首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osmotic shock was used as a tool to obtain cardiolipin (CL) enriched chromatophores of Rhodobacter sphaeroides. After incubation of cells in iso- and hyper-osmotic buffers both chromatophores with a physiological lipid profile (Control) and with an almost doubled amount of CL (CL enriched) were isolated. Spectroscopic properties, reaction centre (RC) and reducible cytochrome (cyt) contents in Control and CL enriched chromatophores were the same. The oxidoreductase activity was found higher for CL enriched than for Control chromatophores, raising from 60?±?2 to 93?±?3?mol cyt c s(-1) (mol total cyt c)(-1). Antymicin and myxothiazol were tested to prove that oxidoreductase activity thus measured was mainly attributable to the cyt bc ( 1 ) complex. The enzyme was then purified from BH6 strain yielding a partially delipidated and almost inactive cyt bc ( 1 ) complex, although the protein was found to maintain its structural integrity in terms of subunit composition. The ability of CL in restoring the activity of the partially delipidated cyt bc ( 1 ) complex was proved in micellar systems by addition of exogenous CL. Results here reported indicate that CL affects oxidoreductase activity in the bacterium Rhodobacter sphaeroides both in chromatophore and in purified cyt bc ( 1 ) complex.  相似文献   

2.
Lipid-protein interactions were examined in chromatophores isolated from the photosynthetic bacterium Rhodopseudomonas sphaeroides using lipid spin-labels. The chromatophores contain fluid bilayer and a significant amount of lipid immobilized by membrane proteins. For a typical preparation of cells grown under 600 ft-c illumination, 59% of the spin-labeled fatty acids were bound. Essentially the entire length of the 18-carbon fatty acid chain was immobilized, judging from results obtained with the spin-label at the 7, 12, and 16 positions. The amount immobilized varies directly with the bacteriochlorophyll content of the chromatophore material, suggesting that a significant fraction of the lipid spin-labels is immoblized on the hydrophobic surfaces of the chlorophyll-binding proteins. Changing the lipid spin-label head group from a negatively charged carboxyl group to a positively charged quarternary amine greatly decreased the amount of immobilized lipid. The changes in immobilized lipid with light level and polar head group suggest that the anntenna bacteriochlorophyll-binding proteins preferentially associate with negatively charged lipids.  相似文献   

3.
The redox midpoint potential (E (m)) of the primary quinone of bacterial reaction centers, Q(A), in native membranes (chromatophores) measured by redox potentiometry is reported to be pH dependent (-60 mV/pH) up to a highly distinctive pK ( a ) (9.8 in Rba. sphaeroides) for the reduced state. In contrast, the E (m) of Q(A) in isolated RCs of Rba. sphaeroides, although more variable, has been found to be essentially pH-independent by both redox potentiometry and by delayed fluorescence, which determines the free energy (DeltaG (P*A)) of the P(+)Q (A) (-) state relative to P*. Delayed fluorescence was used here to determine the free energy of P(+)Q (A) (-) in chromatophores. The emission intensity in chromatophores is two orders of magnitude greater than from isolated RCs largely due to the entropic effect of antenna pigments "drawing out" the excitation from the RC. The pH dependence of DeltaG (P*A) was almost identical to that of isolated RCs, in stark contrast with potentiometric redox titrations of Q(A). We considered that Q(A) might be reduced by disproportionation with QH(2) through the Q(B) site, so the titration actually reflects the quinone pool, giving the -60 mV/pH unit dependence expected for the Q/QH(2) couple. However, the parameters necessary to achieve a strong pH-dependence are not in good agreement with expected properties of Q(A) and Q(B). We also consider the possibility that the time scale of potentiometric titrations allows the reduced state (Q (A) (-) ) to relax to a different conformation that is accompanied by stoichiometric H(+) binding. Finally, we discuss the choice of parameters necessary for determining the free energy level of P(+)Q (A) (-) from delayed fluorescence emission from chromatophores of Rba. sphaeroides.  相似文献   

