首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Bombyx prothoracicostatic peptide (Bom-PTSP) is a brain neuropeptide that has recently been reported to have in vitro inhibitory activity to prothoracicotropic hormone (PTTH)-stimulated ecdysteroid biosynthesis in the prothoracic gland of the silkworm, Bombyx mori. In the present report, Bom-PTSP has been shown to significantly decrease hemolymph ecdysteroid titer in the fifth instar larvae when Bom-PTSP was injected into the fifth instar day 8 silkworm larvae, resulting in significant delay in spinning behavior. This is the first evidence that Bom-PTSP inhibits in vivo ecdysteroidogenesis in the silkworm.  相似文献   

2.
Stage-dependent effects of RH-5992 on ecdysteroidogenesis of the prothoracic glands during the fourth larval instar of the silkworm, Bombyx mori, were studied in the present report. When larvae were treated with RH-5992 during the early stages of the fourth larval instar (between day 0 and day 1), initially ecdysteroid levels in the hemolymph were inhibited. However, 24 h after RH-5992 application, ecdysteroid levels were greatly increased as compared with those treated with acetone. The examination of the in vitro prothoracic gland activity upon RH-5992 application during the early stages of the fourth larval instar confirmed a short-term inhibitory effect. When RH-5992 was applied to the later stages of the fourth larval instar, no effects on both hemolymph ecdysteroid levels and prothoracic gland activity were observed. Addition of RH-5992 to incubation medium strongly inhibited ecdysteroid secretion by the prothoracic glands from the early fourth instar, indicating direct action of RH-5992 on ecdysteroidogenesis by prothoracic glands. Four hours after application with RH-5992 on day 1.5, prothoracic glands still showed an activated response to PTTH in both PTTH-cAMP signaling and the extracellular signal-regulated kinase (ERK) signaling. Moreover, addition of RH-5992 to incubation medium did not interfere with the stimulatory effect of the glands to PTTH in ecdysteroidogenesis. These results indicated that both PTTH-cAMP signaling and PTTH-ERK signaling may not be involved in short-term inhibitory regulation by RH-5992.  相似文献   

3.
The ecdysteroid hormones, mainly 20-hydroxyecdysone (20E), play a pivotal role in insect development by controlling gene expression involved in molting and metamorphosis. In the model insectManduca sexta the production of ecdysteroids by the prothoracic gland is acutely controlled by a brain neurohormone, prothoracicotropic hormone (PTTH). PTTH initiates a cascade of events that progresses from the influx of Ca2+ and cAMP generation through phosphorylation of the ribosomal protein S6 and S6-dependent protein synthesis, and concludes with an increase in the synthesis and export of ecdysteroids from the gland. Recent studies indicate that S6 phosphorylation probably controls the steroidogenic effect of PTTH by gating the translation of selected mRNAs whose protein products are required for increased ecdysteroid synthesis. Inhibition of S6 phosphorylation prevents an increase in PTTH-stimulated protein synthesis and subsequent ecdysteroid synthesis. Two of the proteins whose translations are specifically stimulated by PTTH have been identified, one being a β tubulin and the other a heat shock protein 70 family member. Current data suggest that these two proteins could be involved in supporting microtubule-dependent protein synthesis and ecdysone receptor assembly and/or function. Recent data also indicate that the 20E produced by the prothoracic gland feeds back upon the gland by increasing expression and phosphorylation of a specific USP isoform that is a constituent of the functional ecdysone receptor. Changes in the concentration and composition of the ecdysone receptor complex of the prothoracic gland could modulate the gland's potential for ecdysteroid synthesis (e.g. feedback inhibition) by controlling the levels of enzymes or other proteins in the ecdysteroid biosynthetic pathway.  相似文献   

4.
Time of day related changes in ecdysteroid secretion by the prothoracic gland of last instar nymphs were studied using in vitro coincubations of prothoracic glands and brains under a 12-h light:12-h dark cycle. The experiments reveal that the cells of the prothoracic gland of the cockroach nymphs do not have an endogeneous circadian oscillator determining rhythmicity of ecdysteroid secretion. PTTH release in the scotophase is responsible for the peak of ecdysteroid production during the photophase.  相似文献   

