首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we investigated the formation of radiation-induced foci in normal human fibroblasts exposed to X rays or 130 keV/mum nitrogen ions using antibodies to phosphorylated protein kinase ataxia telangiectasia mutated (ATMp) and histone H2AX (gamma-H2AX). High-content automatic image analysis was used to quantify the immunofluorescence of radiation-induced foci. The size of radiation-induced foci increased for both proteins over a 2-h period after nitrogen-ion irradiation, while the size of radiation-induced foci did not change after exposure to low-LET radiation. The number of radiation-induced ATMp foci showed a more rapid rise and greater frequency after X-ray exposure and was resolved more rapidly such that the frequency of radiation-induced foci decreased by 90% compared to 60% after exposure to high-LET radiation 2 h after 30 cGy. In contrast, the kinetics of radiation-induced gamma-H2AX focus formation was similar for high- and low-LET radiation in that it reached a plateau early and remained constant for up to 2 h. High-resolution 3D images of radiation-induced gamma-H2AX foci and dosimetry computation suggest that multiple double-strand breaks from nitrogen ions are encompassed within large nuclear domains of 4.4 Mbp. Our work shows that the size and frequency of radiation-induced foci vary as a function of radiation quality, dose, time and protein target. Thus, even though double-strand breaks and radiation-induced foci are correlated, the dynamic nature of both contradicts their accepted equivalence for low doses of different radiation qualities.  相似文献   

2.
次黄嘌呤-鸟嘌呤磷酸核糖基转移酶( hypoxanthine guanine phosphoribosyltransferase,HGPRT )的功能缺失与痛风、肾结石和雷纳综合症(Lesch-Nyhan Syndrome)等疾病相关.制作HGPRT基因表达降低的模式动物,将有利于人们对这种疾病的发病机理和治疗做进一步的研究.构建了针对HGPRT基因表达的shRNA干扰载体,并将质粒转染兔成纤维细胞,获得携带该干扰片段的转基因细胞系,经PCR鉴定转基因成纤维细胞克隆阳性率为83.3%.RT-PCR及Western blot检测结果表明转基因干扰成纤维细胞系HGPRT mRNA和蛋白质表达量明显降低.最后,以转基因成纤维细胞进行核移植,囊胚率为27.8%,与正常来源的成纤维细胞囊胚率相比较差异不显著.说明,通过RNAi可稳定干扰兔成纤维细胞HGPRT基因的表达,为进一步通过核移植技术建立HGPRT RNAi转基因兔模型创造条件.  相似文献   

3.
Although chromosome aberrations are known to derive from distance-dependent mis-rejoining of chromosome fragments, evaluating whether a certain model describes such “proximity effects” better than another one is complicated by the fact that different approaches have often been tested under different conditions. Herein, a biophysical model (“BIANCA”, i.e. BIophysical ANalysis of Cell death and chromosome Aberrations) was upgraded, implementing explicit chromosome-arm domains and two new models for the dependence of the rejoining probability on the fragment initial distance, r. Such probability was described either by an exponential function like exp(−r/r0), or by a Gaussian function like exp(−r2/2σ2), where r0 and σ were adjustable parameters. The second, and last, parameters was the yield of “Cluster Lesions” (CL), where “Cluster Lesion” defines a critical DNA damage producing two independent chromosome fragments. The model was applied to low-LET-irradiated lymphocytes (doses: 1–4 Gy) and fibroblasts (1–6.1 Gy). Good agreement with experimental yields of dicentrics and centric rings, and thus their ratio (“F-ratio”), was found by both the exponential model (with r0 = 0.8 μm for lymphocytes and 0.7 μm for fibroblasts) and the Gaussian model (with σ = 1.1 μm for lymphocytes and 1.3 μm for fibroblasts). While the former also allowed reproducing dose-responses for excess acentric fragments, the latter substantially underestimated the experimental curves. Both models provided G-ratios (ratio of acentric to centric rings) higher than those expected from randomness, although the values calculated by the Gaussian model were lower than those calculated by the exponential one. For lymphocytes the calculated G-ratios were in good agreement with the experimental ones, whereas for fibroblasts both models substantially underestimated the experimental results, which deserves further investigation. This work suggested that, although both models performed better than a step model (which previously allowed reproducing the F-ratio but underestimated the G-ratio), an exponential function describes proximity effects better than a Gaussian one.  相似文献   