4.
Time-resolved fluorescence of chromatophores isolated from strains of Rhodobacter sphaeroides containing light harvesting complex I (LHI) and reaction center (RC) (no light harvesting complex II) was measured at several temperatures between 295 K and 10 K. Measurements were performed to investigate energy trapping from LHI to the RC in RC mutants that have a P/P(+) midpoint potential either above or below wild-type (WT). Six different strains were investigated: WT + LHI, four mutants with altered RC P/P(+) midpoint potentials, and an LHI-only strain. In the mutants with the highest P/P(+) midpoint potentials, the electron transfer rate decreases significantly, and at low temperatures it is possible to directly observe energy transfer from LHI to the RC by detecting the fluorescence kinetics from both complexes. In all mutants, fluorescence kinetics are multiexponential. To explain this, RC + LHI fluorescence kinetics were analyzed using target analysis in which specific kinetic models were compared. The kinetics at all temperatures can be well described with a model which accounts for the energy transfer between LHI and the RC and also includes the relaxation of the charge separated state P(+)H(A)(-), created in the RC as a result of the primary charge separation.  相似文献   

5.
Induction of the bacteriochlorophyll fluorescence under rectangular shape of intense laser diode illumination (1 W cm(-2), 808 nm) was measured over wide time range from 10 mus to 4 s in whole cells, chromatophore and isolated reaction center protein of wild type and carotenoid-less mutant (R-26.1) of purple photosynthetic bacterium Rhodobacter sphaeroides. While the antenna-containing species showed large and positive variable fluorescence (F (v)) to initial fluorescence (F (0)) (F (v)/F (0) approximately 4.5 in whole cells), the isolated RC had negative change (F (v)/F (0) approximately -0.6) during photochemistry. In chromatophore from R-26.1, only seven times higher rate was measured than in isolated reaction center under identical experimental conditions. The enhancement effect of large antenna on the rate of photochemistry in chromatophore was partially compensated by the favorable pigment absorption properties in isolated RC. The transition from membrane bound to isolated form of the reaction center was probed by titration of zwitterionic detergent LDAO in chromatophore, and at 0.03% LDAO concentration, sharp change of the variable fluorescence was observed. The sudden drop was explained by the formation of LDAO micelles. After the photochemical phase, additional change of fluorescence yield could be observed in isolated RC considered as manifestation of long-living conformations of the trapped redox states of the protein characterized by non-exponential kinetics. Strong support was provided for use of the fluorescence induction to track structural and conformation changes at their earliest phases in chromatophores and isolated reaction centers.  相似文献   

6.
A functional proteomic analysis of the intracytoplasmic membrane (ICM) development process was performed in Rhodobacter sphaeroides during adaptation from high-intensity illumination to indirect diffuse light. This initiated an accelerated synthesis of the peripheral light-harvesting 2 (LH2) complex relative to that of LH1-reaction center (RC) core particles. After 11 days, ICM vesicles (chromatophores) and membrane invagination sites were isolated by rate-zone sedimentation and subjected to clear native gel electrophoresis. Proteomic analysis of gel bands containing the RC-LH1 and -LH2 complexes from digitonin-solubilized chromatophores revealed high levels of comigrating electron transfer enzymes, transport proteins, and membrane assembly factors relative to their equivalent gel bands from cells undergoing adaptation to direct low-level illumination. The GroEL chaperonin accounted for >65% of the spectral counts in the RC-LH1 band from membrane invagination sites, which together with the appearance of a universal stress protein suggested that the viability of these cells was challenged by light limitation. Functional aspects of the photosynthetic unit assembly process were monitored by near-IR fast repetition rate analysis of variable fluorescence arising from LH-bacteriochlorophyll a components. The quantum yield of the primary charge separation during the early stages of adaptation showed a gradual increase (variable/maximal fluorescence = 0.78-0.83 between 0 and 4 h), while the initial value of ~70 for the functional absorption cross section (σ) gradually increased to 130 over 4 days. These dramatic σ increases showed a direct relation to gradual slowing of the RC electron transport turnover rate (τ(QA)) from ~1.6 to 6.4 ms and an ~3-fold slowing of the rate of reoxidation of the ubiquinone pool. These slowed rates are not due to changes in UQ pool size, suggesting that the relation between increasing σ and τ(QA) reflects the imposition of constraints upon free diffusion of ubiquinone redox species between the RC and cytochrome bc(1) complex as the membrane bilayer becomes densely packed with LH2 rings.  相似文献   

