首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Plant diversity is threatened in many agricultural landscapes. Our understanding of patterns of plant diversity in these landscapes is mainly based on small‐scale (<1000 m2) observations of species richness. However, such observations are insufficient for detecting the spatial heterogeneity of vegetation composition. In a case‐study farm on the North‐West Slopes of New South Wales, Australia, we observed species richness at four scales (quadrat, patch, land use and landscape) across five land uses (grazed and ungrazed woodlands, native pastures, roadsides and crops). We applied two landscape ecological models to assess the contribution of these land uses to landscape species richness: (i) additive partitioning of diversity at multiple spatial scales, and (ii) a measure of habitat specificity – the effective number of species that a patch contributes to landscape species richness. Native pastures had less variation between patches than grazed and ungrazed woodlands, and hence were less species‐rich at the landscape scale, despite having similar richness to woodlands at the quadrat and patch scale. Habitat specificity was significantly higher for ungrazed woodland patches than all other land uses. Our results showed that in this landscape, ungrazed woodland patches had a higher contribution than the grazed land uses to landscape species richness. These results have implications for the conservation management of this landscape, and highlighted the need for greater consensus on the influence of different land uses on landscape patterns of plant diversity.  相似文献   

2.
Aims: The upper elevation limit of forest vegetation in mountain ranges (the alpine treeline ecotone) is expected to be highly sensitive to global change. Treeline shifts and/or ecotone afforestation could cause fragmentation and loss of alpine habitat, and are expected to trigger considerable alterations in alpine vegetation. We performed an analysis of vegetation structure at the treeline ecotone to evaluate whether distribution of the tree population determines the spatial pattern of vegetation (species composition and diversity) across the transition from subalpine forest to alpine vegetation. Location: Iberian eastern range of the Pyrenees. Methods: We studied 12 alpine Pinus uncinata treeline ecotones. Rectangular plots ranging from 940 to 1900 m2 were placed along the forest‐alpine vegetation transition, from closed forest to the treeless alpine area. To determine community structure and species distribution in the treeline ecotone, species variation along the forest‐alpine vegetation transition was sampled using relevés of 0.5 m2 set every 2 m along the length of each plot. Fuzzy C‐means clustering was performed to assess the transitional status of the relevés in terms of species composition. The relation of P. uncinata canopy cover to spatial pattern of vegetation was evaluated using continuous wavelet transform analysis. Results: Vegetation analyses revealed a large degree of uniformity of the subalpine forest between all treeline ecotone areas studied. In contrast, the vegetation mosaic found upslope displayed great variation between sites and was characterized by abrupt changes in plant community across the treeline ecotone. Plant richness and diversity significantly increased across the ecotone, but tree cover and diversity boundaries were not spatially coincident. Conclusions: Our results revealed that no intermediate communities, in terms of species composition, are present in the treeline ecotone. Ecotone vegetation reflected both bedrock type and fine‐scale heterogeneity at ground level, thereby reinforcing the importance of microenvironmental conditions for alpine community composition. Tree cover did not appear to be the principal driver of alpine community changes across the treeline ecotone. Microenvironmental heterogeneity, together with effects of past climatic and land‐use changes on ecotone vegetation, may weaken the expected correlation between species distribution and vegetation structure.  相似文献   

3.
We investigated the influence of management and micro-scale landform on the species composition and richness of ground flora in secondary woodlands and their verges next to paddy fields in the Tama Hills, Tokyo, Japan. Sites representing various micro-scale landforms and different management regimes were sampled. The results of Detrended Correspondence Analysis and Indicator Species Analysis showed that there was no significant difference between management regimes on species composition in head hollow sites. However, species composition was unique in other landform types having the same management regimes. Micro-scale landform units had less effect on species composition than management regime on crest slopes and side slopes of secondary woodlands. A large variation in species composition of verges, all on the lowermost side slopes, was found within sites, but the composition was different when compared with other sites. We recognized five habitat types associated with species composition that resulted from the combined effects of landform and management regimes. Among habitat types, the verges and the well-managed woodlands had high species richness. Management practices within woodlands have enhanced the species richness on crest slopes and side slopes. High beta diversity of ground flora could be due to the variation in micro-scale landform along soil moisture regimes. Intensive management involving clear-cutting on the lower side slopes (an ecotone of mesic and wet environments) accompanied by paddy cultivation on valley bottoms enhanced the diversity of herbaceous vegetation in the verges.  相似文献   

