首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Domain organization of the adenovirus preterminal protein.   总被引:3,自引:1,他引:2       下载免费PDF全文
In adenovirus-infected cells, the virus-encoded preterminal protein and DNA polymerase form a heterodimer that is directly involved in initiation of DNA replication. Monoclonal antibodies were raised against preterminal protein, and epitopes recognized by the antibodies were identified by using synthetic peptides. Partial proteolysis of preterminal protein reveals that it has a tripartite structure, with the three domains being separated by two protease-sensitive areas, located at sites processed by adenovirus protease. These areas of protease sensitivity are probably surface-exposed loops, as they are the sites, along with the C-terminal region of preterminal protein, recognized by the monoclonal antibodies. Preterminal protein is protected from proteolytic cleavage when bound to adenovirus DNA polymerase, suggesting either multiple contact points between the proteins or a DNA polymerase-induced conformational change in preterminal protein. Two of the preterminal protein-specific antibodies induced dissociation of the preterminal protein-adenovirus DNA polymerase heterodimer and inhibited initiation of adenovirus DNA replication in vitro. Antibodies binding close to the primary processing sites of adenovirus protease inhibited DNA binding, consistent with UV cross-linking results which reveal that an N-terminal, protease-resistant domain of preterminal protein contacts DNA. Monoclonal antibodies recognizing epitopes within the C-terminal 60 amino acids of preterminal protein stimulate DNA binding, an effect mediated through a decrease in the dissociation rate constant. These results suggest that preterminal protein contains a large, noncontiguous surface required for interaction with DNA polymerase, an N-terminal DNA binding domain, and a C-terminal regulatory domain.  相似文献   

2.
3.
It has previously been shown that when encephalomyocarditis viral RNA is translated in cell-free extracts of rabbit reticulocytes, it synthesizes a virus-coded protease, p22, which is derived by cleavage of a precursor protein, C. Protein C is shown here to be cleaved by two different mechanisms, which were distinguished by their sensitivity to dilution. One mechanism was sensitive to dilution; the other was not. The biphasic cleavage behavior was unchanged by diluting incubation mixtures with untranslated reticulocyte extract instead of buffer, suggesting that both types of cleavage were mediated by virus translation products. It is proposed that the dilution-sensitive cleavage of protein C is due to a virus-coded protease, probably p22 itself, and that the dilution-independent cleavage is due to intramolecular self-cleavage of protein C.  相似文献   

4.
In vitro cleavage specificity of the adenovirus type 2 proteinase   总被引:10,自引:0,他引:10  
Two in vitro proteinase assay systems were developed and used to study the peptide bond specificity and substrate specificity of the adenovirus endoproteinase. Five adenovirus precursor proteins (PVI, PVII, PVIII, 87K, 11K), all found in the virion of the ts1 mutant grown at the nonpermissive temperature, were digested by the proteinase. All, except 11K, were cleaved to their mature counterparts. Some of the proteins, particularly the 87K terminal protein, were processed via cleavage intermediates similar to those found in vivo. The data suggest that the proteinase specifically hydrolyses Gly-Ala bonds. The high specificity for the natural substrates and the failure to cleave foreign proteins suggest that cleavage activity is determined not only by primary sequence but also by other physical features of the substrate. Enzyme activity was inhibited by diisopropylfluorophosphate, showing that it is a serine proteinase.  相似文献   

5.
Adenovirus DNA polymerase is one of three viral proteins and two cellular proteins required for replication of the adenovirus genome. During initiation of viral DNA synthesis the viral DNA polymerase transfers dCMP onto the adenovirus preterminal protein, to which it is tightly bound. The domain structure of the 140 kDa DNA polymerase has been probed by partial proteolysis and the sites of proteolytic cleavage determined by N-terminal sequencing. At least four domains can be recognised within the DNA polymerase. Adenovirus preterminal protein interacts with three of the four proteolytically derived domains. This was confirmed by cloning and expression of each of the individual domains. These data indicate that, like other members of the pol alpha family of DNA polymerases, the adenovirus DNA polymerase has a multidomain structure and that interaction with preterminal protein takes place with non-contiguous regions of the polypeptide chain over a large surface area of the viral DNA polymerase.  相似文献   