7.
The purpose of this study was to gain information on the functional consequences of the supramolecular organization of the photosynthetic apparatus in the bacterium Rhodobacter sphaeroides. Isolated complexes of the reaction center (RC) with its core antenna ring (light-harvesting complex 1 (LH1)) were studied in their dimeric (native) form or as monomers with respect to excitation transfer and distribution of the quinone pool. Similar issues were examined in chromatophore membranes. The relationship between the fluorescence yield and the amount of closed centers is indicative of a very efficient excitation transfer between the two monomers in isolated dimeric complexes. A similar dependence was observed in chromatophores, suggesting that excitation transfer in vivo from a closed RC.LH1 unit is also essentially directed to its partner in the dimer. The isolated complexes were found to retain 25-30% of the endogenous quinone acceptor pool, and the distribution of this pool among the complexes suggests a cooperative character for the association of quinones with the protein complexes. In chromatophores, the decrease in the amount of photoreducible quinones when inhibiting a fraction of the centers implies a confinement of the quinone pool over small domains, including one to six reaction centers. We suggest that the crowding of membrane proteins may not be the sole reason for quinone confinement and that a quinone-rich region is formed around the RC.LH1 complexes.  相似文献   

8.
The phospholipid composition of Rhodobacter sphaeroides cells resuspended in various hypertonic solutions has been examined by thin-layer chromatography and ESI mass spectrometry. R. sphaeroides responds to hyperosmotic stress by increasing the amount of cardiolipin in the membranes; this phenomenon occurs in spheroplasts also. Cardiolipin increases quickly and continuously during the time when the cells are resuspended in hypertonic medium. The optimum of stimulation of the neosynthesis of cardiolipin during osmotic stress was found to be at external 1 osm. ESI-MS analyses allowed the identification of two different cardiolipins in R. sphaeroides: the tetravaccenylcardiolipin ([M - H](-), m/z 1456.9) and the trivaccenylmonopalmitoylcardiolipin ([M - H](-), m/z 1430.0).  相似文献   

9.
Single-photon counting techniques were used to measure the fluorescence decay from Rhodopseudomonas sphaeroides and Rhodospirillum rubrum chromatophores after excitation with a 25-ps, 600-nm laser pulse. Electron transfer was blocked beyond the initial radical-pair state (PF) by chemical reduction of the quinone that serves as the next electron acceptor. Under these conditions, the fluorescence decays with multiphasic kinetics and at least three exponential decay components are required to describe the delayed fluorescence. Weak magnetic fields cause a small increase in the decay time of the longest component. The components of the delayed fluorescence are similar to those found previously with isolated reaction centers. We interpret the multi-exponential decay in terms of two small (0.01-0.02 eV) relaxations in the free energy of PF, as suggested previously for reaction centers. From the initial amplitudes of the delayed fluorescence, it is possible to calculate the standard free-energy difference between the earliest resolved form of PF and the excited singlet state of the antenna complexes in R. rubrum strains S1 and G9. The free-energy gap is found to be about 0.10 eV. It also is possible to calculate the standard free-energy difference between PF and the excited singlet state of the reaction center bacteriochlorophyll dimer (P). Values of 0.17 to 0.19 eV were found in both R. rubrum strains and also in Rps. sphaeroides strain 2.4.1. This free-energy gap agrees well with the standard free-energy difference between PF and P determined previously for reaction centers isolated from Rps. sphaeroides strain R26. The temperature dependence of the delayed fluorescence amplitudes between 180 K and 295 K is qualitatively different in isolated reaction centers and chromatophores. However, the temperature dependence of the calculated standard free-energy difference between P* and PF is similar in reaction centers and chromatophores of Rps. sphaeroides. The different temperature dependence of the fluorescence amplitudes in reaction centers and chromatophores arises because the free-energy difference between P* and the excited antenna is dominated by the entropy change associated with delocalization of the excitation in the antenna. We conclude that the state PF is similar in isolated reaction centers and in the intact photosynthetic membrane. Chromatophores from Rps. sphaeroides strain R-26 exhibit an anomalous fluorescence component that could reflect heterogeneity in their antenna.  相似文献   

