenced by adrenergic stimulation. Thus HB2 cells seem useful for in vitro studies of BAT and UCP functions.  相似文献   

3.
We report on a novel Djungarian hamster mutant lineage that exhibits a loss of uncoupling protein (UCP) 3 mRNA and protein in brown adipose tissue (BAT), whereas UCP3 expression in skeletal muscle is only mildly diminished. In response to 2 d of cold exposure, UCP3 mRNA was 4.5-fold elevated in BAT of wild-type hamsters but remained undetectable in mutant hamsters. Notably, in BAT of warm- and cold-exposed mutant hamsters, UCP1 and UCP2 mRNA levels were increased. The tissue specificity of UCP3 deficiency suggests that the underlying unknown mutation impairs a factor controlling UCP3 gene expression selectively in brown adipocytes. In wild-type but not mutant primary brown adipocytes, UCP3 gene expression was stimulated by treatment with peroxisome proliferator activated receptor (PPAR) ligands. This implies that the underlying mutation causing UCP3 deficiency is expressed within brown adipocytes and disrupts PPAR-dependent transactivation of the UCP3 gene. On the functional level, we found no direct phenotypic consequences of altered UCP expression in BAT. The absence of UCP3 in BAT of cold-acclimated mutant hamsters affected neither maximal nonshivering thermogenesis elicited by noradrenaline nor the uncoupled respiration of isolated mitochondria in the presence of oligomycin and in response to palmitate.  相似文献   

4.
5.
The uncoupling protein 1 (UCP1), a mitochondrial transmembrane protein, is responsible for adaptive thermogenesis in brown adipose tissue (BAT). Two UCP1 homologues, UCP2 and UCP3, were recently discovered, but it is controversial whether they also play a role in energy homeostasis. Djungarian hamster UCPs were found to exhibit high similarity with homologues known in other species. UCP1 mRNA was restricted to BAT, UCP2 mRNA was expressed in multiple tissues, and UCP3 mRNA was detected mainly in BAT and skeletal muscles. We examined the cold-induced regulation of hamster UCP mRNA levels and tested their correlation with serum free fatty acid (FFA) concentrations. In BAT UCP1, UCP2, and UCP3 expression was upregulated in the cold, but the increase and time course of increase differed. In skeletal muscle, UCP2 and UCP3 mRNA levels were not altered. Cold-induced changes of serum FFA levels correlated with the stimulation of UCP1 mRNA in BAT but not with UCP2 and UCP3.  相似文献   

6.
Nonshivering thermogenesis induced in brown adipose tissue (BAT) during high-fat feeding is mediated through uncoupling protein 1 (UCP1). UCP2 is a recently identified homologue found in many tissues. To determine the role of UCP1 and UCP2 in thermoregulation and energy balance, we investigated the long-term effect of high-fat feeding on mRNA levels in mice at two different ambient temperatures. We also treated mice with the anorectic peptide enterostatin and compared mRNA levels in BAT, white adipose tissue (WAT), stomach, and duodenum. Here, we report that high-fat feeding at 23 degrees C increased UCP1 and UCP2 levels in BAT four- and threefold, respectively, and increased UCP2 levels fourfold in WAT. However, at 29 degrees C, UCP1 decreased, whereas UCP2 remained unchanged in BAT and increased twofold in WAT. Enterostatin increased UCP1 and decreased UCP2 mRNA in BAT. In stomach and duodenum, high-fat feeding decreased UCP2 mRNA, whereas enterostatin increased it. Our results suggest that the regulation of uncoupling protein mRNA levels by high-fat feeding is dependent on ambient temperature and that enterostatin is able to modulate it.  相似文献   

7.
8.
Most physiologically induced examples of recruitment of brown adipose tissue (BAT) occur as a consequence of chronic sympathetic stimulation (norepinephrine release within the tissue). However, in some physiological contexts (e.g., prenatal and prehibernation recruitment), this pathway is functionally contraindicated. Thus a nonsympathetically mediated mechanism of BAT recruitment must exist. Here we have tested whether a PPARgamma activation pathway could competently recruit BAT, independently of sympathetic stimulation. We continuously treated primary cultures of mouse brown (pre)adipocytes with the potent peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist rosiglitazone. In rosiglitazone-treated cultures, morphological signs of adipose differentiation and expression levels of the general adipogenic marker aP2 were manifested much earlier than in control cultures. Importantly, in the presence of the PPARgamma agonist the brown adipocyte phenotype was significantly enhanced: UCP1 was expressed even in the absence of norepinephrine, and PPARalpha expression and norepinephrine-induced PGC-1alpha mRNA levels were significantly increased. However, the augmented levels of PPARalpha could not explain the brown-fat promoting effect of rosiglitazone, as this effect was still evident in PPARalpha-null cells. In continuously rosiglitazone-treated brown adipocytes, mitochondriogenesis, an essential part of BAT recruitment, was significantly enhanced. Most importantly, these mitochondria were capable of thermogenesis, as rosiglitazone-treated brown adipocytes responded to the addition of norepinephrine with a large increase in oxygen consumption. This thermogenic response was not observable in rosiglitazone-treated brown adipocytes originating from UCP1-ablated mice; hence, it was UCP1 dependent. Thus the PPARgamma pathway represents an alternative, potent, and fully competent mechanism for BAT recruitment, which may be the cellular explanation for the enigmatic recruitment in prehibernation and prenatal states.  相似文献   