4.
5.
Human pluripotent stem cells (hPSCs) represent heterogeneous populations, including induced pluripotent stem cells (iPSCs), endogenous plastic somatic cells, and embryonic stem cells (ESCs). Human ESCs are derived from the inner cell mass of the blastocyst, and they are characterized by the abilities to self-renew indefinitely, and to give rise to all cell types of embryonic lineage (pluripotency) under the guidance of the appropriate chemical, mechanical and environmental cues. The combination of these critical features is unique to hESCs, and set them apart from other human cells. The expectations are high to utilize hESCs for treating injuries and degenerative diseases; for modeling of complex illnesses and development; for screening and testing of pharmacological products; and for examining toxicity, mutagenicity, teratogenicity, and potential carcinogenic effects of a variety of environmental factors, including ionizing radiation (IR). Exposures to genotoxic stresses, such as background IR, are unavoidable; moreover, IR is widely used in diagnostic and therapeutic procedures in medicine on a routine basis. One of the key outcomes of cell exposures to IR is the change in gene expression, which may underlie the ultimate hESCs fate after such a stress. However, gaps in our knowledge about basic biology of hESCs impose a serious limitation to fully realize the potential of hESCs in practice. The purpose of this review is to examine the available evidence of alterations in gene expression in human pluripotent stem cells after genotoxic stress, and to discuss strategies for future research in this important area.  相似文献   

6.
The regulatory role of small non-coding RNAs that are 20–24 nucleotides in length has become the foremost area of research for biologists. A major class of small RNAs represented by the microRNAs (miRNAs), has been implicated in various aspects of plant development including leaf pattering, meristem function, root patterning etc. Recent findings support that miRNAs are regulated by drought and other abiotic stresses in various plant species. In this study, were report the expression profiling of 8 known abiotic stress deregulated miRNAs in 11 elite sorghum genotypes, under watered and drought conditions. Significant deregulation was observed with miR396, miR393, miR397-5p, miR166, miR167 and miR168. Among these, the expression levels of sbi-miR396 and sbi-miR398 were the highest in all the genotypes. The expression of sbi-miR396 was maximum in the grain sorghum HSD3226 under well-watered conditions and the profile shifted towards HSD3221 under drought stress. Forage accessions, N98 and Atlas, showed an opposite behavior in expression patterns of miR397-5p in drought physiologies. Such dynamic expression patterns could be indicative of prevailing drought tolerant mechanisms present in these sorghum accessions. This data provides insights into sorghum miRNAs which may have potential use in improving drought tolerance in sorghum and other cereal crops.  相似文献   

7.
8.
The resistance of Euglena (E.) gracilis to ionizing radiation was investigated using seven kinds of ion beams each with different energy characteristics. The minimum effective dose of the most lethal ion beams was 40 Gy. Given its substantially high resistance to heavy ion beams, E. gracilis possesses great potential in acting as an effective support system to produce food and regenerate oxygen in a space station. The lethal effect of ionizing radiation was dependent on the linear energy transfer value of the heavy ion beams, and reached a maximum at 196 keV/micron. This value was different from those obtained by previous irradiation experiments using mammalian and plant cells, suggesting that the radiation response of E. gracilis is distinct from that of mammalian and plant cells.  相似文献   

9.
Misrejoining of DNA double-strand breaks (DSBs) was measured in human primary fibroblasts after exposure to X rays and high-LET particles (helium, nitrogen and iron) in the dose range 10-80 Gy. To measure joining of wrong DNA ends, the integrity of a 3.2-Mbp restriction fragment was analyzed directly after exposure and after 16 h of repair incubation. It was found that the misrejoining frequency for X rays was nonlinearly related to dose, with less probability of misrejoining at low doses than at high doses. The dose dependence for the high-LET particles, on the other hand, was closer to being linear, with misrejoining frequencies higher than for X rays, particularly at the lower doses. These experimental results were simulated with a Monte Carlo approach that includes a cell nucleus model with all 46 chromosomes present, combined with realistic track structure simulations to calculate the geometrical positions of all DSBs induced for each dose. The model assumes that the main determinant for misrejoining probability is the distance between two simultaneously present DSBs. With a Gaussian interaction probability function with distance, it was found that the data for both low- and high-LET radiation could be fitted with an interaction distance (sigma of the Gaussian curve) of 0.25 microm. This is half the distance previously found to best fit chromosomal aberration data in human lymphocytes using the same methods (Holley et al., Radiat. Res. 158, 568-580, 2002). The discrepancy may indicate inadequacies in the chromosome model, for example insufficient chromosomal overlap, but may also be partly due to differences between fibroblasts and lymphocytes.  相似文献   