6.
An in vitro system which replicates plasmid DNA containing the replication origin of adenovirus DNA has been established. Replication of plasmid pLA1 DNA, which contains the left-hand terminus (0-9.4 map units) of adenovirus serotype 5 DNA but which lacks the 55,000-dalton terminal protein, is initiated by a protein-primed mechanism in a manner similar to that found with adenovirus DNA. Initiation of DNA replication using plasmid pLA1 as a template requires (i) that the cloned adenovirus sequence be present at the terminus of a linearized (form III) DNA molecule ( Tamanoi , F., and Stillman , B. W. (1982) Proc. Natl. Acad. Sci. U. S. A., 79, 2221-2225; van Bergen, B. G. M., van der Ley , P. A., van Driel , W., van Mansfield , A. D. M., and van der Vliet , P. A. (1983) Nucleic Acid Res. 11, 1975-1979), and (ii) the presence of the 80,000-dalton precursor to the 55,000-dalton terminal protein and the adenovirus coded DNA-dependent DNA polymerase. In the presence of the four deoxy-nucleoside triphosphates, the preterminal protein, the adenovirus coded DNA binding protein, and an extract prepared from uninfected HeLa nuclei, the adenovirus DNA polymerase can elongate the preterminal-protein dCMP initiation complex formed on pLA1 DNA to full length (6.6 kilobase) DNA molecules. These results suggest that the 55,000-dalton terminal protein covalently linked to the 5' termini of adenovirus DNA is not essential for the replication of this DNA.  相似文献   

7.
8.
The tyrosine-containing peptide covalently attached to each 5'-terminus of adenovirus type 7 (Ad 7; Greider) DNA was labeled with 125I. The 5'-labeled DNA was subjected to digestion with several restriction endonucleases and the size of the labeled terminal fragments was determined. Partial hydrolysis by these endonucleases generated a series of labeled fragments which were fused to the terminal fragments and could, therefore, be detected by autoradiography. From the sizes of the partial products the location of the cleavage sites of the enzymes on Ad7 DNA could be determined. The subgenomic DNA extracted from incomplete particles by protease treatment could also be labeled with 125I, since it was found to contain the tyrosine-containing peptide covalently attached to the preferentially packaged left end of the genome.  相似文献   

9.
Initiation of adenovirus DNA synthesis is preceded by the assembly of a nucleoprotein complex at the origin of DNA replication containing three viral proteins, preterminal protein, DNA polymerase and DNA binding protein, and two cellular proteins, nuclear factors I and III. While sequence specific interactions of the cellular proteins with their cognate sites in the origin of DNA replication are well characterized, the question of how the viral replication proteins recognize the origin has remained unanswered. Preterminal protein and DNA polymerase were therefore purified to homogeneity from recombinant baculovirus infected insect cells. Gel filtration demonstrated that while DNA polymerase existed in monomeric and dimeric forms, preterminal protein was predominantly monomeric and when combined the proteins formed a stable heterodimer. In a gel electrophoresis DNA binding assay each of the protein species recognized DNA within the origin of DNA replication with unique specificity. Competition analysis and DNase I protection experiments revealed that although each protein could recognize the origin, the heterodimer did so with enhanced specificity, protecting bases 8-17 from cleavage with the nuclease. Thus the highly conserved 'core' of the origin of DNA replication, present in all human adenoviruses, is recognized by the preterminal protein--DNA polymerase heterodimer.  相似文献   

