首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
Zinc plays an important role in cell-mediated immune function. Altered cellular immune response resulting from zinc deficiency leads to frequent microbial infections, thymic atrophy, decreased natural killer activity, decreased thymic hormone activity, and altered cytokine production. In this study, we examined the effect of zinc deficiency on IL-2 and IFN-gamma in HUT-78 (Th0) and D1.1 (Th1) cell lines and TNF-alpha, IL-1 beta, and IL-8 in the HL-60 (monocyte-macrophage) cell line. The results demonstrate that zinc deficiency decreased the levels of IL-2 and IFN-gamma cytokines and mRNAs in HUT-78 after 6 h of PMA/p-phytohemagglutinin (PHA) stimulation and in D1.1 cells after 6 h of PHA/ionomycin stimulation compared with the zinc-sufficient cells. However, zinc deficiency increased the levels of TNF-alpha, IL-1 beta, and IL-8 cytokines and mRNAs in HL-60 cells after 6 h of PMA stimulation compared with zinc-sufficient cells. Actinomycin D study suggests that the changes in the levels of these cytokine mRNAs were not the result of the stability affected by zinc but might be the result of altered expression of these cytokine genes. These data demonstrate that zinc mediates positively the gene expression of IL-2 and IFN-gamma in the Th1 cell line and negatively TNF-alpha, IL-1 beta, and IL-8 in the monocyte-macrophage cell line. Our study shows that the effect of zinc on gene expression and production of cytokines is cell lineage specific.  相似文献   

6.
The adhesion of lymphocytes to vascular endothelium is the first step in their passage from the blood into inflammatory tissues. By modulating endothelial cell (EC) adhesiveness for lymphocytes, cytokines may regulate lymphocyte accumulation and hence the nature and progression of inflammatory responses. IL-1, TNF, IFN-gamma, and IL-4 each increase EC adhesiveness for T cells when used alone in adhesion assays in vitro. As cytokines are more likely to act in combination at sites of inflammation in vivo, we have studied the stimulating effect of different combinations of cytokines on EC adhesiveness for T cells and polymorphonuclear leukocytes (PMN). Acting alone IL-1, TNF, IFN-gamma, and IL-4 each significantly enhanced EC adhesiveness for T cells (p less than 0.005), whereas only IL-1 (p less than 0.005) and TNF (p less than 0.005) but not IFN-gamma or IL-4 significantly enhanced adhesiveness for PMN. When EC were stimulated with optimal concentrations of TNF in combination with IL-4 or IFN-gamma, there was a significant further increase in adhesiveness for T cells (p less than 0.003), but not PMN, over that seen with TNF alone. The additive effect of TNF and IL-4 was more marked than that of TNF and IFN-gamma. Although approximately equal proportions of T cells and PMN bound to TNF-stimulated EC, nearly double the proportion of T cells compared with PMN bound EC preincubated with TNF and IL-4 together. A similar interaction with IL-4 or IFN-gamma was exhibited by lymphotoxin. mAb-inhibition studies indicated that the extra increase in binding caused by stimulating EC with TNF and IL-4 in combination was mediated by VCAM-1 whereas that caused by stimulating with TNF and IFN-gamma in combination was substantially mediated through leukocyte function-associated Ag-1- and VCAM-1-independent mechanisms. These observations suggest that whereas IL-1 and TNF alone are unselective in terms of leukocyte adhesion to EC, the combination of TNF (or LT) with IL-4 or IFN-gamma may be of key importance in determining the recruitment of a lymphocyte-predominant infiltrate in immune mediated inflammation, and in initiating the transition from acute to chronic inflammation.  相似文献   