4.
地带性森林群落物种多样性的比较研究   总被引:58,自引:0,他引:58  
在群落调查以及文献收集的基础上,对暖温带地区、暖温带和亚热带过渡地区、亚热带地区以及热带地区的典型地带笥植被不同群落类型群落多样性进行了分析和研究。结果发现这4类地区物种多样性的变化具有一定的规律性,具体表现在热带地区群落乔木层的物种丰富度和多样性为最高,然后依次是亚热带地区、秦蛉地区和东灵山地区;灌木层的物种丰富度和多样性则以亚热带地区为最高,其次是秦岭地区,热带地区的则仍高于东灵山地区;灌木层  相似文献   

5.
The Farm Woodland Scheme, which provided incentives to convert agricultural land to timber production, contained an implicit assumption that farm woodlands produce important benefits for wildlife. The moth fauna of 18 farm woodlands in the Vale of York was surveyed between May and November 1991. The aims were twofold. The first was to determine if there were benefits for moth species diversity. The second was to ascertain whether concepts of island biogeography and the plant species richness of the woods were related to the moth species composition.Eleven families, 214 species and over 16 000 individuals of moths were recorded. Classification of the species presence/absence matrix indicated that small woods (less than 1ha) did not have characteristic woodland moth communities. Woods larger than 5ha were judged to be more valuable for the long-term conservation of woodland moth diversity. The best predictor of moth species richness was the herbaceous plant species richness within woodlands. Species richness of the family Geometridae was positively related to woodland area, as well as to woodland shape (compact shapes being preferable to elongated shapes). Characteristic woodland species are influenced by isolation (less isolated woods being richer in species). The implications of different powers of dispersal between moth families are discussed. Farm woodlands will be of more value for the conservation of the Macrolepidoptera if they are large, compact and incorporate remnants of existing woodland with extant herbaceous vegetation. These should be factors which are taken into consideration when providing incentives to establish and manage farm woodlands.  相似文献   

6.
The abandonment of traditional forest management and the conversion of lowland woodlands from coppices to high forests may lead to a reduction in plant diversity. We studied long-term changes in semi-natural lowland woodland vegetation in the Czech Republic (Central Europe) by resampling 29 vegetation plots (relevés) first sampled in the 1950s. The results indicated a shift to shady plant communities (i.e. loss of heliophilous species and expansion of shade-tolerant species), caused by an increase in the tree and shrub layer canopy due to the expansion of deciduous tree species. At the same time, species richness (alpha diversity) had declined significantly, though we noted no signs of homogenisation in the vegetation cover. Species typical of nutrient-rich habitats and alien and/or invasive species had expanded. We confirmed the shift in vegetation composition, which was probably caused by changes in lowland woodland forest management (decline in coppicing), eutrophication (deposition of atmospheric nitrogen, agricultural runoff) and disturbance effects of game, especially wild boar (Sus scrofa).  相似文献   

7.
Urban expansion threatens global biodiversity through the destruction of natural and semi-natural habitats and increased levels of disturbance. Whilst woodlands in urban areas may reduce the impact of urbanisation on biodiversity, they are often subject to under or over-management and consist of small, fragmented patches which may be isolated. Effective management strategies for urban woodland require an understanding of the ecology and habitat requirements of all relevant taxa. Yet, little is known of how invertebrate, and in particular moth, assemblages utilise urban woodland despite being commonly found within the urban landscape. Here we show that the abundance, species richness, and species diversity of moth assemblages found within urban woodlands are determined by woodland vegetation character, patch configuration and the surrounding landscape. In general, mature broadleaved woodlands supported the highest abundance and diversity of moths. Large compact woodlands with proportionally less edge exposed to the surrounding matrix were associated with higher moth abundance than small complex woodlands. Woodland vegetation characteristics were more important than the surrounding landscape, suggesting that management at a local scale to ensure provision of good quality habitat may be relatively more important for moth populations than improving habitat connectivity across the urban matrix. Our results show that the planting of broadleaved woodlands, retaining mature trees and minimising woodland fragmentation will be beneficial for moth assemblages.  相似文献   