10.
An extract from Adenovirus type 4 infected HeLa cells was fractionated by ion-exchange and DNA affinity chromatography. One fraction, which bound tightly to single stranded DNA, contained predominantly a protein of apparent molecular weight 65,000 and three less abundant proteins. Immunological cross-reactivity with adenovirus type 2 proteins confirmed the presence of preterminal protein and indicated that the abundant species was the virus coded DNA binding protein. This fraction contained an aphidicolin resistant DNA polymerase activity and in the presence of a linearised plasmid containing the adenovirus type 4 origin of DNA replication efficient transfer of dCMP onto preterminal protein, indicative of initiation, was observed. Furthermore, addition of all four deoxyribonucleotide triphosphates and an ATP regenerating system resulted in the elongation of initiated molecules to generate plasmid molecules covalently attached to preterminal protein. Adenovirus type 4 DNA binding protein was extensively purified from crude adenovirus-4 infected HeLa extract by immunoaffinity chromatography using a monoclonal antibody raised against adenovirus type 2 DNA binding protein. A low level of initiation of DNA replication was detected in the fraction depleted of DNA binding protein but activity was restored by addition of purified DNA binding protein. DNA binding protein therefore plays an important role in the initiation of Ad4 DNA replication.  相似文献   

11.
Nuclear extracts from adenovirus type 5 (Ad5) infected HeLa cells were used to study the template requirements for adenovirus DNA replication in vitro. When XbaI digested Ad5 DNA, containing the parental terminal protein (TP), was used as a template preferential synthesis of the terminal fragments was observed. The newly synthesized DNA was covalently bound to the 82 kD preterminal protein (pTP). Plasmid DNAs containing the Ad2 origin sequence or the Ad12 origin sequence with small deletions were analyzed for their capacity to support pTP-primed DNA replication. Circular plasmid DNAs were inactive. When plasmids were linearized to expose the adenovirus origin, both Ad2 and Ad12 TP-free fragments could support initiation and elongation similarly as Ad5 DNA-TP, although with lower efficiency. These observations indicate that the parental terminal protein is dispensable for initiation in vitro. The presence of 29 nucleotides ahead of the molecular end or a deletion of 14 base pairs extending into the conserved sequence (9-22) destroyed the template activity. DNA with a large deletion within the first 8 base pairs could still support replication while a small deletion could not. The results suggest that only G residues at a distance of 4-8 nucleotides from the start of the conserved sequence can be used as template during initiation of DNA replication.  相似文献   

12.
A temperature-sensitive mutant of adenovirus 31 was defective in formation of the DNA replication complex, suggesting the existence of a virus-coded protein necessary for the complex-formation.  相似文献   

13.
African swine fever virus (ASFV) is a complex DNA virus that employs polyprotein processing at Gly-Gly-Xaa sites as a strategy to produce several major core components of the viral particle. The virus gene S273R encodes a 31-kDa protein that contains a "core domain" with the conserved catalytic residues characteristic of SUMO-1-specific proteases and the adenovirus protease. Using a COS cell expression system, it was found that protein pS273R is capable of cleaving the viral polyproteins pp62 and pp220 in a specific way giving rise to the same intermediates and mature products as those produced in ASFV-infected cells. Furthermore, protein pS273R, like adenovirus protease and SUMO-1-specific enzymes, is a cysteine protease, because its activity is abolished by mutation of the predicted catalytic histidine and cysteine residues and is inhibited by sulfhydryl-blocking reagents. Protein pS273R is expressed late after infection and is localized in the cytoplasmic viral factories, where it is found associated with virus precursors and mature virions. In the virions, the protein is present in the core shell, a domain where the products of the viral polyproteins are also located. The identification of the ASFV protease will allow a better understanding of the role of polyprotein processing in virus assembly and may contribute to our knowledge of the emerging family of SUMO-1-specific proteases.  相似文献   