7.
Alteration in the surface membrane of endothelial cells (EC) is a feature of endothelial activation both at sites of inflammation in vivo and after stimulation with cytokines in vitro. The effects of stimulating EC with IL-1 or TNF include enhanced adhesiveness for polymorphonuclear leukocytes (PMN) and T cells, the induction of EC leukocyte adhesion molecule-1 (ELAM-1) expression, and the increased expression of intercellular adhesion molecule-1 (ICAM-1) and the 1.4C3 Ag. In contrast, IFN-gamma stimulation increases EC binding of T cells but not PMN and enhances ICAM-1 expression but not ELAM-1 or 1.4C3 Ag expression. Recently we have reported that the T cell-derived cytokine IL-4 also increases EC adhesiveness for T cells but not PMN. In this study we have examined the effect of IL-4 on the expression of several cytokine-inducible EC activation Ag, by using a previously described ELISA technique. IL-4 modulation of activation Ag expression was concentration dependent, optimal at around 100 U/ml, and exhibited a unique pattern compared to that seen with the other cytokines. Although, IL-4 stimulation increased 1.4C3 Ag expression (p less than 0.001), it significantly inhibited constitutive ICAM-1 expression (p less than 0.01) and did not induce ELAM-1. Furthermore, IL-4 exhibited significant synergy with IL-1 or TNF in inducing 1.4C3 Ag expression (p less than 0.001) but inhibited the increased expression of ICAM-1 produced by IL-1, TNF, or IFN-gamma (p less than 0.01) and inhibited the induction of ELAM-1 by IL-1 and TNF (p less than 0.001). In contrast, IL-4 had no effect on the expression of EC HLA-class I, -DR, -DP, or -DQ and neither enhanced nor inhibited the effect of IFN-gamma on the expression of these molecules. Finally, although IL-4 alone caused little if any shape change in EC monolayers, it strongly synergized with TNF or IFN-gamma in causing a change in shape to a more fibroblastic morphology. These observations indicate that IL-4 increases EC adhesiveness for T cells by the induction of a different adhesion molecule to ICAM-1. Furthermore, the ability of IL-4 to both enhance and inhibit the expression of activation Ag on EC already activated by IL-1, TNF, or IFN-gamma suggests that it may be important in altering the quality of inflammatory responses such as may occur during the development and maintenance of chronic or immune-mediated inflammation.  相似文献   

8.
9.
The development and resolution of an inflammatory process are regulated by a complex interplay among cytokines that have pro- and anti-inflammatory effects. Effective and sustained action of a proinflammatory cytokine depends on synergy with other inflammatory cytokines and antagonism of opposing cytokines that are often highly expressed at inflammatory sites. We analyzed the effects of the inflammatory and stress agents, IL-1, TNF-alpha, LPS, sorbitol, and H(2)O(2), on signaling by IL-6 and IL-10, pleiotropic cytokines that activate the Jak-Stat signaling pathway and have both pro- and anti-inflammatory actions. IL-1, TNF-alpha, and LPS blocked the activation of Stat DNA binding and tyrosine phosphorylation by IL-6 and IL-10, but not by IFN-gamma, in primary macrophages. Inhibition of Stat activation correlated with inhibition of expression of IL-6-inducible genes. The inhibition was rapid and independent of de novo gene induction and occurred when the expression of suppressor of cytokine synthesis-3 was blocked. Inhibition of IL-6 signaling was mediated by the p38 subfamily of stress-activated protein kinases. Jak1 was inhibited at the level of tyrosine phosphorylation, indicating that inhibition occurred at least in part upstream of Stats in the Jak-Stat pathway. Experiments using Stat3 mutated at serine 727 and using truncated IL-6Rs suggested that the target of inhibition is contained within the membrane-proximal region of the cytoplasmic domain of the gp130 subunit of the IL-6 receptor and is different from the SH2 domain-containing protein-tyrosine phosphatase/suppressor of cytokine synthesis-3 docking site. These results identify a new level at which IL-1 and TNF-alpha modulate signaling by pleiotropic cytokines such as IL-6 and IL-10 and provide a molecular basis for the previously described antagonism of certain IL-6 actions by IL-1.  相似文献   

10.
11.
Wang Y  Gao B  Tsan MF 《Cytokine》2005,32(3-4):149-154
There has been considerable interest in the effect of heat shock proteins (HSPs) on the innate immune system. Whether HSPs have any direct effects on the activation of lymphocytes is not clear. Using gene expression array, protein array and enzyme-linked immunosorbent assay, we demonstrated that highly purified recombinant murine Hsp60 (rmHsp60), essentially free of lipopolysaccharide contamination, had no effect in the expression of 113 cytokine genes and the release of 22 common cytokines including interferon-gamma (IFN-gamma) and interleukin-2 (IL-2) by murine splenocytes. Likewise, recombinant human Hsp60 (rhHsp60) and rhHsp70 had no effect in the release of IFN-gamma and IL-2. In contrast, concanavalin A induced the expression of a number of cytokine genes and the release of IFN-gamma and IL-2. These results suggest that Hsp60 and Hsp70 do not induce cytokine production by murine splenocytes.  相似文献   

12.
One important mechanism of cross-regulation by opposing cytokines is inhibition of signal transduction, including inhibition of Janus kinase-STAT signaling by suppressors of cytokine signaling. We investigated whether IFN-gamma, a major activator of macrophages, inhibited the activity of IL-10, an important deactivator. Preactivation of macrophages with IFN-gamma inhibited two key anti-inflammatory functions of IL-10, the suppression of cytokine production and of MHC class II expression. Gene expression profiling showed that IFN-gamma broadly suppressed the ability of IL-10 to induce or repress gene expression. Although IFN-gamma induced expression of suppressor of cytokine signaling proteins, IL-10 signal transduction was not suppressed and IL-10 activation of Janus kinases and Stat3 was preserved. Instead, IFN-gamma switched the balance of IL-10 STAT activation from Stat3 to Stat1, with concomitant activation of inflammatory gene expression. IL-10 activation of Stat1 required the simultaneous presence of IFN-gamma. These results demonstrate that IFN-gamma operates a switch that rapidly regulates STAT activation by IL-10 and alters macrophage responses to IL-10. Dynamic regulation of the activation of different STATs by the same cytokine provides a mechanism by which cells can integrate and balance signals delivered by opposing cytokines, and extends our understanding of cross-regulation by opposing cytokines to include reprogramming of signaling and alteration of function.  相似文献   