10.
The separation of membrane fragments was investigated in extracts of phototropically grown Rhodopseudomonas sphaeroides to determine if the plasma membrane contains discrete regions. A highly purified fraction of bacteriochlorophyll alpha-deficient membrane fragments was isolated by differential centrifugation, chromatography on Sepharose 2B, reaggregation, and isopycnic sedimentation on sucrose gradients. Significant levels of b- and c-type cytochromes and succinate dehydrogenase were demonstrated in the isolated membrane fragments and their appearance in electron micrographs, their polypeptide profile in dodecyl sulfate-polyacrylamide gel electrophoresis, and overall chemical composition were essentially identical to a similar fraction isolated from aerobically grown cells. Their polypeptide profiles were distinct from those of the intracytoplasmic chromatophore and outer membranes, and on the basis of bacteriochlorophyll content the phototrophic fraction was contaminated with chromatophores by less than 9%. The membrane fragments contained no diaminopimelic acid or glucosamine. It is condluded that the membrane fragments isolated from phototrophically growing Rp. sphaeroides have arisen from photosynthetic pigment-depleted regions of the plasma membrane structurally and functionally differentiated from the intracytoplasmic chromatophore membrane. These regions represent conserved chemotrophic cytoplasmic membrane whose synthesis continues under photoheterotrophic conditions.  相似文献   

11.
The reaction center-light harvesting complex 1 (RC-LH1) purified from the photosynthetic bacterium Rhodobacter sphaeroides has been studied with respect to the kinetics of charge recombination and to the phospholipid and ubiquinone (UQ) complements tightly associated with it. In the antenna-RC complexes, at 6.5 more than three times smaller than that measured in LH1-deprived RCs. At increasing pH values, for which increases, the deceleration observed in RC-LH1 complexes is reduced, vanishing at pH >11.0. In both systems kinetics are described by a continuous rate distribution, which broadens at pH >9.5, revealing a strong kinetic heterogeneity, more pronounced in the RC-LH1 complex. In the presence of the antenna the Q(A)Q(B)(-) state is stabilized by about 40 meV at 6.511. The phospholipid/RC and UQ/RC ratios have been compared in chromatophore membranes, in RC-LH1 complexes and in the isolated peripheral antenna (LH2). The UQ concentration in the lipid phase of the RC-LH1 complexes is about one order of magnitude larger than the average concentration in chromatophores and in LH2 complexes. Following detergent washing RC-LH1 complexes retain 80-90 phospholipid and 10-15 ubiquinone molecules per monomer. The fractional composition of the lipid domain tightly bound to the RC-LH1 (determined by TLC and (31)P-NMR) differs markedly from that of chromatophores and of the peripheral antenna. The content of cardiolipin, close to 10% weight in chromatophores and LH2 complexes, becomes dominant in the RC-LH1 complexes. We propose that the quinone and cardiolipin confinement observed in core complexes reflects the in vivo heterogeneous distributions of these components. Stabilization of the charge separated state in the RC-LH1 complexes is tentatively ascribed to local electrostatic perturbations due to cardiolipin.  相似文献   

12.
The distribution of the fructose carrier over the membranes of Rhodopseudomonas sphaeroides was studied in cells grown under light saturation and light limitation. Three types of membranes were isolated after disruption of the cells in a French press. All three types were present in the cells grown either under the high or low light intensity, but they were present in different quantities. The cytoplasmic membrane could be separated from the photosynthetic membranes by Sephacryl S-1000 chromatography. The cytoplasmic membrane has the highest specific density and fructose carrier content and does not contain the light-harvesting pigments. The photosynthetic membranes could be resolved into two types by sucrose density gradient centrifugation. Type A predominates when cells are grown under light saturation, whereas type B, the chromatophores, is synthesized abundantly under light limitation. The properties of type A are in between the properties of the cytoplasmic membrane and the chromatophores. It has a slightly lower specific density and contains four times less fructose carrier than the cytoplasmic membrane, but contains half of the light-harvesting bacteriochlorophyll of the chromatophore membrane. The fructose carrier content in the type B membranes, the chromatophores, is very low.  相似文献   