9.
Fish oil feeding showed less obesity in rodents, relative to other dietary oils. N-3 fatty acids rich in fish oil and fibrate compounds are peroxisome proliferator-activated receptor alpha (PPARalpha) ligands that stimulate beta-oxidation of fatty acids in liver and are used for treatment of hypertriglycemic patients. Since UCP-2, a member of an uncoupling protein family, has been shown to express in hepatocytes, the effects of these agents on the expression of UCP2 mRNA were investigated. C57BL/6J mice were divided into three groups; the first group was given a high-carbohydrate diet, and the other two groups were given a high-fat diet (60% of total energy) as safflower oil or fish oil for 5 months. Safflower oil diet fed mice developed obesity, but those fed fish oil diet did not. Therefore, the effects of fish oil feeding on the expression of UCP1, UCP2 and UCP3 in liver, skeletal muscle (gastrocnemius), white adipose tissue (WAT) and brown adipose tissue (BAT) were assessed by Northern blotting. Compared with safflower oil feeding, fish oil feeding up-regulated liver UCP2, BAT UCP2 and skeletal muscle UCP3 mRNA, while down-regulated WAT UCP2 and BAT UCP3 mRNA. Among these alterations, 5-fold up-regulation of liver UCP2 mRNA, relative to carbohydrate feeding, was noteworthy. Fenofibrate administration (about 500 mg/kg BW/d) for 2 wks also induced liver UCP2 expression by 9-fold. These data indicated that fish oil feeding and fibrate administration each up-regulated UCP2 mRNA expression in liver possibly via PPARalpha and hence each has the potential of increasing energy expenditure for prevention of obesity.  相似文献   

10.
The effect was investigated of endurance training on the expression of uncoupling protein (UCP) mRNA in brown adipose tissue (BAT) of rats. The exercised rats were trained on a rodent treadmill for 5 days per week and a total of 9 weeks. After the training programme, a marked decrease in BAT mass was found in terms of weight or weight per unit body weight; there was a corresponding decrease in DNA content and a downward trend in RNA and glycogen levels. The UCP mRNA was present at a markedly decreased level in BAT of trained animals. In consideration of the reduced levels of mRNAs for hormone-sensitive lipase and acylCoA synthetase, the brown adipose tissue investigated appeared to be in a relatively atrophied and thermogenically quiescent state.  相似文献   

11.
 为探讨禁食和胰岛素对解偶联蛋白 - 1、2、3基因 (UCP1 ,2 ,3)表达的影响 ,应用 RT- PCR方法观察了在不同禁食时间和应用胰岛素条件下大鼠白色脂肪组织、棕色脂肪组织和骨骼肌中 UCP1 ,2 ,3m RNA水平的变化 .UCP1基因只在大鼠棕色脂肪组织中表达 .UCP2 ,3基因在三种组织中均有表达 ,在白色脂肪组织中以 UCP2表达为主 ;在骨骼肌中以 UCP3表达为主 .过夜禁食使棕色脂肪组织 UCP1 ,3m RNA水平明显下降 (P<0 .0 1 ) ;UCP2 m RNA水平在三种组织中均呈上升反应 ,以白色脂肪组织中表现最为明显 (P<0 .0 5) ;而对白色脂肪组织和骨骼肌中 UCP3基因表达无明显影响 .禁食时间延长至 48h,除棕色脂肪组织中 UCP2 ,3基因有明显下降外 ,各组织中UCPs基因表达基本调节至正常或高于对照组水平 .胰岛素对 UCPs基因表达水平有一定的上调作用 ,这一作用对棕色脂肪组织 UCPs各基因及骨骼肌中 UCP3基因表现得尤为明显 (P<0 .0 5) .大鼠 UCPs基因表达有一定的组织特异性 ;禁食时间对三种组织中 UCPs各成员基因表达的影响有时相上的区别 ;胰岛素可以调 UCPs各成员基因的表达 .结果反映了 UCPs各成员在能量代谢调节上的不同作用 ,这为理解膳食 -产热与体重调节的关系 ,及其能量代谢平衡与疾病关系提供了实验依据  相似文献   

