首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kodama Y  Inouye I  Fujishima M 《Protist》2011,162(2):288-303
Treatment of symbiotic alga-bearing Paramecium bursaria cells with a protein synthesis inhibitor, cycloheximide, induces synchronous swelling of all perialgal vacuoles at about 24h after treatment under a constant light condition. Subsequently, the vacuoles detach from the host cell cortex. The algae in the vacuoles are digested by the host's lysosomal fusion to the vacuoles. To elucidate the timing of algal degeneration, P. bursaria cells were treated with cycloheximide under a constant light condition. Then the cells were observed using transmission electron microscopy. Results show that algal chloroplasts and nuclei degenerated within 9h after treatment, but before the synchronous swelling of the perialgal vacuole and appearance of acid phosphatase activity in the perialgal vacuole by lysosomal fusion. Treatment with cycloheximide under a constant dark condition and treatment with chloramphenicol under a constant light condition induced neither synchronous swelling of the vacuoles nor digestion of the algae inside the vacuoles. These results demonstrate that algal proteins synthesized during photosynthesis are necessary to maintain chloroplastic and nuclear structures, and that inhibition of protein synthesis induces rapid lysis of these organelles, after which synchronous swelling of the perialgal vacuole and fusion occur with the host lysosomes.  相似文献   

2.
Kodama Y  Fujishima M 《Protist》2008,159(3):483-494
Cycloheximide is known to inhibit preferentially protein synthesis of symbiotic Chlorella of the ciliate Paramecium bursaria, but to hardly host protein synthesis. Treatment of algae-bearing Paramecium cells with cycloheximide induces synchronous swelling of all perialgal vacuoles that are localized immediately beneath the host's cell membrane. In this study, the space between the symbiotic algal cell wall and the perialgal vacuole membrane widened to about 25 times its normal width 24 h after treatment with cycloheximide. Then, the vacuoles detached from beneath the host's cell membrane, were condensed and stained with Gomori's solution, and the algae in the vacuoles were digested. Although this phenomenon is induced only under a fluorescent light condition, and not under a constant dark condition, this phenomenon was not induced in paramecia treated with cycloheximide in the light in the presence of the photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea. These results indicate that algal proteins synthesized in the presence of algal photosynthesis serve some important function to prevent expansion of the perialgal vacuole and to maintain the ability of the perialgal vacuole membrane to protect itself from host lysosomal fusion.  相似文献   

3.
Kodama Y  Fujishima M 《Protist》2012,163(4):658-670
Cells of the ciliate Paramecium bursaria harbor symbiotic Chlorella spp. in their cytoplasm. To establish endosymbiosis with alga-free P. bursaria, symbiotic algae must leave the digestive vacuole (DV) to appear in the cytoplasm by budding of the DV membrane. This budding was induced not only by intact algae but also by boiled or fixed algae. However, this budding was not induced when food bacteria or India ink were ingested into the DVs. These results raise the possibility that P. bursaria can recognize sizes of the contents in the DVs. To elucidate this possibility, microbeads with various diameters were mixed with alga-free P. bursaria and traced their fate. Microbeads with 0.20μm diameter did not induce budding of the DVs. Microbeads with 0.80μm diameter produced DVs of 5-10μm diameter at 3min after mixing; then the DVs fragmented and became vacuoles of 2-5μm diameter until 3h after mixing. Each microbead with a diameter larger than 3.00μm induced budding similarly to symbiotic Chlorella. These observations reveal that induction of DV budding depends on the size of the contents in the DVs. Dynasore, a dynamin inhibitor, greatly inhibited DV budding, suggesting that dynamin might be involved in DV budding.  相似文献   