10.
11.
Tissue ablation by ultraviolet excimer lasers results in exposure of viable cells to subablative doses of radiation. To understand the potential biological consequences better, we have studied changes in gene expression in cultured human skin fibroblasts exposed to either 193- or 248-nm laser light. Northern blot analyses revealed that both treatments up-regulate a common set of genes, including interstitial collagenase, tissue inhibitor of metalloprotease, metallothionein, and the proto-oncogene c-fos. Dose-response and kinetic studies of collagenase induction by 193-nm radiation showed a maximal effect with 60 J/m2 and at approximately 24 h. The induction was still persistent 96 h later. In addition to the commonly affected genes, known to be activated also by conventional UV light (254 nm) and tumor-promoting phorbol esters, other genes were found to be selectively induced by the 193-nm radiation. The heat-shock hsp70 mRNA, undetectable in controls and in cultures irradiated at 248 nm, was transiently induced 8 h after exposure to 193-nm radiation. Furthermore, a selective up-regulation of collagen type I expression was observed. The results indicate that the 193- and 248-nm radiations by excimer lasers elicit specific and different cellular responses, in addition to an overlapping pathway of gene activation common also to UV radiation by germicidal lamps. The laser-induced genes could serve as molecular markers in evaluating cell injury in situ.  相似文献   

12.
13.
14.
Ultraviolet (UV) irradiation regulates UV-responsive genes, including matrix metalloproteinases (MMPs). Moreover, UV-induced MMPs cause connective tissue damage and the skin to become wrinkled and aged. Here, we investigated the effect of eicosapentaenoic acid (EPA), a dietary omega-3 fatty acid, on UV-induced MMP-1 expression in human dermal fibroblasts (HDFs). We found that UV radiation increases MMP-1 expression and that this is mediated by p44 and p42 MAP kinase (ERK) and Jun-N-terminal kinase (JNK) activation but not by p38 activation. Pretreatment of HDFs with EPA inhibited UV-induced MMP-1 expression in a dose-dependent manner and also inhibited the UV-induced activation of ERK and JNK by inhibiting ERK kinase (MEK1) and SAPK/ERK kinase 1 (SEK1) activation, respectively. Moreover, inhibition of ERK and JNK by EPA resulted in the decrease of c-Fos expression and c-Jun phosphorylation/expression induced by UV, respectively, which led to the inhibition of UV-induced activator protein-1 DNA binding activity. This inhibitory effect of EPA on MMP-1 was not mediated by an antioxidant effect. We also found that EPA inhibited 12-O-tetradecanoylphorbol-13-acetate- or tumor necrosis factor-alpha-induced MMP-1 expression in HDFs and UV-induced MMP-1 expression in HaCaT cells. In conclusion, our results demonstrate that EPA can inhibit UV-induced MMP-1 expression by inhibiting the MEK1/ERK/c-Fos and SEK1/JNK/c-Jun pathways. Therefore, EPA is a potential agent for the prevention and treatment of skin aging.  相似文献   

15.
16.
Primary cells respond to irradiation by activation of the DNA damage response and cell cycle arrest, which eventually leads to senescence or apoptosis. It is not clear in detail which signaling pathways or networks regulate the induction of either apoptosis or senescence. Primary human fibroblasts are able to withstand high doses of irradiation and to prevent irradiation-induced apoptosis. However, the underlying regulatory basis for this phenotype is not well understood. Here, a kinetic network analysis based on reverse phase protein arrays (RPPAs) in combination with extensive western blot and cell culture analyses was employed to decipher the cytoplasmic and nuclear signaling networks and to identify possible antiapoptotic pathways. This analysis identified activation of known DNA damage response pathways (e.g., phosphorylation of MKK3/6, p38, MK2, Hsp27, p53 and Chk1) as well as of prosurvival (e.g., MEK-ERK, cAMP response element-binding protein (CREB), protein kinase C (PKC)) and antiapoptotic markers (e.g., Bad, Bcl-2). Interestingly, PKC family members were activated early upon irradiation, suggesting a regulatory function in the ionizing radiation (IR) response of these cells. Inhibition or downregulation of PKC in primary human fibroblasts caused IR-dependent downregulation of the identified prosurvival (CREB phosphorylation) and antiapoptotic (Bad phosphorylation, Bcl-2) markers and thus lead to a proliferation stop and to apoptosis. Taken together, our analysis suggests that cytoplasmic PKC signaling conditions IR-stressed MRC-5 and IMR-90 cells to prevent irradiation-induced apoptosis. These findings contribute to the understanding of the cellular and nuclear IR response and may thus eventually improve the efficacy of radiotherapy and help overcome tumor radioresistance.  相似文献   