8.
Aim Ants (Hymenoptera/Formicidae) have strong influences on ecosystems especially in arid regions. However, little is known about ants of the vast steppe and desert regions of Central Asia. Here we provide the first comprehensive study of ant communities in Mongolia, conducted along a north‐to‐south gradient in climate. We examined ants’ distribution patterns, assessed the impact of climatic parameters on community structure and species diversity and investigated the influence of the corresponding communities of plants. Location Mongolia (Central Asia). Methods We observed 31,956 ants at seed baits at 11 study sites along a transect from steppe to Gobi desert for which we attained meteorological data (mean yearly precipitation: 197 to 84 mm). Extra sampling was conducted at sugar and protein baits and by the inspection of different microhabitats. Vegetation patterns of each plot were recorded. Statistical evaluation comprised ordination and correlation. Results We observed 15 species of ants at seed baits. Three faunal complexes of ants could be distinguished by detrended correspondence analysis (DCA): (1) in steppe baits were dominated by Formica‐ and Myrmica‐species, (2) in semi desert we found mostly species of Tetramorium, Myrmica, Proformica, Plagiolepis, and Leptothorax, and (3) in desert Cataglyphis aenescens and Messor aciculatus dominated, and Lasius was exclusively found there. Another 11 rare ant species were sampled by hand and at sugar baits. Altogether five ant species were new to the Mongolian fauna: Cardiocondyla koshewnikovi, Myrmica koreana, Myrmica pisarskii, Polyergus nigerrimus, and Proformica kaszabi. Assignment of taxa to functional groups showed that in steppe cold climate specialists dominated, in semi desert we found mainly opportunists, and in desert hot climate specialists. Several functional groups know from arid zones in other parts of the world were missing. In desert certain species were highly dominant. First DCA scores of ant‐ and plant‐communities were highly correlated with each other and with climatic parameters. While plant species diversity was positively correlated with increasing northern latitude, ant diversity and ant species richness were not correlated with latitude and responded neither to precipitation, nor to any other climatic parameter. Semi desert was a transition zone between steppe and desert, with high species richness. Ant genus composition of the ecotone overlapped with both other regions. However, beta diversity between pairs of plots within this zone was low, indicating a small‐scale mosaic pattern. Main conclusions The ant communities in the Mongolian steppe and desert zones were strongly influenced by low temperatures and differed in many aspects from the ant fauna in other arid ecosystems, especially in terms of species richness, diversity of feeding guilds, and richness of functional groups.  相似文献   

9.
Abstract. The vegetation of the woodland‐steppe transition in southeastern Inner Mongolia, where the East Asian monsoon climate reaches its northwestern edge, is described and analysed in this paper. The communities are classified in a phytocoenological way. 12 major types of woodland, shrubland, meadow, fen, open woodland and steppe are differentiated and described on the basis of 133 phytosociological relevés. Detrended Correspondence Analysis shows that precipitation plays a crucial role in the distribution of grassland communities while woodland and shrubland communities are controlled by both warmth and humidity conditions. Four vegetation zones can be distinguished. From the woodland to the woodland‐grassland zone, the temperature decreases and the precipitation increases with increasing altitude, which leads to the conditions suitable for the meadow and fen communities. In the direction of the woodland‐steppe zone the temperature increases while the precipitation decreases with the gradual lowering of the altitude; the steppe communities form a matrix while the woodlands have a patchy distribution. From the woodland‐steppe to the steppe zone, the precipitation rather than temperature decreases; as a result the woodland communities disappear gradually. On a local scale, geomorphologic conditions determine the vegetation pattern of the study area. Due to the existence of a sandy substrate different woodland types occur together in the woodland‐steppe transition. The local distribution of woodland and steppe communities is dependent on slope conditions. In addition, human disturbance has also influenced the composition of plant communities.  相似文献   

10.
11.
We examined the relationships between the diversities of vegetation, adult nectar plants, and butterflies in and around the Aokigahara primary woodland on the northwestern footslopes of Mount Fuji, central Japan. The results showed that the nectar resource utilization by adult butterflies was significantly biased to herbaceous plants, especially to perennials, compared to woody species, although most of the study area was in and near a primary woodland. There were greater nectar plant species in sites with greater plant species richness. Among the butterfly community indices analyzed, the strongest correlation was detected between butterfly species richness and nectar plant species richness at each site. Another close correlation was detected between the species richness of nectar plants and herbaceous plants at each site. These results suggest that herbaceous plant species richness in a habitat plays a central role in its nectar plant species richness, and the nectar plant richness is a highly important factor supporting its adult butterfly species richness. Consequently, we propose that the maintenance and management of herbaceous plant species richness in a butterfly habitat, which lead to those of its nectar plant species richness, are very important for conservation of butterfly diversity even in and around woodland landscapes of temperate regions.  相似文献   