4.
Kodama Y  Fujishima M 《Protoplasma》2005,225(3-4):191-203
Summary. Each symbiotic Chlorella sp. of the ciliate Paramecium bursaria is enclosed in a perialgal vacuole derived from the host digestive vacuole, and thereby the alga is protected from digestion by lysosomal fusion. Algae-free cells can be reinfected with algae isolated from algae-bearing cells by ingestion into digestive vacuoles. To examine the timing of acidification and lysosomal fusion of the digestive vacuoles and of algal escape from the digestive vacuole, algae-free cells were mixed with isolated algae or yeast cells stained with pH indicator dyes at 25 ± 1 °C for 1.5 min, washed, chased, and fixed at various time points. Acidification of the vacuoles and digestion of Chlorella sp. began at 0.5 and 2 min after mixing, respectively. All single green Chlorella sp. that had been present in the host cytoplasm before 0.5 h after mixing were digested by 0.5 h. At 1 h after mixing, however, single green algae reappeared in the host cytoplasm, arising from those digestive vacuoles containing both nondigested and partially digested algae, and the percentage of such cells increased to about 40% at 3 h. At 48 h, the single green algae began to multiply by cell division, indicating that these algae had succeeded in establishing endosymbiosis. In contrast to previously published studies, our data show that an alga can successfully escape from the host’s digestive vacuole after acidosomal and lysosomal fusion with the vacuole has occurred, in order to produce endosymbiosis. Correspondence and reprints: Biological Institute, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512, Japan.  相似文献   

5.
Each symbiotic Chlorella of the ciliate Paramecium bursaria is enclosed in a perialgal vacuole membrane derived from the host digestive vacuole membrane. Alga-free paramecia and symbiotic algae can grow independently. Mixing them experimentally can cause reinfection. Earlier, we reported that the symbiotic algae appear to push the host trichocysts aside to become fixed beneath the host cell cortex during the algal reinfection process. Indirect immunofluorescence microscopy with a monoclonal antibody against the trichocysts demonstrates that the trichocysts change their locality to form algal attachment sites and decrease their density beneath the host cell cortex through algal reinfection. Transmission electron microscopy to detect acid phosphatase activity showed that some trichocysts near the host cell cortex are digested by the host lysosomal fusion during algal reinfection. Removal of algae from the host cell using cycloheximide recovers the trichocyst's arrangement and number near the host cell cortex. These results indicate that symbiotic algae compete for their attachment sites with preexisting trichocysts and that the algae have the ability to ensure algal attachment sites beneath the host cell cortex.  相似文献   

6.
The association between the ciliate Paramecium bursaria and symbiotic Chlorella spp. is mutually beneficial. However, this relationship is facultative mutualism because both the host and the symbiotic algae can grow by themselves. This association is easily re-established by mixing the two species together. Following algal mixing, some algae become enclosed in the digestive vacuole membrane of the paramecia to which both acidosomes and lysosomes fuse. To establish endosymbiosis, some algae acquire temporal resistance to the host lysosomal enzymes in the digestive vacuoles. We examined whether the algae influence the differentiation of the host digestive process using LysoSensor staining to evaluate the acidification of the digestive vacuoles. Furthermore, to assess lysosomal fusion with the digestive vacuole, Gomori’s staining was conducted. Acidification and lysosomal fusion occurred later in digestive vacuoles containing living algae than in those containing boiled algae or latex spheres. This phenomenon was observed when the living algae were maintained under a constant light condition. These results suggest that the algae release some unknown factor in response to light exposure, and the factor may be associated with the alteration of the host digestive process, indicating that the living algae can influence the host digestive processes during early algal infection.  相似文献   

7.
应用透射电镜术显示了含小球藻绿草履虫和人工诱导获得的无小球藻绿草履虫细胞的超微结构特征,无小球藻绿草履虫细胞内有大量处于不同消化阶段的食物泡及膜性小泡,在细胞质内常见有线粒体聚集分布以及内质网分布其中,细胞大核内核仁数目增多,并聚集形成多个核仁区。含小球藻绿草履虫中细胞膜性结构较少见,细胞大核中核仁数目较少。结果表明,小球藻共生体可能影响了宿主草履虫细胞中所述细胞器的功能,数量和分布,并影响了核仁的功能,数量和分布。  相似文献   