13.
14.
In well-characterised species of the Rhodobacter (Rba.) genus of purple photosynthetic bacteria it is known that the photochemical reaction centre (RC) is intimately-associated with an encircling LH1 antenna pigment protein, and this LH1 antenna is prevented from completely surrounding the RC by a single copy of the PufX protein. In Rba. veldkampii only monomeric RC-LH1 complexes are assembled in the photosynthetic membrane, whereas in Rba. sphaeroides and Rba. blasticus a dimeric form is also assembled in which two RCs are surrounded by an S-shaped LH1 antenna. The present work established that dimeric RC-LH1 complexes can also be isolated from Rba. azotoformans and Rba. changlensis, but not from Rba. capsulatus or Rba. vinaykumarii. The compositions of the monomers and dimers isolated from these four species of Rhodobacter were similar to those of the well-characterised RC-LH1 complexes present in Rba. sphaeroides. Pigment proteins were also isolated from strains of Rba. sphaeroides expressing chimeric RC-LH1 complexes. Replacement of either the Rba. sphaeroides LH1 antenna or PufX with its counterpart from Rba. capsulatus led to a loss of the dimeric form of the RC-LH1 complex, but the monomeric form had a largely unaltered composition, even in strains in which the expression level of LH1 relative to the RC was reduced. The chimeric RC-LH1 complexes were also functional, supporting bacterial growth under photosynthetic conditions. The findings help to tease apart the different functions of PufX in different species of Rhodobacter, and a specific protein structural arrangement that allows PufX to fulfil these three functions is proposed.  相似文献   

15.
Antibodies were raised against the succinate dehydrogenase (SDH) present in the chromatophores of phototrophically grown Rhodopseudomonas sphaeroides. Crossed immunoelectrophoresis experiments indicated that the SDH present in the cytoplasmic membranes of heterotrophically grown R. sphaeroides is probably the same enzyme observed in the chromatophores. The enzyme was extracted by Triton X-100 in a form which consisted of only two subunits (molecular weight, 68,000 and 30,000) and was not associated with a cytochrome b. The antibodies directed against SDH from R. sphaeroides showed no immunocross-reactivity with SDH from phylogenetically related bacterial species, including Rhodopseudomonas capsulata, Paracoccus denitrificans, Rhodopseudomonas palustris, Rhodospirillum rubrum, and Rhodospirillum fulvum.  相似文献   

16.
The influence of metal ion (Cd(2+), Zn(2+), Ni(2+)) binding on the electrogenic phases of proton transfer connected with reduction of quinone Q(B) in chromatophores from Rhodobacter sphaeroides was studied by time-resolved electric potential changes. In the presence of metals, the electrogenic transients associated with proton transfer on first and second flash at pH 8 were found to be slower by factors of 3-6. This is essentially the same effect of metal binding that was observed on optical transients in isolated reaction centers (RC), where the metal ion was shown to inhibit proton transfer [Paddock, M. L., Graige, M. S., Feher, G., and Okamura, M. Y. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 6183-6188]. The effect of metal binding on the kinetics in chromatophores is, therefore, similarly attributed to inhibition of proton uptake, which becomes rate-limiting. A striking observation was an increase in the amplitude of the electrogenic proton-uptake phase after the first flash with bound metal ion. We attribute this to a loss of internal proton rearrangement, requiring that the protons that stabilize Q(B)(-) come from solution. In mutant RCs, in which His-H126 and His-H128 are replaced with Ala, the apparent binding of Cd(2+) and Ni(2+) was decreased, showing that the binding site of these metal ions is the same as found in RC crystals [Axelrod, H. L., Abresch, E. C., Paddock, M. L., Okamura, M. Y., and Feher, G. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 1542-1547]. Therefore, the unique proton entry point near His-H126, His-H128, and Asp-M17 that was identified in isolated RCs is also the entry point in chromatophores.  相似文献   