12.
Human population growth drives intrusion and progressive conversion of natural habitats for agriculture. We evaluated human impacts on bat species diversity and distribution among four vegetation types in and around Lake Bogoria National Reserve between November 2012 and July 2013. Plants were surveyed using the Braun–Blanquet cover/abundance method, whereas bats were sampled using standard mist nets erected on poles at ground level. Floristic similarity analysis revealed three broad vegetation assemblages, namely riverine vegetation, farmland and Acacia woodland/Acacia–Commiphora woodland. Two hundred and 33 bats representing eleven species in eleven genera and seven families were recorded. These were Epomophorus minimus, Rhinolophus landeri, Hipposideros caffer, Cardioderma cor, Lavia frons, Nycteris hispida, Chaerephon pumilus, Mops condylurus, Neoromicia capensis, Scotoecus hirundo and Scotophilus dinganii. Species richness estimators indicated that sampling for bats at ground level was exhaustive. Bat species richness and diversity were highest in the more structurally complex Acacia woodland compared to more homogenous farmlands where we recorded only common and generalist species that often occur in open habitats. The higher bat species richness and diversity in the Acacia woodland as compared to farmland underscore the importance of remnant natural savannah woodlands in the conservation of bats and other elements of biodiversity .  相似文献   

13.
Abstract. Several properties have been suggested to be characteristic of ecotones, but their prevalence has rarely been tested. We sampled five ecotones to seek evidence on seven generalizations that are commonly made about ecotones: vegetational sharpness, physiognomic change, occurrence of a spatial community mosaic, many exotic species, ecotonal species, spatial mass effect, and species richness higher or lower than either side of the ecotone. The ecotones were in a sequence from scattered mangroves, through salt marsh, rush‐marsh, scrub, woodland, to pasture. We developed a method to objectively define, by rapid vegetational change, the position and depth of an ecotone, identifying five ecotones. Their positions were consistent across three sampling schemes and two spatial grain sizes. One ecotone is a switch ecotone, produced by positive feedback between community and environment. Another is anthropogenic, due to clearing for agriculture. Two others are probably environmental in cause, and one may be largely a relict environmental ecotone. Sharp changes in species composition occurred. Three ecotones were associated with a change in plant physiognomy. In two, the ecotone was located just outside a woodland canopy, in the zone influenced by the canopy. Community mosaicity was evident at only one ecotone. There were few strictly ecotonal species; many species occurred more frequently within ecotones than in adjacent vegetation, but there were never significantly more ecotonal species than expected at random. There was little evidence for the spatial mass effect reducing ecotonal sharpness, or leading to higher species richness within ecotones. Species richness was higher than in the adjacent habitat in only one ecotone. It seems that supposedly characteristic ecotone features depend on the particular ecological situation, and the ecology of the species present, rather than being intrinsic properties of ecotones.  相似文献   

14.
Originated from various vegetation types, psammophytic woodlands on sandy dunes of the steppe zone in Inner Mongolia are rather diverse. The commonest types are woodlands with Pinus sylvestris var. mongolica, P. tabulaeformis, Picea meyeri, Juniperus rigida, Populus davidiana, and Betula platyphylla. In Daqinggou of Horqin sandy land, a mixed broad-leaved woodland consists of Quercus, Acer, Fraxinus, Juglans, Chosenia, Populus, and Ulmus. Palaeoecological evidence demonstrates that these woodland stands are Middle Holocene remnants. The plant communities of psammophytic woodlands are simplified in floristic composition and structure. The relict woodland stands play an important role in the conservation and restoration of vegetation in Inner Mongolia. Only three nature reserves of relict woodland types in Inner Mongolia have been established. Based on this study, an additional reserve is suggested to conserve the complex of psammophytic woodlands.  相似文献   