8.
The green ciliate Paramecium bursaria contains several hundred symbiotic Chlorella species. We previously reported that symbiotic algal carbon fixation is enhanced by P. bursaria extracts and that the enhancing factor is a heat-stable, low-molecular-weight, water-soluble compound. To identify the factor, further experiments were carried out. The enhancing activity remained even when organic compounds in the extract were completely combusted at 700 degrees C, suggesting that the factor is an inorganic substance. Measurement of the major cations, K+, Ca2+, and Mg2+, by an electrode and titration of the extract resulted in concentrations of 0.90 mM, 0.55 mM, and 0.21 mM, respectively. To evaluate the effect of these cations, a mixture of the cations at the measured concentrations was prepared, and symbiotic algal carbon fixation was measured in the solution. The results demonstrated that the fixation was enhanced to the same extent as with the P. bursaria extract, and thus this mixture of K+, Ca2+, and Mg2+ was concluded to be the carbon fixation-enhancing factor. There was no effect of the cation mixture on free-living C. vulgaris. Comparison of the cation concentrations of nonsymbiotic and symbiotic Paramecium extracts revealed that the concentrations of K+ and Mg2+ in nonsymbiotic Paramecium extracts were too low to enhance symbiotic algal carbon fixation, suggesting that symbiotic P. bursaria provide suitable cation conditions for photosynthesis to its symbiotic Chlorella.  相似文献   

9.
SYNOPSIS. Endosymbiotic algae from Paramecium bursaria when added to the culture medium are ingested by Chlorella -bearing P. bursaria at a rate of 2,000 algae/organism/day. That the ingested algae are digested and assimilated by the ciliates is suggested by the more rapid growth of Paramecium when algae are added to the medium ( G = 40 hr with algae compared to 190 hr without). The digestion by the ciliates of exogenous algae contrasts with the survival of these algae under normal growth conditions. It is suggested that the protection of the endogenous algae is related to their location in peripheral perialgal vacuoles.  相似文献   

10.
Kodama Y  Fujishima M 《Protoplasma》2007,231(1-2):55-63
Summary. Paramecium bursaria cells harbor several hundred symbiotic algae in their cytoplasm. Algae-free cells can be reinfected with algae isolated from algae-bearing cells or cultivated Chlorella species through the digestive vacuoles. To determine the relationship between the infectivity of various Chlorella species and the nature of their cell wall components, algae-free P. bursaria cells were mixed with 15 strains of cultivated Chlorella species and observed for the establishment of endosymbiosis at 1 h and 3 weeks after mixing. Only 2 free-living algal strains, C. sorokiniana C-212 and C. kessleri C-531, were maintained in the host cells, whereas free-living C. sorokiniana C-43, C. kessleri C-208, C. vulgaris C-27, C. ellipsoidea C-87 and C-542, C. saccharophila C-183 and C-169, C. fusca var. vacuolata C-104 and C-28, C. zofingiensis C-111, and C. protothecoides C-150 and C-206 and the cultivated symbiotic Chlorella sp. strain C-201 derived from Spongilla fluviatilis could not be maintained. These infection-incapable strains could escape from the host digestive vacuole but failed to localize beneath the host cell membrane and were eventually digested. Labeling of their cell walls with Alexa Fluor 488-conjugated wheat germ agglutinin, GS-II, or concanavalin A, with or without pretreatment with 0.4 N NaOH, showed no relationship between their infectivity and the stainability with these lectins. Our results indicate that the infectivity of Chlorella species for P. bursaria is not based on the sugar residues on their cell wall and on the alkali-insoluble part of the cell wall components, but on their ability to localize just beneath the host cell membrane after escaping from the host digestive vacuole. Correspondence and reprints: Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512, Japan.  相似文献   