5.
The cellular mechanism underlying ecdysteroidogenesis during the fourth larval instar of the silkworm, Bombyx mori, was analyzed by determining the in vitro ecdysteroid biosynthetic activity of the prothoracic glands, cAMP accumulation of the gland cells, the in vitro release of prothoracicotropic hormone (PTTH), etc. According to the differential responsiveness of prothoracic glands to PTTH, dibutyryl cAMP (dbcAMP), and 1-methyl-3-isobutylxanthine (MIX), the following different stages were classified and changes in PTTH signal transduction were assumed. During the first stage (between days 0 and 1), the glands showed low basal and PTTH-stimulated activities in both cAMP accumulation and ecdysteroidogenesis, and PTTH release in vitro was maintained at low but detectable levels, implying that a low but sustained PTTH signal may be transduced to prothoracic gland cells. On day 1.5, when low basal ecdysteroid production of the prothoracic glands was being maintained, both the responsiveness of glands to the stimulation of PTTH and PTTH release in vitro dramatically increased, indicating greatly increased PTTH transduction. On day 3 (when the basal ecdysteroidogenesis became maximal) and afterwards, high PTTH release in vitro was maintained, but the gland showed no response to PTTH, implying that the refractoriness of gland cells to PTTH may occur at this stage. We assume that the development-specific changes in PTTH signal transduction during the penultimate larval instar may play a critical role in regulating changes in ecdysteroidogenesis of the prothoracic glands.  相似文献   

6.
The cellular mechanism underlying ecdysteroidogenesis throughout the last larval instar of the silkworm, Bombyx mori, was analyzed by determining the in vitro ecdysteroid secretory activity of the prothoracic glands and cAMP accumulation of gland cells, as well as changes in responsiveness to stimulation by prothoracicotropic hormone (PTTH) and 1-methyl-3-isobutylxanthine (MIX). It was found that the prothoracic glands during the first 3 days of the last instar cannot produce detectable ecdysteroid and showed no response to stimulation by PTTH or 1-methyl-3-isobutylxanthine (MIX). However, artificial elevation of cellular cAMP levels by in vitro dibutyryl cAMP treatment stimulated the glands to secrete detectable ecdysteroid, implying the presence of a cAMP-dependent ecdysteroidogenic apparatus during this stage. From days 3 to 8, basal gland activities fluctuated, but the glands showed activation responses to PTTH and to the chemicals that increase cellular cAMP levels. After the occurrence of the peak in basal gland activity on day 9, glands on day 10 showed no response to PTTH, implying a refractory state of the glands to PTTH stimulation. For cAMP accumulation, it was found that glands on day 2 began to show increased cAMP accumulation to PTTH, implying that the acquisition of gland competency for elevation of cAMP levels after stimulation by PTTH precedes that of ecdysteroid production. Moreover, during most parts of the last larval instar (between days 3 and 8) and at the pupation stage, greatly increased cAMP accumulation upon stimulation by PTTH was observed only in the presence of MIX, indicating that cAMP phosphodiesterase levels may be high during these stages. From these results, we concluded that development-specific PTTH signal transduction during the last larval instar, which shows a different pattern from that of the penultimate larval instar, may play an important role in regulating changes in prothoracic gland activity and in leading to larval-pupal metamorphosis.  相似文献   

7.
Developmental changes in hemolymph ecdysteroid level, ecdysteroid synthesis by prothoracic glands (PGs) in vitro, prothoracicotropic hormone (PTTH) activity in brain extracts, and PTTH activity in the hemolymph were measured during the fifth larval instar of the Eri silkworm, Samia cynthia ricini. The changing patterns of hemolymph ecdysteroid level and ecdysteroid synthesis by laGs in vitro are similar to each other, with maximums on day 9. However, on this day, hemolymph ecdysteroid level was substantially higher than ecdysteroid synthesis by PGs in vitro suggesting a high PTTH activity in the hemolymph on day 9. Moreover, the changing pattern of PTTH activity in brain extracts is also similar to that of PTTH activity in the hemolymph, both peaking on day 9. However, on this day, activity in brain extracts was much smaller than PTTH activity in the hemolymph implying that most PTTH synthesized by the brain is secreted to the hemolymph and the brain stores a very little amount of PTTH. This study provides unique insights onto the hormonal regulation of ecdysteroid synthesis in the Eri silkworm and is useful for our future studies on signal transduction of insect neurolaelatides.  相似文献   