15.
The increasing rate of urban sprawl continues to fragment European landscapes threatening the persistence of native woodland plant communities. The dynamics of woodland edges depend on the characteristics of woodland patches and also on landscape context. Our aim was to assess the extent of edge influences on the understorey vegetation of small native woodlands in rural and urban landscapes. The study was carried out in two cities of north-western France. Ten comparable woodlands, each of about 1.5 ha, were surveyed; five were situated adjacent to crops and five adjacent to built-up land. Vascular plant species were recorded in 420 3 × 3 m plots placed at seven different distances from the edge (from 0 to about 45 m from the edge). Soil pH, light levels, level of disturbance and tree and shrub cover were also recorded. Plant species were first classified as non-indigenous or indigenous and then three groups of indigenous species were distinguished according to their affinity for forest habitat (forest specialists, forest generalists and non-forest species). We inferred certain ecological characteristics of understorey vegetation by using Ellenberg values. An inter-class correspondence analysis was carried out to detect patterns of variation in plant community composition. Linear mixed models were used to test the effects of adjacent land use, distance from the edge and their interactions on the species richness of the different groups and on the ecological characteristics of vegetation. Total species richness, richness of forest generalists and of non-forest species decreased from edge to interior in both urban and rural woodlands. The number of non-indigenous species depended mainly on urban–rural landscape context. Urban woodland edges were not as rich in forest specialists as rural edges. More surprisingly, the number of forest specialists was higher in rural edges than in rural interiors. Community composition was mainly affected by urban–rural context and to a lesser degree by the edge effect: the community composition of urban edges resembled that of urban interiors whereas in rural woodlands vegetation near edges (up to 10 m) strongly differed from interiors with a pool of species specific to edges. Urban woodland vegetation was more nitrophilous than rural vegetation in both edges and interiors. A major difference between urban and rural vegetation was the distribution of basiphilous species according to distance from the edge. Generally edge vegetation was more basiphilous than interior vegetation however the presence of basiphilous species fell off quickly with distance from the edge in rural woodlands (in the first 10–15 m) and more slowly (from 25 m onwards) in urban woodlands. This pattern was linked to variation in measured soil pH. As regards the conservation of flora in small native woodlands, it appeared that invasion of exotic and non-forest species was currently limited in both urban and rural landscape contexts but might pose problems in the future, especially in urban woodlands. Forest species were not negatively affected by the edge effect and indeed edges seemed to provide important habitats for this group. Hence conservationists should pay particular attention to the protection of edges in urban woodlands.  相似文献   

16.
Mountain forests deserve special attention from ecologists and conservation biologists given the ecosystem services they provide to society, and their threat under global change. In the subalpine region of the Andes, Polylepis woodlands occur as arboreal islands in a matrix of grassland and scrub. Due to overgrazing and burning, however, these woodland patches are believed to cover only 11% of their potential area in Bolivia, core area for Polylepis. We reviewed the knowledge on the species diversity for the Bolivian Polylepis woodland remnants, assessed the conservation status of the occurring species, determined their trophic niche, and related species richness with climatic variables and elevation. Based in 31 publications, we found 780 identified species occurring in Polylepis woodlands: 425 plants, 266 birds, 46 mammals, 35 butterflies and 8 reptiles. Ten of the 13 Bolivian Polylepis species, as well as 7 other plant species, 14 bird species and 4 mammal species were categorized as threatened or near threatened according to IUCN criteria. In general, plant species richness increased with increased precipitation and length of the growth season, while it decreased with increasing elevation. There was a positive relationship between bird species richness, precipitation and length of the growth season. The highest bird endemism in Polylepis woodland remnants occurred at intermediate elevations, temperatures and precipitation. Mammal species richness decreased with increasing maximum temperature. Finally, we discuss the most important knowledge gaps regarding biodiversity in Bolivian Polylepis woodland remnants.  相似文献   

17.
Plant community composition and its likely environmental controls were investigated for 200 sample plots (each 100 m2) from Mediterranean-type vegetation in the Little Desert National Park, Victoria. TWINSPAN classification revealed four readily identifiable vegetation types; mallee-broombush, heathland, stringybark open woodland, and an assemblage intermediate between mallee-broombush and heathland referred to here as broom-heath. Mallee-broombush was found on Parilla Sands characterized by high Ca levels relative to heathland and stringybark open woodlands on unconsolidated Lowan Sands. The first axis of a 2 dimensional non-metric MDS ordination also divided heathlands (high axis scores) from mallee-broombush (low scores), while the second separated these vegetation types from stringybark woodlands and broom-heath. Vector-fitting revealed significant correlations between the locations of samples in ordination space and exchangeable soil Ca, soil colour, aspect and Shannon–Weiner diversity. Highest species richness/diversity was associated with the ecotonal area between Parilla and Lowan Sands (i.e. broom-heath) where a number of species characteristic of different assemblages had overlapping ranges. The fire-sensitive conifer, Callitris rhomboidea, was preferentially located in stringybark woodland and broom-heath vegetation types. Its presence was positively associated with high species richness and aspects having a southerly component. Four Callitris stands sampled for population structure were all > 40 years old and showed evidence of interfire recruitment from seeds released by old, serotinous cones. Overall, results suggest that variations in plant community composition and structure in the eastern block of the Little Desert are primarily due to variations in soil properties associated with the distribution of the two dominant substrate types, Parilla Sand and Lowan Sand. However, the interplay of topography and fire behaviour has probably been more important than substrate type in determining the distribution and population structure of longer-lived, fire-sensitive species such as Callitris rhomboidea.  相似文献   