12.
The mRNA level of uncoupling protein (UCP) specific for brown adipose tissue (BAT) in Daurian ground squirrel, was detected by using a [32P]-labeled oligonucleotide probe. The UCP concentration in mitochondria was indirectly determined by titration with its specific ligand [H3]-labeled GTP. Type II T4 5'-deiodinase of BAT was assayed concomitantly. We found two species of mRNA for UCP with lengths of about 1.9 and 1.5 kb, respectively, both occurring in almost the same concentration. UCP mRNA content was elevated significantly during hibernation, but the UCP concentration did not change compared with that of nonhibernating controls kept at room temperature. When hibernating squirrels were aroused, the UCP mRNA remained at the elevated level as during hibernation, but the UCP concentration increased in comparison with that of nonhibernating controls or during hibernating. Changes in T4 5'-deiodinase activity in BAT were similar to the variations of the UCP mRNA level. These results suggest that the activation of T4 5'-deiodinase in BAT may be an important factor for the up-regulation and maintenance of UCP mRNA content needed for the synthesis of sufficient UCP to acquire the thermogenic capacity for arousal from hibernation.  相似文献   

13.
Up-regulation of uterine UCP2 and UCP3 in pregnant rats.   总被引:2,自引:0,他引:2  
Pregnancy produces profound changes in hormone dynamics, thermoregulation and energy metabolism. Uncoupling proteins (UCPs) have been identified in a variety of tissues and UCP1 is known to play important roles in energy homeostasis, while the regulation of UCP2 and UCP3 is still unclear. The present study aimed to investigate the effects of the changes during pregnancy on UCP gene expression in the uterus, as well as in brown adipose tissue (BAT), white adipose tissue (WAT), soleus muscle (Muscle), and liver, throughout the estrus and metestrus periods, at early, middle and late stages in pregnancy, and during post-gestational stages. The expression of uterine UCP2 and UCP3 were up-regulated by 3.2- and 1. 5-fold, respectively, during the late stage of pregnancy with an increase of WAT leptin mRNA expression and exogenous administration of leptin resulted in induction of the uterine UCP2 and UCP3 levels. Contrary to uterine UCPs, UCP1 mRNA expression in BAT was down-regulated by 0.5-fold and there were no remarkable changes in WAT or liver UCP2, or Muscle UCP3 expression throughout the periods. These results indicate that UCP gene expressions during pregnancy are regulated tissue-dependently, and up-regulation of uterine UCP2 and UCP3 mRNA may be due to increased leptin levels.  相似文献   

14.
15.
Jakus PB  Sipos K  Kispal G  Sandor A 《FEBS letters》2002,519(1-3):210-214
Earlier we reported a 14-fold increase of glycogen in the brown adipose tissue (BAT) in rats when the animals were placed back from cold to neutral temperature. To elucidate the mechanism, here we compared the level of glucose transporter 4 (GLUT4) protein, uncoupling protein (UCP) 1 and UCP3 mRNA and protein expressions in the BAT under the same conditions. We found that the increased GLUT4 level in cold was maintained during the reacclimation. After 1 week cold exposure the mRNA and protein content of UCP1 increased parallel, while the protein level of UCP3 decreased, contrary to its own mRNA level.  相似文献   

16.
Mitochondrial uncoupling protein 3 (UCP3) is expressed in skeletal muscles. We have hypothesized that increased glucose flux in skeletal muscles may lead to increased UCP3 expression. Male transgenic mice harboring insulin-responsive glucose transporter (GLUT4) minigenes with differing lengths of 5'-flanking sequence (-3237, -2000, -1000 and -442 bp) express different levels of GLUT4 protein in various skeletal muscles. Expression of the GLUT4 transgenes caused an increase in UCP3 mRNA that paralleled the increase of GLUT4 protein in gastrocnemius muscle. The effects of increased intracellular GLUT4 level on the expression of UCP1, UCP2 and UCP3 were compared in several tissues of male 4 month-old mice harboring the -1000 GLUT4 minigene transgene. In the -1000 GLUT4 transgenic mice, expression of GLUT4 mRNA and protein in skeletal muscles, brown adipose tissue (BAT), and white adipose tissue (WAT) was increased by 1.4 to 4.0-fold. Compared with non-transgenic littermates, the -1000 GLUT4 mice exhibited about 4- and 1.8-fold increases of UCP3 mRNA in skeletal muscle and WAT, respectively, and a 38% decrease of UCP1 mRNA in BAT. The transgenic mice had a 16% increase in oxygen consumption and a 14% decrease in blood glucose and a 68% increase in blood lactate, but no change in FFA or beta-OHB levels. T3 and leptin concentrations were decreased in transgenic mice. Expression of UCP1 in BAT of the -442 GLUT4 mice, which did not overexpress GLUT4 in this tissue, was not altered. These findings indicate that overexpression of GLUT4 up-regulates UCP3 expression in skeletal muscle and down-regulates UCP1 expression in BAT, possibly by increasing the rate of glucose uptake into these tissues.  相似文献   