17.
Chromatophores from Rhodopseudomonas sphaeroides GA were fused with liposomes in order to dilute the components of the cyclic photosynthetic electron-transport chain within the membrane. This dilution led to a decrease in the rate of cytochrome b-561 reduction. The original rates could be restored at potentials around 100 mV (where a large part of the quinone pool is chemically reduced), if ubiquinone was incorporated into the liposomes prior to fusion. Similar dilution effects could be observed in synchronized cultures. The membrane obtained after division contained about twice the amount of phospholipids per reaction center when compared to chromatophores prepared from cells harvested just before division. Chromatophores from synchronized cultures are more uniform with respect to the concentration of the different electron-transport components in the membrane than the membranes from normally grown cells. The kinetic behaviour both of fused chromatophores and of membranes from synchronized cultures are in agreement with a modified Q-cycle model for photosynthetic electron transport in Rps. sphaeroides. The results presented in this paper cannot be explained by postulating the presence of a firmly bound quinone, Qz, in the ubiquinol: cytochrome c2 oxidoreductase, as previously proposed.  相似文献   

18.
The subunit arrangement of the reaction center complex (RC) of Rhodopseudomonas sphaeroides was studied by chemical modification with four different cross-linking reagents using purified RC in lauryldimethylamine oxide, RC incorporated into liposomes, and intact chromatophore membranes, from which RCs are isolated. The RC of R. sphaeroides is composed of three polypeptide subunits, H, M, and L, apparent molecular mass as determined in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, of 28,000, 24,000, and 21,000, respectively. The intra-complex products produced, were found to contain the polypeptides H-M-L, H-M, H-L, and M-L linked together. In addition, the cross-linking of cytochrome c to solubilized and membrane-bound RCs was observed with all four reagents. The products were found to be only a cytochrome c linked to either the M or L polypeptide. These results indicate that a portion of the L and M subunits of the RC must be exposed in situ on the periplasmic surface of the membrane near a binding site for cytochrome c on the RC, and all three subunits must be in close proximity to one another.  相似文献   

19.
Proteoliposomes were reconstituted from detergent-solubilized pigment.protein complexes of chromatophores of Rhodopseudomonas sphaeroides and soybean phospholipids. The reconstituted vesicles showed a photooxidation of reaction center bacteriochlorophyll and a light-induced spectral shift of carotenoid to longer wave-lengths. The red shift similar to that in intact cells or chromatophores, indicates the generation of local fields in the membrane of proteoliposomes. When inside-positive membrane potential was induced by adding valinomycin and potassium salt, a shift of carotenoid spectrum to shorter wavelengths was observed. Therefore, the reconstituted vesicles, at least in the major part of population, produced the light-induced local field in the same direction as in intact cells, which is inside negative. Sidedness of the membrane structure and the direction of electric field formation in reconstituted vesicles were opposite to those in chromatophores (inside-out vesicles.  相似文献   

20.
The shift of the carotenoid absorption spectrum induced by illumination and valinomycin-K+ addition was investigated in membrane structures with different characteristics and opposite sidednesses isolated from Rhodopseudomonas sphaeroides. Right-side-out membrane structures were prepared by isotonic lysozyme-EDTA treatment of the cells (spheroplasts) and by hypotonic treatment of spheroplasts (spheroplast membrane vesicles). Inside-out membrane structures ("chromatophores") were obtained by treating spheroplast membrane vesicles by French press or sonication. The membrane structures with either sidedness showed the same light-induced change of the "red shift" type. However, the absorbance change by K+ addition in the presence of valinomycin in the right-side-out membrane structures were opposite to that in the inverted vesicles, "blue shift" in the former and "red shift" in the latter. The carotenoid absorbance change was linear to membrane potential, calculated from the concentration of KCl added, with a reference on the cytoplasmic side, through positive and negative ranges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号