8.
Changes in prothoracic gland morphology were correlated to developmental events and ecdysteroid titres (20-hydroxyecdysone equivalents) during the last-larval instar in Spodoptera littoralis. After ecdysis to the last-larval instar the haemolymph ecdysteroid titre remained at about 45 ng/ml, when the prothoracic glands appeared quiescent. The first signs of distinct gland activity, indicated by increased cell size and radial channel formation, were observed at about 12 h prior to the cessation of feeding (36 h after the last-larval moult), accompanied by a gradual increase in ecdysteroid titre to 110 ng/ml haemolymph, at the onset of metamorphosis. During this phase ecdysteroid titres remained at a constant level (140–210 ng/ml haemolymph) and prothoracic gland cellular activity was absent for a short period. The construction of pupation cells occurred when haemolymph ecdysteroids titres increased to 700 ng/ml. A rapid increase in ecdysteroids began on the fourth night (1600 ng/ml haemolymph) reaching a maximal level (4000 ng/ml haemolymph) at the beginning of the fourth day. In freshly moulted pupae a relatively high ecdysteroid titre (1100 ng/ml haemolymph) was still observed, although during a decrease to almost negligible levels. The increase in ecdysteroid level during the third and the fourth nights of the last-larval instar was correlated with the period when almost all the prothoracic gland cells showed signs of high activity. Neck-ligation experiments indicated the necessity of head factors for normal metamorphosis up to the second to third day of the instar. The possibility that the prothoracic glands are under prothoracicotropic hormone regulation at these times is discussed.  相似文献   

9.
The endocrine mechanisms that regulate prothoracic gland (PG) activity in early stages of final larval instar of the silkworm Bombyx mori were investigated using a newly developed long-term cultivation system of the gland. The PGs dissected from day-0 fifth instar larvae did not secrete detectable amounts of ecdysone for the first 24 h in culture but started secretion within the next 2 days. The amount of secreted ecdysone increased day by day. When day-0 PGs were co-cultivated with corpora allata, however, they remained inactive for at least 8 days. PGs dissected from 1-day younger larvae (day-3 fourth instar larvae) secreted ecdysone for the first 24 h but stopped secretion for the next 24 h, followed by recovery of ecdysone secretory activity. By contrast, PGs from day-1 fourth instar larvae remained active throughout a cultivation period without any sign of inactivation. However, when the same glands were exposed to a high titer of 20-hydroxyecdysone for the second 24h in culture, they gradually lost their activity. These results indicate that PGs of fourth instar larvae are inactivated by ecdysteroid through a negative feedback mechanism and that thus inactivated PGs spontaneously recover ecdysone secretory activity in the early fifth instar unless inhibited by juvenile hormone.  相似文献   

10.
In recessive trimolter (rt) mutants of the silkworm, Bombyx mori, that have four larval instars rather than five larval instars of normal B. mori, a decrease after a small increase in the hemolymph ecdysteroid titer during the early stages of the last (fourth) larval instar appeared to be a prerequisite for larvae to undergo precocious metamorphosis. The present study was carried out to investigate the possible mechanism underlying this decrease in the ecdysteroid titer. It was found that juvenile hormone (JH) biosynthetic activity of the corpora allata (CA) increased during the first day of the last larval instar, but its absolute JH biosynthesis activity was relatively lower compared to that of normal fourth-instar larvae in tetramolters. This lowered JH biosynthetic activity appeared to be related to a decrease in prothoracic gland ecdysteroidogenesis during the second day of the last instar, because hydroprene application prevented this decrease in prothoracic gland ecdysteroidogenesis, leading to the induction of a supernumerary larval molt. The in vitro incubation of prothoracic glands with hydroprene showed that hydroprene did not directly exert its action on prothoracicotropic hormone (PTTH) release. Further study showed that the application of hydroprene enhanced the competency of the glands to respond to PTTH. From these results, it was supposed that the lowered JH biosynthesis of the CA during the first day of last instar in rt mutants was related to decreased ecdysteroidogenesis in the prothoracic glands during the second day, thus playing a role in leading to precocious metamorphosis.  相似文献   