17.
Orexins, hypothalamic neuropeptides, are involved in modulation of food intake and arousal status. To further examine their physiological roles in brain function, the effect of centrally administered orexin-A on body temperature was investigated in rats. Assessed by a telemetry sensor system implanted into the abdominal cavity, infusion of orexin-A into the third cerebroventricle (i3vt) increased body temperature in a dose-responsive manner. Expression of uncoupling protein 1 (UCP1) mRNA in brown adipose tissue (BAT), as a marker for peripheral thermogenesis, failed to increase after the infusion. Expression of UCP3 mRNA in skeletal muscle was up-regulated, whereas UCP2 in white adipose tissue was unchanged after the infusion. The resulting information indicates that orexin neurons regulate body temperature in coordination with arousal status independently of peripheral thermogenesis, which is regulated by BAT UCP1.  相似文献   

18.
Uncoupling protein (UCP) 1 (UCP1) catalyzes a proton leak in brown adipose tissue (BAT) mitochondria that results in nonshivering thermogenesis (NST), but the extent to which UCP homologs mediate NST in other tissues is controversial. To clarify the role of UCP3 in mediating NST in a hibernating species, we measured Ucp3 expression in skeletal muscle of arctic ground squirrels in one of three activity states (not hibernating, not hibernating and fasted for 48 h, or hibernating) and housed at 5 degrees C or -10 degrees C. We then compared Ucp3 mRNA levels in skeletal muscle with Ucp1 mRNA and UCP1 protein levels in BAT in the same animals. Ucp1 mRNA and UCP1 protein levels were increased on cold exposure and decreased with fasting, with the highest UCP1 levels in thermogenic hibernators. In contrast, Ucp3 mRNA levels were not affected by temperature but were increased 10-fold during fasting and >3-fold during hibernation. UCP3 protein levels were increased nearly fivefold in skeletal muscle mitochondria isolated from fasted squirrels compared with nonhibernators, but proton leak kinetics in the presence of BSA were unchanged. Proton leak in BAT mitochondria also did not differ between fed and fasted animals but did show classical inhibition by the purine nucleotide GDP. Levels of nonesterified fatty acids were highest during hibernation, and tissue temperatures during hibernation were related to Ucp1, but not Ucp3, expression. Taken together, these results do not support a role for UCP3 as a physiologically relevant mediator of NST in muscle.  相似文献   

19.
Antibody to uncoupling protein (UCP) purified from rat brown adipose tissue (BAT) was raised in rabbits and an enzyme linked immunosorbent assay was developed. The antiserum did not cross-react with other mitochondrial proteins from BAT and from other tissues but cross-reacted with UCP from hamster, guinea pig and mouse. The assay is capable of detecting 5 ng of UCP. Using this assay and a crude mitochondrial preparation, UCP content of BAT was shown to increase during cold adaptation.  相似文献   

20.
We tested the hypothesis that leptin, in addition to reducing body fat by restraining food intake, reduces body fat through a peripheral mechanism requiring uncoupling protein 1 (UCP1). Leptin was administered to wild-type (WT) mice and mice with a targeted disruption of the UCP1 gene (UCP1 deficient), while vehicle-injected control animals of each genotype were pair-fed to each leptin-treated group. Leptin reduced the size of white adipose tissue (WAT) depots in WT mice but not in UCP1-deficient animals. This was accompanied by a threefold increase in the amount of UCP1 protein and mRNA in the brown adipose tissue (BAT) of WT mice. Leptin also increased UCP2 mRNA in WAT of both WT and UCP1-deficient mice but increased UCP2 and UCP3 mRNA only in BAT from UCP1-deficient mice. These results indicate that leptin reduces WAT through a peripheral mechanism requiring the presence of UCP1, with little or no involvement of UCP2 or UCP3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号