14.
Brosh RM  Driscoll HC  Dianov GL  Sommers JA 《Biochemistry》2002,41(40):12204-12216
Werner Syndrome is a premature aging disorder characterized by chromosomal instability. Recently we reported a novel interaction of the WRN gene product with human 5' flap endonuclease/5'-3' exonuclease (FEN-1), a DNA structure-specific nuclease implicated in pathways of DNA metabolism that are important for genomic stability. To characterize the mechanism for WRN stimulation of FEN-1 cleavage, we have determined the effect of WRN on the kinetic parameters of the FEN-1 cleavage reaction. WRN enhanced the efficiency of FEN-1 cleavage rather than DNA substrate binding. WRN effectively stimulated FEN-1 cleavage on a flap DNA substrate with streptavidin bound to the terminal 3' nucleotide at the end of the upstream duplex, indicating that WRN does not require a free upstream end to stimulate FEN-1 cleavage of the 5' flap substrate. These results indicate that the mechanism whereby WRN stimulates FEN-1 cleavage is distinct from that proposed for the functional interaction between proliferating cell nuclear antigen and FEN-1. To understand the potential importance of the WRN-FEN-1(1) interaction in DNA replication, we have tested the effect of WRN on FEN-1 cleavage of several DNA substrate intermediates that may arise during Okazaki fragment processing. WRN stimulated FEN-1 cleavage of flap substrates with a terminal monoribonucleotide, a long 5' ssDNA tract, and a pseudo-Y structure. The ability of WRN to facilitate FEN-1 cleavage of DNA replication/repair intermediates may be important for the role of WRN in the maintenance of genomic stability.  相似文献   

15.
A 32,000-dalton protein (p32) located in avian retrovirus cores was immunoprecipitated from [35S]methionine-labeled avian myeloblastosis virus (AMV) propagated in cultured chicken embryo fibroblast cells by an antiserum preparation (sarc III) derived from tumor-bearing hamsters injected with cloned and passaged cells from an avian sarcoma virus-induced primary hamster tumor. Since sarc III serum apparently contained antibodies only to virus-coded proteins and not to chicken cellular proteins, the immunoprecipitation of p32 from AMV by sarc III serum strongly suggested that p32 is virus coded. The origin of p32 was more definitively established by demonstrating the existence of a structural relationship between p32 and the AMV DNA polymerase. AMV p32 cross-reacted with the beta polypeptide of AMV alphabeta DNA polymerase in radioimmunoprecipitation and radioimmunoprecipitation inhibition assays, indicating that p32 and beta share common antigenic determinants. This relationship was clarified by sodium do-decyl sulfate-polyacrylamide gel electrophoretic analysis of the peptides generated by limited proteolysis of 125I-labeled AMV DNA polymerase polypeptides and of 125I-labeled AMV p32 by chymotrypsin or Staphylococcus aureus V-8 protease. The peptides which appeared during proteolytic digestion of p32 were a subset of those produced by digestion of the beta polypeptide; however, p32 had no discernible peptides in common with the alpha polypeptide. Further, all of the peptides produced by limited proteolysis of beta were present in the digests of either p32 or alpha. Our findings suggest that p32 is apparently derived by cleavage of the beta polypeptide of AMV DNA polymerase, presumably at a site near or identical to that at which alpha is generated from beta by proteolytic cleavage.  相似文献   

16.
A palindromic hairpin duplex containing the inverted terminal repeat sequence of adeno-associated virus type 2 (AAV) DNA was used as a substrate in gel retardation assays to detect putative proteins that specifically interact with the AAV hairpin DNA structures. Nuclear proteins were detected in extracts prepared from human KB cells coinfected with AAV and adenovirus type 2 that interacted with the hairpin duplex but not in nuclear extracts prepared from uninfected, AAV-infected, or adenovirus type 2-infected KB cells. The binding was specific for the hairpin duplex, since no binding occurred with a double-stranded DNA duplex with the identical nucleotide sequence. Furthermore, in competition experiments, the binding could be reduced with increasing concentrations of the hairpin duplex but not with the double-stranded duplex DNA with the identical nucleotide sequence. S1 nuclease assays revealed that the binding was sensitive to digestion with the enzyme, whereas the protein-bound hairpin duplex was resistant to digestion with S1 nuclease. The nucleotide sequence involved in the protein binding was localized within the inverted terminal repeat of the AAV genome by methylation interference assays. These nuclear proteins may be likely candidates for the pivotal enzyme nickase required for replication or resolution (or both) of single-stranded palindromic hairpin termini of the AAV genome.  相似文献   