13.
14.
Specific patterns of cytokine secretion by CD4(+) T helper (Th) cells determine the nature of immune effector responses. Using a multiparameter, flow cytometric fluorescent in situ hybridization (FISH) assay that detected cytoplasmic mRNA within intact cells, we assessed antigen-specific cytokine expression in rhesus macaque Th cells. In the peripheral lymphocytes of immunized rhesus macaques, FISH detected antigen-induced cytokine gene expression in single Th cells. Analysis of simultaneous cytokine expression by single cells demonstrated that the recall immune response consisted of Th cells expressing either a Th1 (IL-2(+)/IFN-gamma(+)) or a Th2 (IL-4(+)/IL-6(+)) cytokine pattern. In addition to the classic Th subsets, Th cells expressing only one of two Th1 or Th2 defining cytokines were common following antigen restimulation. The data gathered with the FISH assay suggest that, in primates, the immune response to recall antigens consists of nonclassic Th cells, as well as a mixture of polarized Th1 and Th2 T cells.  相似文献   

15.
Allergic diseases have been closely related to Th2 immune responses, which are characterized by high levels of interleukin (IL) IL-4, IL-5, IL-9 and IL-13. These cytokines orchestrate the recruitment and activation of different effector cells, such as eosinophils and mast cells. These cells along with Th2 cytokines are key players on the development of chronic allergic inflammatory disorders, usually characterized by airway hyperresponsiveness, reversible airway obstruction, and airway inflammation. Accumulating evidences have shown that altering cytokine-producing profile of Th2 cells by inducing Th1 responses may be protective against Th2-related diseases such as asthma and allergy. Interferon-gamma (IFN-gamma), the principal Th1 effector cytokine, has shown to be crucial for the resolution of allergic-related immunopathologies. In fact, reduced production of this cytokine has been correlated with severe asthma. In this review, we will discuss the role of IFN-gamma during the generation of immune responses and its influence on allergic inflammation models, emphasizing its biologic properties during the different aspects of allergic responses.  相似文献   

16.
17.
18.
The interferon (IFN)-related cytokine interleukin (IL)-29 (also known as IFN-lambda1) inhibits virus replication by inducing a cellular antiviral response similar to that activated by IFN-alpha/beta. However, because it binds to a unique receptor, this cytokine may function cooperatively with IFN-alpha/beta or IFN-gamma during natural infections to inhibit virus replication, and might also be useful therapeutically in combination with other cytokines to treat chronic viral infections such as hepatitis C (HCV). We therefore investigated the ability of IL-29 and IFN-alpha or IFN-gamma to cooperatively inhibit virus replication and induce antiviral gene expression. Compared with the individual cytokines alone, the combination of IL-29 with IFN-alpha or IFN-gamma was more effective at blocking vesicular stomatitis virus and HCV replication, and this cooperative antiviral activity correlated with the magnitude of induced antiviral gene expression. Although the combined effects of IL-29 and IFN-alpha were primarily additive, the IL-29/IFN-gamma combination synergistically induced multiple genes and had the greatest antiviral activity. Two different mechanisms contributed to the enhanced gene expression induced by the cytokine combinations: increased activation of ISRE promoter elements and simultaneous activation of both ISRE and GAS elements within the same promoter. These findings provide new insight into the coregulation of a critical innate immune response by functionally distinct cytokine families.  相似文献   

19.
The cytokine milieu of the T cell zones in lymphoid organs is involved in the activation of naive T cells. Quantitative data regarding the local expression of cytokines are lacking. Therefore, the expression of Th1 (IL-2, IL-12p40, IFN-gamma), Th2 (IL-4, IL-10), as well as TGFbeta1 and IL-15 mRNA was studied after laser microdissection in the steady state and during an immune response in rats. Our results show that Th1 cytokines are preferentially found in lymphoid tissues and in the T cell zones, whereas Th2 cytokines are expressed throughout the organs and especially in the B cell zones. After injection of sheep RBC, IL-2 and IFN-gamma mRNA are significantly increased in the T cell zone only, a change not seen by analyzing the whole spleen. Studying the spatial and temporal expression of genes will reveal new insights into the regulation of immune responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号