18.
The effects of habitat fragmentation as a threat to biodiversity are well known; decreased connectivity can potentially influence population processes and dynamics, resulting in smaller, isolated populations that may not function optimally. However, fragmentation may also increase the amount of edge or ecotone habitat available to open country species, benefiting their populations and enabling them to dominate remnant habitats. Noisy miners (Manorina melanocephala) are one such species, occupying eastern‐Australian eucalypt woodlands. They are considered a ‘despotic’ species, in that their presence negatively impacts woodland avifauna biodiversity due to their aggressive exclusion of other taxa from occupied areas. Despite this well‐known impact, little information exists on the patterns of nest‐tree occupancy by noisy miners within eucalypt woodlands. In the current study, we explored the patterns of nest‐tree occupancy by noisy miners across two successive years, aiming to identify preferences for breeding areas relative to vegetation structure. Our results show that both habitat fragmentation and the characteristics of individual eucalypt trees in an area influenced nest‐tree occupancy. Noisy miners constructed nests in trees near the edge of woodland patches more often than expected. Moreover, the nest tree chosen was a eucalypt that was significantly smaller than randomly selected trees from the surrounding area. The results highlight the importance of habitat management measures that may reduce the suitability of woodland patches as nesting sites for this species, in order to mitigate the severe effects of this despotic edge specialist.  相似文献   

19.
Aim We test how productivity, disturbance rate, plant functional composition and species richness gradients control changes in the composition of high‐latitude vegetation during recent climatic warming. Location Northern Fennoscandia, Europe. Methods We resampled tree line ecotone vegetation sites sampled 26 years earlier. To quantify compositional changes, we used generalized linear models to test relationships between compositional changes and environmental gradients. Results Compositional changes in species abundances are positively related to the normalized difference vegetation index (NDVI)‐based estimate of productivity gradient and to geomorphological disturbance. Competitive species in fertile sites show the greatest changes in abundance, opposed to negligible changes in infertile sites. Change in species richness is negatively related to initial richness, whereas geomorphological disturbance has positive effects on change in richness. Few lowland species have moved towards higher elevations. Main conclusions The sensitivity of vegetation to climate change depends on a complex interplay between productivity, physical and biotic disturbances, plant functional composition and richness. Our results suggest that vegetation on productive sites, such as herb‐rich deciduous forests at low altitudes, is more sensitive to climate warming than alpine tundra vegetation where grazing may have strong buffering effects. Geomorphological disturbance promotes vegetation change under climatic warming, whereas high diversity has a stabilizing effect.  相似文献   

20.
Aim To investigate environmental variation and associated assemblage changes of carabid beetles along an urban–rural gradient. Location ‘Quercus–Acer’ (oak–sycamore) woodlands in the city of Birmingham, UK. Methods We collected carabid data using pitfall traps on 12 sites in the city. The traps were run from April–September in 2000, and we collected environmental data on 24 individual variables associated with the individual sites and their landscape context. Changes in carabid assemblages were analysed using repeat measures anova and the environment–species relationships with a Redundancy Analyses (RDA) and Generalized Linear Modelling (GLM). Results We found that: (1) species richness and diversity were lower in the urban and suburban zone and higher in the rural zone; (2) Berger Parker dominance index was higher in the urban and suburban zones; (3) the number of woodland and woodland associated species was significantly higher at the rural end of the gradient; (4) the number of short‐winged (brachypterous) species was highest in the rural zone and decreased towards the urban woodlands, whereas the long‐winged species were more abundant in suburban woodlands; (5) the median weight length (WML) of the assemblage declined along the gradient from the rural to the urban zone, as did the number of large species; and (6) five of the 24 environmental variables showed a significant relationship with variation in the carabid assemblage. At site level the carabid assemblages were related to the level of site disturbance and soil penetrability, whereas site size and amount of woodland and urban land within 5 km of the site were important at a larger landscape scale. Main conclusions The results suggest that urbanization has a deleterious impact on carabid assemblages, causing a reduction in species richness from the rural fringe to the centre of the city. Changes in assemblage structure were related to woodland fragmentation, which led to variations in woodland size, woodland location and site disturbance due to trampling. Large, flightless and specialist woodland species are more susceptible to changes associated with urbanization, presumably due to their longer life spans, lower reproductive rates, more specialized niches and more limited dispersal potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号