首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
M Takase  I Miura  A Nakata  T Takeuchi  M Nishioka 《Gene》1992,121(2):359-363
We cloned and sequenced the cDNA encoding tyrosinase (TYN) of the Japanese pond frog, Rana nigromaculata. The 3511-bp cDNA contained a 54-bp 5'-noncoding region, a 1596-bp open reading frame encoding TYN of 532 amino acids (aa), and a 1861-bp 3'-noncoding region. The aa sequence of frog TYN predicted from the cDNA sequence was homologous to that of mouse and human TYNs. The aa sequence including the copper-binding domain, which is likely the active center of TYN, was highly conserved among these three species and Neurospora crassa, Streptomyces antibioticus, and S. glaucescens. The frog TYN also contains possible glycosylation sites and conserved Cys at sites similar to those in the mouse and human TYNs. There are two hydrophobic regions at the N-terminus and near the C-terminus, which are likely the signal (leader) peptide and a transmembrane domain, respectively.  相似文献   

16.
17.
18.
M Vanetti  M Kouba  X Wang  G Vogt  V H?llt 《FEBS letters》1992,311(3):290-294
A mouse somatostatin (SS) receptor cDNA was cloned from neuroblastoma x glioma (NG108-15) cells. The sequence is almost identical to that of the mouse SSTR2 receptor [(1992) Proc. Natl. Acad. Sci. USA 89, 251)] but lacks about 300 nucleotides between transmembrane domain VII and the C-terminus. This spliced variant of SSTR2 (designated SSTR2B) encodes a protein which is 23 residues shorter than that predicted from the SSTR2 sequence, and differs in 15 amino acids at the C-terminus. mRNA corresponding to SSTR2B occurs in mouse tissues in higher abundance than that of SSTR2. SSTR2B binds SS peptides with high affinity when expressed in mammalian cells.  相似文献   

19.
The primary structure of Cu-Zn superoxide dismutase from rabbit liver was investigated. The reduced and S-carboxymethylated enzyme was treated with cyanogen bromide, trypsin or Staphylococcus aureus proteinase V8. The resulting peptides were separated by high-performance liquid chromatography and sequenced by automated Edman degradation. With the exception of the N- and C-terminus the complete sequence was established by means of overlapping peptides. The N-terminus is blocked and thus not susceptible to Edman degradation. The amino-acid composition of the tryptic N-terminal peptide corresponds to that of the cytoplasmatic Cu-Zn superoxide dismutases of other mammals investigated. The chromatographic behaviour of these N-terminal peptides on a reversed phase C18 column is also identical, thus suggesting also for the rabbit Cu-Zn superoxide dismutase the N-terminal sequence Ac-Ala-Thr-Lys. The C-terminus was demonstrated to have the sequence -Ile-Ala-Pro by enzymatic degradation with carboxypeptidase Y. The complete amino-acid sequence of the rabbit Cu-Zn superoxide dismutase consists of 152 amino-acids and shows the expected homology to other Cu-Zn enzymes published so far. The aspartate and six histidine residues known to complex the metal ions are conserved at homologous positions. This also applies for the arginine residue near the C-terminus which is supposed to direct the anionic superoxide radical towards the active centre of the enzyme. The amino acid sequence of the rabbit Cu-Zn superoxide dismutase corresponds to those of other mammals in more than 80% of its amino-acid residues. From a total of 152 amino-acid residues the rabbit shares with rat 128, with mouse 130, with horse 127, with pig 126/127, with cattle 130 and with man 131 amino acids in homologous positions. However the Cu-Zn superoxide dismutases of closely related mammals like rats and mice differ in only five amino acid residues of their sequence. A phylogenetic closer relatedness between lagomorphs and rodents than between other orders of mammals, could not be derived from the sequence data given. Rather rodents and lagomorphs are to be considered as two evolutionary independent orders of mammals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号