11.
McAuley  P. J. 《Hydrobiologia》1991,216(1):369-376
Supply of amino acids may be important in controlling cell division of Chlorella symbiotic with green hydra. Freshly isolated symbionts display characteristics of N-limited algae, and low pH in perialgal vacuoles and high levels of host glutamine synthetase (GS) limit uptake of ammonium. Movement of tritiated amino acids from host to algal pools suggests that symbiotic algae utilize amino acids derived from host digestion of prey. Amounts are significant in relation to host and algal amino acids pools. During host starvation, glutamine produced by host GS may be important as a nitrogen supply to the algae, which take up this amino acid at high rates at low pH.  相似文献   

12.
The ability of two aposymbiotic (algae-free) subclones of the same green clone of C. virens to establish a stable symbiotic association with Chlorella sp. has been studied by light and electron microscopy. Alga-free subclone No. 1 was obtained from the original green clone by a long-term cultivation in darkness, while subclone No. 2 originated from one cell that spontaneously lost the algae and was found among normal green cells during daily inspection. For infection, algae isolated from ciliates with chlorellae of parental clone of C. virens were used. 5-10 minutes after feeding with Chlorella, specimens of both subclones show numerous algae mostly inside food vacuoles, but some rare algae (3-4 per cell) may occur in individual perialgal vacuoles. Later on, the number of symbiotic chlorellae in ciliates of subclone No. 1 increased, and a stable symbiotic association was reestablished. Unlike, in specimens of subclone No. 2 all newly ingested algae were seen digested within food vacuoles. Within 24-28 h all the ciliates investigated appeared free of algae. However, obviously stable symbiotic ciliate-algae systems in this subclone were obtained after improving the microinjection technique. Injection of algae into alga-free ciliates resulted in maintenance of intact chlorellae in these ciliates. The algae were seen to be located individually within perialgal vacuoles, being presumably protected against host lytic enzyme attack. The endosymbiont population in ciliates was established from as many as 3-5 originally injected algae. The number of symbiotic chlorellae increased steadily reaching the value equal to that in the parental clone 28-30 days after the start of experiment.  相似文献   

13.
Abstract. Paramecium bursaria , a freshwater protozoan, typically harbors hundreds of symbiotic algae ( Chlorella sp.) in its cytoplasm. The relationship between host paramecia and symbiotic algae is stable and mutually beneficial in natural environments. We recently collected an aposymbiotic strain of P. bursaria . Infection experiments revealed that the natural aposymbiotic strain (Ysa2) showed unstable symbiosis with Chlorella sp. The algae aggregated at the posterior region of the host, resulting in aposymbiotic cell production after cell division. Cross-breeding analyses were performed to determine the heritability of the aposymbiotic condition. In crosses of Ysa2 with symbiotic strains of P. bursaria , F1 progeny were able to form stable symbioses with Chlorella sp. However, unstable symbiosis, resembling Ysa2 infection, occurred in some F2 progeny of sibling crosses between symbiotic F1 clones. Infection experiments using aposymbiotic F2 cells showed that these F2 subclones have limited ability to reestablish the symbiosis. These results indicate that the maintenance of stable symbiosis is genetically controlled and heritable, and that Ysa2 is a mutant lacking the mechanisms to establish stable symbiosis with Chlorella sp.  相似文献   

14.
Escape into the host cell cytosol following invasion of mammalian cells is a common strategy used by invasive pathogens. This requires membrane rupture of the vesicular or vacuolar compartment formed around the bacteria after uptake into the host cell. The mechanism of pathogen‐induced disassembly of the vacuolar membrane is poorly understood. We established a novel, robust and sensitive fluorescence microscopy method that tracks the precise time point of vacuole rupture upon uptake of Gram‐negative bacteria. This revealed that the enteroinvasive pathogen Shigella flexneri escapes rapidly, in less than 10 min, from the vacuole. Our method demonstrated the recruitment of host factors, such as RhoA, to the bacterial entry site and their continued presence at the point of vacuole rupture. We found a novel host marker for ruptured vacuoles, galectin‐3, which appears instantly in the proximity of bacteria after escape into the cytosol. Furthermore, we show that the Salmonella effector proteins, SifA and PipB2, stabilize the vacuole membrane inhibiting bacterial escape from the vacuole. Our novel approach to track vacuole rupture is ideally suited for high‐content and high‐throughput approaches to identify the molecular and cellular mechanisms of membrane rupture during invasion by pathogens such as viruses, bacteria and parasites.  相似文献   