11.
包方  姚勤  李军  刘晓勇  余蔚  尹慧娟  陈克平 《昆虫学报》2007,50(12):1219-1224
【目的】通过比较家蚕Bombyx mori抗性及感性品系的中肠蛋白质表达谱,获得家蚕对家蚕浓核病毒中国株(BmDNV-3)抗性相关的蛋白。【方法】利用双向电泳(2-DE)对感性品种华八35和抗性品种秋丰接种病毒后48 h的蛋白质表达谱进行比较分析,并对其中的差异蛋白进行MALDI-TOF-TOF质谱分析,通过NCBInr和MSDB数据库进行蛋白点的鉴定和功能分析。【结果】获得重复性较好的差异蛋白点16个,其中质谱鉴定出5种蛋白,它们分别是糖基转移酶(glycosyltransferase)、糖基转移酶-S(GlcAT-S)、21.5 kD小热休克蛋白(21.5 kD small heat shock protein)、V-ATP酶(vacuolar ATP synthase)和精氨酸激酶(arginine kinase)。这5种蛋白在抗性品系秋丰中的表达量均高于感性品系华八35。【结论】糖基转移酶和糖基转移酶-S仅在抗性品系中存在,提示它们可能是与抗性有关的蛋白。此外,增强的应激反应和能量代谢也可能与家蚕对BmDNV-3的抗性产生相关。  相似文献   

12.
Topical application of fenoxycarb (1 μg per animal) at 129 or 132 h of the fifth instar larvae of the silkworm, Bombyx mori, did not induce morphological abnormalities in the pupal stage, but these animals became dauer (permanent) pupae. This condition of B. mori and the endocrine events leading to permanent pupae are discussed in this work. Application of fenoxycarb at 132 h of the fifth instar elicited a high ecdysteroid titre in the pharate pupal stage and a steadily high ecdysteroid titre in the pupal stage. The fenoxycarb-induced permanent pupae had non-degenerating prothoracic glands that secreted low amounts of ecdysteroid and did not respond to recombinant prothoracicotropic hormone (rPTTH) late in the pupal stage. The Bombyx PTTH titre in the haemolymph, determined by a time-resolved fluoroimmunoassay, was lower than that of controls at the time of pupal ecdysis, but higher than controls later in the pupal stage in fenoxycarb-treated animals. After application of fenoxycarb, its haemolymph level, measured by ELISA, reached a peak at pupal ecdysis, then remained low. These results suggest that the fenoxycarb-mediated induction of permanent pupae is only partially a brain-centred phenomenon. It also involves alterations in the hormonal interplay that govern both the initiation of pupal-adult differentiation and changes in the steroidogenic pathway of the prothoracic glands of B. mori.  相似文献   

13.
The endocrine regulation of larval-pupal metamorphosis was studied in the silkworm, Bombyx mori, by measuring the following changes: hemolymph ecdysteroid titer, the secretory activity of prothoracic glands and the responsiveness of larvae to ecdysteroids and prothoracicotropic hormone (PTTH), with regard to developmental events such as the occurrence of spinneret pigmentation, initiation of cocoon spinning and onset of wandering stage as indicated by gut purge. These measurements were concentrated especially on the time before and after the head critical period (HCP) which falls 3-4 days before the gut purge ([Sakurai, 1984]). A small increase in the hemolymph ecdysteroid titer was first found during the HCP, and then the titer increased with daily fluctuations. Small but significant titer peaks were found prior to the occurrence of both spinneret pigmentation and gut purge, indicating that an individual titer peak could possess a specific role in development. Responsiveness of larvae to exogenous 20-hydroxyecdysone (20E) after the HCP was markedly higher than that before the HCP. The sensitivity of the prothoracic gland to PTTH also changed during the HCP. The results thus showed that the HCP is not the period after which an additional PTTH release is not required for the developmental events occurring on schedule, but rather it is the period during which complex events occur not only in the endocrine glands but also in the peripheral tissues. In addition, various developmental phenomena before gut purge are brought about by the hemolymph ecdysteroid whose concentration gradually increased with daily fluctuations, and these precise changes in the titer appeared to be important for the sequential occurrence of developmental events in the larval-pupal metamorphosis.  相似文献   

14.
In the penultimate-larval instar, the total volume of the prothoracic gland and the activities of some oxidative mitochondrial enzymes (cytochrome oxidase, NADH: cytochrome c oxidoreductase, succinate: cytochrome c oxidoreductase) undergo cyclic variations associated with larval growth. These specifically larval-larval growth cycles are absent in the prothoracic glands of normal last-instar larvae. Here the cycles can be induced artificially by implantation of brain or corpora cardiaca-allata complexes or, by exogenous application of juvenile hormone. The smallest size of the prothoracic gland in relation to the size of the body, as well as the minimal activity of all the three mitochondrial enzymes in the gland, have been found exactly at the moment of the pre-pupal peak of ecdysteroid in the body. The possibility that the prothoracic glands alone can synthetize ecdysteroid during the peak is questioned.  相似文献   