17.
?29 DNA polymerase, which belongs to the family of the eukaryotic type DNA polymerases, is able to use two kinds of primers to initiate DNA replication: DNA and terminal protein (TP). By partial proteolysis we have studied the regions of ?29 DNA polymerase involved in primer binding. With proteinase K, no change in the proteolytic pattern was observed upon DNA binding, suggesting that it does not induce a global conformational change in ?29 DNA polymerase. Conversely, two of the three main cleavage sites obtained by partial digestion of free ?29 DNA polymerase with endoproteinase LysC were protected upon DNA binding, indicating that the DNA could be occluding these cleavage sites to the protease either directly by itself and/or indirectly by induction of local conformational changes affecting their exposure. Partial proteolysis with endoproteinase LysC of ?29 DNA polymerase/TP heterodimer resulted in a protection and digestion pattern similar to that obtained with DNA, suggesting that both primers, DNA and TP, fit in the same double-stranded DNA-binding channel and protect the same regions of ?29 DNA polymerase.  相似文献   

18.
Adenovirus empty capsids are immature intermediates that lack DNA and viral core proteins. Highly purified preparations of empty and full capsids were generated by subjecting purified adenovirus preparations to repeated cesium chloride gradient separations. PAGE results revealed that empty capsids contain at least five bands that correspond to proteins absent from the mature virus proteome. Peptide mapping by matrix-assisted laser desorption/ionization time-of-flight MS revealed that three of these bands correspond to varying forms of L1 52/55kDa, a protein involved in the encapsidation of the viral DNA. One band at around 31kDa was found to include precursors to proteins VI and VIII. These precursors correspond to proteins that have not been cleaved by the adenovirus-encoded protease and are not present in the mature full capsids. The precursor to protein VIII (pVIII), a capsid cement protein, is used in this study as a marker in reverse-phased HPLC (RP-HPLC) analyses of adenovirus for the quantitation of empty capsids. A novel calculation method applied to the integration of RP-HPLC chromatograms allowed for the generation of a percentage empty capsid value in a given adenovirus preparation. The percentage empty capsid values generated to date by this method show a high degree of precision and good agreement with a cesium chloride gradient/SDS-PAGE quantitation method of empty capsids. The advantage of this method lies in the accurate, precise, and rapid generation of the percentage of empty capsids in a given purified virus preparation without relying on tedious and time-consuming cesium chloride gradient separations and extractions.  相似文献   

19.
An expression system in Pichia pastoris for the production and purification of recombinant human growth hormone (rHGH) was designed and implemented. hGH cDNA sequence was cloned into pPICZalphaA vector under the control of AOX1 promoter, which included a polyhistidine-tag on the amino terminal end to enable affinity purification and a target site for Factor Xa protease such that protease cleavage in vitro would produce rhGH without any non-native N- and C-termini. Analyses of the affinity-purified rhGH product by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) showed a spectral peak at m/z 23699. Purified product digested with Factor Xa protease had a molecular mass of 22132 kDa. The molecular mass difference before and after Factor Xa protease digestion expectedly corresponds to the 12 amino acids in the rhGH amino terminus, which includes the EcoRI digestion site (Glu-Phe), the 6xHis tag for affinity purification, and the Factor Xa protease recognition sequence (Ile-Glu-Gly-Arg), a result that also indicates that the signal peptide was properly processed by P. pastoris. N-Terminal sequence analysis of the Factor Xa protease trimmed recombinant product confirmed the mature hGH sequence. Thus, the system designed functioned with its intended purpose effectively in expression, cleavage, and purification of the recombinant product.  相似文献   

20.
Processing of the adenovirus terminal protein.   总被引:26,自引:11,他引:15       下载免费PDF全文
The termini of nascent adenovirus DNA molecules synthesized in vivo are covalently bound to a protein with an apparent molecular weight of 80,000. This protein represents a precursor to the 55,000-dalton protein known to be bound to the 5' termini of mature adenovirus genomes. Processing of the 80-kilodalton precursor to the 55-kilodalton terminal protein is not required for continued adenovirus DNA replication and is probably accomplished during a late stage of virion maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号