15.
BACKGROUND: The stable symbiotic association between Paramecium bursaria and algae is of interest to study such mechanisms in biology as recognition, specificity, infection, and regulation. The combination of algae-free strains of P. bursaria, which have been recently established by treating their stocks of green paramecia with herbicide paraquat (Hosoya et al.: Zool Sci 12: 807-810, 1995), with the cloned symbiotic algae isolated from P. bursaria (Nishihara et al.: Protoplasma 203: 91-99, 1998), provides an excellent clue to gain fundamental understanding of these phenomena. METHODS: Flow cytometry and light microscopy have been employed to characterize the algal cells after they have been released from the paramecia by ultrasonic treatment. Algal optical properties such as light scattering and endogenous chlorophyll fluorescence intensity have been monitored for symbiotic and free-living strains, and strains at stages of interaction with a host. RESULTS: Neither algal morphology nor chlorophyll content has been found to be altered by sonication of green paramecia. This fact allows to interpret in adequate degree changes in the optical properties of symbiont that just has been released from the association with a host (decreased forward light scatter and chlorophyll fluorescence signals). Optical characterization of both symbiotic and free-living algal strains with respect to their ability to establish symbioses with P. bursaria showed that chlorophyll content per cell volume seems to be a valuable factor for predicting a favorable symbiotic relationship between P. bursaria and algae. CONCLUSIONS: Flow cytometry combined with algae-free paramecia and cloned symbiotic algae identifies algal populations that may be recognized by host cells for the establishment of symbioses.  相似文献   

16.
The bacterial pathogen Listeria monocytogenes (Lm) evades the antimicrobial mechanisms of macrophages by escaping from vacuoles to the cytosol, through the action of the cytolysin listeriolysin O (LLO). Because of heterogeneities in the timing and efficiency of escape, important questions about the contributions of LLO to Lm vacuole identity and trafficking have been inaccessible. Expression of cyan fluorescent protein (CFP)-labelled endocytic membrane markers in macrophages along with a yellow fluorescent protein (YFP)-labelled indicator of Lm entry to the cytosol identified compartments lysed by bacteria. Lm escaped from Rab5a-negative, lysosome-associated membrane protein-1 (LAMP1)-negative, Rab7-positive, phosphatidylinositol 3-phosphate [PI(3)P]-positive vacuoles. Lm vacuoles did not label with YFP-Rab5a unless the bacteria were first opsonized with IgG. Wild-type Lm delayed vacuole fusion with LAMP1-positive lysosomes, relative to LLO-deficient Lm. Bacteria prevented from expressing LLO until their arrival into LAMP1-positive lysosomes escaped inefficiently. Thus, the LLO-dependent delay of Lm vacuole fusion with lysosomes affords Lm a competitive edge against macrophage defences by providing bacteria more time in organelles they can penetrate.  相似文献   

17.
Phagosome fusion vesicles (PFVs), a new population of relatively large granules in Paramecium caudatum which fuse with the first stage of digestive vacuoles (DV-I) shortly after these vacuoles are released from the cytopharynx (their site of formation), have been studied by using the freeze-fracture technique. Identification of PFVs is possible in the resulting replicas at all sites where they are commonly found in thin sections, at the cytopharynx, bound but not fused with nascent digestive vacuoles and fused with released vacuoles in the cell's posterior end. These PFVs have membranes which do not resemble the membranes of the forming digestive vacuole membrane or the discoidal vesicle membranes from which vacuole membrane is derived. Their smooth E-fracture face with only 50 to 100 intramembrane particles (IMPs) per micrometers 2 and particulate P-face (approximately 2500 IMPs/micrometers) do resemble the second vacuole stage (DV-II) which is characterized by a smaller diameter and acid pH. Evidence is presented for PFV fusion with the DV-I and for membrane replacement, at least in part, as the DV-I becomes a DV-II. Membrane replacement entails first adding PFVs to the DV-I and then removing the original discoidal vesicle-derived membrane as tubules as the vacuole condenses. Implications of the possible role of PFVs in forming intravacuolar symbiotic relationships are also discussed.  相似文献   