17.
Chromatin conformation changes in the normal human fibroblasts VH-10 were studied by the method of anomalous viscosity time dependence (AVTD). Gamma-irradiation of cells in a dose range of 0.1–3 Gy caused an increase in maximal viscosity of cell lysates. Conversely, irradiation of cells with low doses of 0.5 or 2 cGy resulted in a decrease in the AVTD peaks with a maximum effect approximately 40 min after irradiation. The same exposure conditions were used to study a possible adaptive effect of low doses, measured by changes in cell survival. A primary dose of 2 cGy caused significant modification of cell response to a challenge dose. Approximately 20% protection to challenge doses of 0.5 Gy (p < 0.003), 2 Gy (p < 0.02) and 2.5 Gy (p < 0.002) was observed. However, the direction of this effect (adaptation or synergism) was found to be dependent on a challenge dose. The combined effect of 2 cGy and 1 Gy was significantly synergistic, while no modification was observed for 1.5 Gy and 3 Gy. A partial correlation was found between the AVTD changes and cell survival when the combined effect of a primary dose of 2 cGy and challenge dose was examined. The dose of 2 cGy alone increased survival by 16% (p < 0.0003). These results suggest that the low-dose induced effects on survival may be related to chromatin reorganization.  相似文献   

18.
Purpose: Circulating microRNAs (miRNAs) prove to be promising diagnostic biomarkers for various cancers, including endometrial cancer (EC). The present study aims to identify serum microRNAs that can serve as potential biomarkers for EC diagnosis.Patients and methods: A total of 92 EC and 102 normal control (NC) serum samples were analyzed using quantitative real-time polymerase chain reaction (qRT-PCR) in this four-phase experiment. The logistic regression method was used to construct a diagnostic model based on the differentially expressed miRNAs in serum. The receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic value. To further validate the diagnostic capacity of the identified signature, the 6-miRNA marker was compared with previously reported biomarkers and verified in three public datasets. In addition, the expression characteristics of the identified miRNAs were further explored in tissue and serum exosomes samples.Results: Six miRNAs (miR-143-3p, miR-195-5p, miR-20b-5p, miR-204-5p, miR-423-3p, and miR-484) were significantly overexpressed in the serum of EC compared with NCs. Areas under the ROC of the 6-miRNA signatures were 0.748, 0.833, and 0.967 for the training, testing, and the external validation phases, respectively. The identified signature has a very stable diagnostic performance in the large cohorts of three public datasets. Compared with previously identified miRNA biomarkers, the 6-miRNA signature in the present study has superior performance in diagnosing EC. Moreover, the expression of miR-143-3p and miR-195-5p in tissues and the expression of miR-20b-5p in serum exosomes were consistent with those in serum.Conclusions: We established a 6-miRNA signature in serum and they could function as potential non-invasive biomarker for EC diagnosis.  相似文献   

19.
Responses to human cytomegalovirus (HCMV) infection are largely individual and cell type specific. We investigated molecular profiles in 2 primary cell cultures of human fibroblasts, which are highly or marginally sensitive to HCMV infection, respectively. We screened expression of genes and microRNAs (miRs) at the early (3 hours) stage of infection. To assess molecular pathway activation profiles, we applied bioinformatic algorithms OncoFinder and MiRImpact. In both cell types, pathway regulation properties at mRNA and miR levels were markedly different. Surprisingly, in the infected highly sensitive cells, we observed a “freeze” of miR expression profiles compared to uninfected controls. Our results evidence that in the sensitive cells, HCMV blocks intracellular regulation of microRNA expression already at the earliest stage of infection. These data suggest somewhat new functions for HCMV products and demonstrate dependence of miR expression arrest on the host-encoded factors.  相似文献   

20.
The mechanism(s) by which zinc is transported into cells has not been identified. Since zinc uptake is inhibited by reducing the temperature, zinc uptake may depend on the movement of plasma membrane micoenvironments, such as endocytosis or potocytosis. We investigated the potential role of potocytosis in cellular zinc uptake by incubating normal and acrodermatitis enteropathica fibroblasts with nystatin, a sterol-binding drug previously shown to inhibit potocytosis. Zinc uptake was determined during initial rates of uptake (10 min) following incubation of the fibroblasts in 50 μg nystatin/mL or 0.1% dimethyl-sulfoxide for 10 min at 37°C. The cells were then incubated with 1 to 30 μM 65zinc. Michaelis-Menten kinetics were observed for zinc uptake. Nystatin inhibited zinc uptake in both the normal and AE fibroblasts. Reduced cellular uptake of zinc was associated with its internalization, not its external binding. In normal fibroblasts, nystatin significantly reduced theK m 56% and theV max 69%. In the AE fibroblasts, nystatin treatment significantly reduced theV max 59%, but did not significantly affect theK m. The AE mutation alone affected theV max for cellular zinc uptake. The control AE fibroblasts exhibited a 40% reduction inV max compared to control normal fibroblasts. We conclude that nystatin exerts its effect on zinc uptake by reducing the velocity at which zinc traverses the cell membrane, possibly through potocytosis. Furthermore, the AE mutation also effects zinc transport by reducing zinc transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号