15.
Prothoracicotropic hormone (PTTH) stimulates ecdysteroid biosynthesis in the prothoracic gland (PG) of insects. A peptide inhibiting ecdysteroid biosynthesis in the PG was isolated from the extracts of 2,000 larval brains of the silkworm, Bombyx mori, using a protocol that included four reversed-phase high performance liquid chromatography procedures. The primary structure of this prothoracicostatic peptide (Bom-PTSP) was determined to be H-Ala-Trp-Gln-Asp-Leu-Asn-Ser-Ala-Trp-NH(2). This neuropeptide has the same sequence as Mas-MIP-I, a myoinhibitory peptide previously isolated from the ventral nerve cord of the tobacco hornworm, Manduca sexta, and is highly homologous with the N-terminal portion of vertebrate peptides of the galanin family. This peptide inhibited PTTH-stimulated ecdysteroidogenesis in the PG at both the spinning and feeding stages, which indicates that Bom-PTSP interferes with PTTH-stimulated ecdysteroidogenesis.  相似文献   

16.
Several lines of evidence suggest a novel regulatory mechanism for diapause regulation in the gypsy moth. We propose that ecdysteroids play a role in the induction and maintenance of the pharate first instar larval diapause in this species. A 55 kDa gut protein that is indicative of diapause is expressed in intact and neck-ligated pharate larvae but is not expressed when a ligature is placed posterior to the prothorax, site of the prothoracic gland. Guts cultured in vitro for 12 h cease to synthesize the 55 kDa protein, but synthesis of the protein resumes if the culture medium is enriched with a prothorax extract from pharate larvae or a prothoracic gland extract from fifth instar larvae. Injection of 20-hydroxyecdysone or the ecdysteroid agonist, RH-5992, into isolated abdomens stimulates synthesis of the diapause-specific 55 kDa protein, suggesting that the essential factor from the prothorax is an ecdysteroid. KK-42, an imidazole derivative known to inhibit ecdysteroid biosynthesis, averts diapause when applied to prediapausing pharate first instar larvae, but this effect can be countered by application of 20-hydroxyecdysone or RH-5992, i.e. KK-42 treated pharate larvae that are exposed to an ecdysteroid or RH-5992 readily enter diapause. A chilling period (120 days at 5 degrees C) is normally adequate to prompt an immediate termination of diapause when pharate larvae are transferred to 25 degrees C, but if such larvae are held in hanging drop cultures with ecdysteroids they fail to terminate diapause. Together, these results suggest that ecdysteroids are essential for the induction and maintenance of diapause and imply that a drop in the ecdysteroid titer is essential for diapause termination. Copyright 1997 Elsevier Science Ltd. All rights reserved  相似文献   

17.
The insect brain secretes prothoracicotropic hormone (PTTH), which stimulates the prothoracic gland to synthesize ecdysone. The active metabolite of ecdysone, 20-hydroxyecdysone (20E), works through ecdysone receptor (EcR) and ultraspiracle (USP) to initiate molting and metamorphosis by regulating downstream genes. Previously, we found that EcR was expressed in the PTTH-producing neurosecretory cells (PTPCs) in larval brain of the silkworm Bombyx mori, suggesting that PTPCs function as the master cells of development under the regulation of 20E. To gain a better understanding of the molecular mechanism of the 20E control of PTPCs, we performed a comprehensive screening of genes induced by 20E using DNA microarray with brains of day-2 fifth instar silkworm larvae. Forty-one genes showed greater than twofold changes caused by artificial application of 20E. A subsequent semiquantitative screening identified ten genes upregulated by 20E, four of which were novel or not previously identified as 20E-response genes. Developmental profiling determined that two genes, UP4 and UP5, were correlated with the endogenous ecdysteroid titer. Whole-mount in situ hybridization showed exclusive expression of these two genes in two pairs of cells in the larval brain in response to 20E-induction, suggesting that the cells are PTPCs. BLAST searches revealed that UP4 and UP5 are Bombyx homologs of vrille and tarsal-less, respectively. The present study identifies 20E-induced genes that may be involved in the ecdysone signal hierarchies underlying pupal-adult development and/or the 20E regulation of PTPCs.  相似文献   