18.
Paramecium bursaria Chlorella viruses were observed by applying transmission electron microscopy in the native symbiotic system Paramecium bursaria (Ciliophora, Oligohymenophorea) and the green algae Chlorella (Chlorellaceae, Trebouxiophyceae). Virus particles were abundant and localized in the ciliary pits of the cortex and in the buccal cavity of P. bursaria. This was shown for two types of the symbiotic systems associated with two types of Chlorella viruses - Pbi or NC64A. A novel quantitative stereological approach was applied to test whether virus particles were distributed randomly on the Paramecium surface or preferentially occupied certain zones. The ability of the virus to form an association with the ciliate was investigated experimentally; virus particles were mixed with P. bursaria or with symbiont-free species P. caudatum. Our results confirmed that in the freshwater ecosystems two types of P. bursaria -Chlorella symbiotic systems exist, those without Chlorella viruses and those associated with a large amount of the viruses. The fate of Chlorella virus particles at the Paramecium surface was determined based on obtained statistical data and taking into account ciliate feeding currents and cortical reorganization during cell division. A life cycle of the viruses in the complete symbiotic system is proposed.  相似文献   

19.
To investigate the relationship between the Japanese Paramecium bursaria host and its symbiont, we studied the effect of a host cell-free extract on carbon fixation and photosynthate release of the symbiont. The host extract enhanced symbiotic algal carbon fixation about 3-fold at an increased concentration; however, release of photosynthate hardly changed. Since the enhancing effect was not affected by elimination of carbon dioxide from the host extract, the existence of a host factor that stimulates algal carbon fixation was made clear. The host factor is a heat-stable, low molecular weight substance. In relation to the pH dependence, the extract improved carbon fixation at acidic and neutral pH and showed almost no effect at pH 9.0. Therefore, the stimulation of carbon fixation by the host factor is unlikely to be caused by intracellular pH change. The extract also improved carbon fixation of several Chlorella species, symbiotic and free-living, and apparently exhibited no species specificity. Therefore, the host seems to regulate the photosynthesis of the symbiont via a specific compound.  相似文献   

20.
Certain species of Chlorella live within the digestive cells of the fresh water cnidarian Hydra viridis. When introduced into the hydra gut, these symbiotic algae are phagocytized by digestive cells but avoid host digestion and persist at relatively constant numbers within host cells. In contrast, heat-killed symbionts are rapidly degraded after phagocytosis. Live symbionts appear to persist because host lysosomes fail to fuse with phagosomes containing live symbionts. Neither acid phosphatase nor ferritin was delivered via lysosomes into phagosomes containing live symbionts, whereas these lysosomal markers were found in 50% of the vacuoles containing heat-killed symbionts 1 h after phagocytosis. Treatment of symbiotic algae before phagocytosis with polycationic polypeptides abolishes algal persistence and perturbs the ability of these algae to control the release of photosynthate in vitro. Similarly, inhibition of photosynthesis and hence of the release of photosynthetic products as a result of prolonged darkness and 3-(3,4- dichlorophenyl)-1,1-dimethyl urea (DCMU) treatment also abolishes persistence. Symbiotic algae are not only protected from host digestive attack but are also selectively transported within host cells, moving from the apical site of phagocytosis to a basal position of permanent residence. This process too is disrupted by polycationic polypeptides, DCMU and darkness. Both algal persistence and transport may, therefore, be a function of the release of products from living, photosynthesizing symbionts. Vinblastine treatment of host animals blocked the movement of algae within host cells but did not perturb algal persistence: algal persistence and the transport of algae may be initiated by the same signal, but they are not interdependent processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号