18.
Ecdysteroidogenesis in the prothoracic glands is activated by the neuropeptide, prothoracicotropic hormone (PTTH). The present study demonstrates autocrine activation of ecdysteroidogenesis in prothoracic glands of the silkworm, Bombyx mori. Using both a long-term in vitro organ culture system and an ecdysteroid radioimmunoassay, it was found that either decreasing the incubation volume, from 100 to 5 microl, or increasing the number of glands incubated per drop (50 microl) from 1 to 5 significantly increased ecdysteroid secretion. Prothoracic gland-conditioned medium was used to clarify the autocrine factor. The results showed that activation of ecdysteroidogenesis by the prothoracic gland-conditioned medium appeared to be dose dependent and a dramatic increase in ecdysteroid secretion was observed after 6h of incubation in the conditioned medium. Moreover, it appeared that autocrine activation occurred when glands were incubated in large volumes of incubation medium and during a short incubation period, indicating that the factor may exert its action in situ at some specific developmental stages. This tropic factor was further characterized, and it was found that the factor seemed to be heat-stable, with a molecular weight estimated to be between 1000 and 3000 Da. Injection of the concentrated putative autocrine factor into day 5 last instar larvae greatly increased ecdysteroidogenic activity of the prothoracic glands compared to those injected with saline, indicating the possible in vivo function of the present factor.  相似文献   

19.
It is generally accepted that the prothoracicotropic hormone (PTTH) is the stimulator of ecdysteroidogenesis by prothoracic glands in larval insects. In the present study, we investigated activation of ecdysteroidogenesis by bovine insulin in prothoracic glands of the silkworm, Bombyx mori. The results showed that the insulin stimulated ecdysteroidogenesis during a long-term incubation period and in a dose-dependent manner. In addition, insulin also stimulated both DNA synthesis and viability of prothoracic glands. Insulin-stimulated ecdysteroidogenesis was blocked by either LY294002 or wortmannin, indicating involvement of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Activation of ecdysteroidogenesis by insulin appeared to be developmentally regulated. Moreover, in vitro activation of ecdysteroidogenesis of prothoracic glands by insulin was also verified by in vivo experiments: injection of insulin into day 6 last instar larvae greatly increased both hemolymph ecdysteroid levels and ecdysteroidogenesis 24 h after the injection, indicating its possible in vivo function. Phosphorylation of Akt and the insulin receptor was stimulated by insulin, and stimulation of Akt phosphorylation appeared to be PI3K-dependent and developmentally regulated. Insulin did not stimulate extracellular signal-regulated kinase (ERK) signaling of the prothoracic glands. These results suggest that in silkworm prothoracic glands, in addition to the PTTH and an autocrine factor, ecdysteroidogenesis is also stimulated by insulin during development.  相似文献   

20.
When insect larvae have fully grown, prothoracicotropic hormone (PTTH) is released from the brain, triggering the initiation of metamorphic development through stimulation of ecdysteroid secretion by the prothoracic glands. The present study analyzes the mechanism that regulates the occurrence of this PTTH surge. In the silkworm Bombyx mori, the PTTH surge occurs on day 6 of the fifth instar and is preceded by a small rise in hemolymph ecdysteroid titer, which occurs late on day 5. We therefore hypothesized that this rise of ecdysteroid titer is involved in the induction of the PTTH surge. To test this hypothesis, two experiments were conducted. First, a small amount of 20-hydroxyecdysone was injected on day 4, two days before the expected day of the PTTH surge, to simulate the small rise in hemolymph ecdysteroid titer on day 5. This injection led to a precocious surge of PTTH the next day. Next, the hemolymph ecdysteroid titer on day 5 was artificially lowered by injecting ecdysteroid-22-oxidase, which inactivates 20-hydroxyecdysone. After this treatment, the PTTH surge did not occur on day 6 in 80% of the animals. These results indicate that a small rise of the hemolymph ecdysteroid titer plays a critical role in the induction of the PTTH surge. Since basal ecdysteroidogenic activity of the prothoracic glands increases with larval growth, a circulating level of ecdysteroids may convey information about larval maturity to the brain, to coordinate larval growth and metamorphosis. This is the first report in invertebrates to demonstrate positive feedback regulation of the surge of a tropic hormone by a downstream steroid hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号