首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Han BF  Zhang C  Qi JS  Qiao JT 《生理学报》2002,54(2):139-144
根据蓝斑刺激可以通过脊髓下行性去甲肾上腺素能纤维阻断由背角上传到束旁核神经元的伤害性放电的事实,本实验用脊髓鞘内给予相应工具药的方法,进一步分析了上述下行性抑制作用在脊髓背角中阻止伤害性传入信号向上传递的可能机制,结果发现:(1)鞘内注入ATP-敏感钾通道阻断剂格列苯脲或腺苷受体拮抗剂氨茶碱,均可以阻断或取消刺激蓝斑引起的对束旁核伤害性放电的抑制作用;(2)鞘内注入ATP-钾通道激动剂nic-orandil或腺苷受体激动剂5‘-N-ethylcarboxamido-adenosine(NECA),都可抑制束旁核神经元的伤害性放电;(3)鞘内注入氨茶碱可阻断鞘内注入nicorandil引起的束旁核痛放电的抑制,再鞘内注入格列苯脲不能阻断鞘内注入NE-CA引致的束旁核痛放电的抑制。这些结果提示:(1)蓝斑刺激在脊髓背角中抑制痛信号的上传,要有ATP-敏感钾通道的激活和内源性腺苷的释放为中介;(2)ATP-敏感钾通道的激活发生在腺苷的释放之前。  相似文献   

2.
The formalin test has been proposed as an animal model of pain produced by tissue injury. Although biphasic nociceptive responses to formalin injection have been well documented, low concentrations (0.125 and 0.5%) of formalin injected into the mouse hindpaw produced only the phasic (acute) paw-licking response, lasting the first 5 min after the formalin injection. To explore the involvement of nitric oxide (NO) in the spinal cord and peripheral system during the acute phase of the formalin test, we examined the effect of intrathecal (i.t.) or intraplantar (i.pl.) injection of L-N(G)-nitro arginine methyl ester (L-NAME), a NO synthase inhibitor in mice. Pretreatment with L-NAME (160 nmol), injected i.t., resulted in a significant inhibition of the paw-licking response induced by 0.125 and 0.5% of formalin. L-Arginine (600 mg/kg, i.p.) but not D-arginine (600 mg/kg, i.p.) reversed the antinociceptive effect of L-NAME on the acute nociceptive response induced by low concentrations of formalin. The i.pl. injection of L-NAME (160 nmol) produced a significant decrease of the late (tonic) phase response evoked by 2.0% formalin without affecting the early (acute) phase response. Similar results have been reported in the case of i.t. injected L-NAME as assayed by the 2.0% formalin test. L-NAME (160 nmol), injected into the plantar paw, gave no significant effect on the acute nociceptive response induced by a low concentration of formalin (0.125%). These results suggest that NO in the spinal cord may be involved in not only the late phase response of the formalin (2.0%)-induced paw-licking, but also at least the acute phase response induced by low concentrations (0.125 and 0.5%) of formalin, while peripheral NO has little effect on the early (acute) phase nociceptive response evoked by formalin (0.125--2.0%) injection.  相似文献   

3.
In experiments on cats, we studied the effects of electrical stimulation of the cerebral central grey (CG), locus coeruleus (LC), and substantia nigra (SN) on postsynaptic processes evoked by nociceptive volleys in somatosensory cortex neurons. Nineteen cells activated exclusively by stimulation of nociceptors (intense stimulation of the dental pulp) and 26 cells activated by both nociceptive and non-nociceptive (near-threshold) stimulations of the n. infraorbitalis and thalamic nucl. ventroposteromedialis (VPM) were intracellularly recorded (nociceptive and convergent cortical neurons, respectively). In neurons of both groups, stimulation of both nociceptive afferents and the VPM evoked complex responses having on EPSP-spike-IPSP patterns (duration of IPSPs about 200-300 msec). Electrical stimulation of the СG, which per se could activate the examined cortical neurons, induced prolonged suppression of synaptic responses evoked by stimulation of nociceptors; maximum inhibition was observed at 600- to 800-msec-long conditioning–test intervals. A certain parallelism was observed between the conditioning effects of СG stimulation and effects of systemic introduction of morphine. Isolated stimulations of the LC and SN by short high-frequency pulse series evoked primary complex EPSPs in a part of the examined cortical neurons, while high-amplitude IPSPs (up to 120 msec long) were observed in other units. Independently of the type of the primary response, conditioning stimulations of the LC and SN induced long-lasting (several seconds) suppression of synaptic responses evoked in cortical neurons by stimulation of nociceptive inputs. Mechanisms of modulating influences coming from opioidergic, noradrenergic, and dopaminergic cerebral systems to neurons of the somatosensory cortex activated upon excitation of high-threshold (nociceptive) afferent inputs are discussed.  相似文献   

4.
In cats, we studied the influences of stimulation of the periaqueductal gray (PAG) and locus coeruleus (LC) on postsynaptic processes evoked in neurons of the somatosensory cortex by stimulation of nociceptive (intensive stimulation of the tooth pulp) and non-nociceptive (moderate stimulations of the infraorbital nerve and ventroposteromedial nucleus of the thalamus) afferent inputs. Twelve cells activated exclusively by nociceptors and 16 cells activated by both nociceptive and non-nociceptive influences (hereafter, nociceptive and convergent neurons, respectively) were recorded intracellularly. In neurons of both groups, responses to nociceptive stimulation (of sufficient intensity) looked like an EPSP-spike-IPSP (the latter, of significant duration, up to 200 msec) complex. Electrical stimulation of the PAG (which could itself evoke activation of the cortical neurons under study) resulted in long-term suppression of synaptic responses evoked by excitation of nociceptors (inhibition reached its maximum at a test interval of 600 to 800 msec). We observed a certain parallelism between conditioning influences of PAG activation and effects of systemic injections of morphine. Isolated stimulation of LC by a short high-frequency train of stimuli evoked primary excitatory responses (complex EPSPs) in a part of the examined cortical neurons, while in other cells high-amplitude and long-lasting IPSP (up to 120 msec) were observed. Independently of the type of the primary response to PAG stimulation, the latter resulted in long-term (several seconds) suppression of the responses evoked in cortical cells by stimulation of the nociceptive inputs. The mechanisms of modulatory influences coming from opioidergic and noradrenergic brain systems to somatosensory cortex neurons activated due to excitation of high-threshold (nociceptive) afferent inputs are discussed.Neirofiziologiya/Neurophysiology, Vol. 37, No. 1, pp. 61–73, January–February, 2005.  相似文献   

5.
Clinical studies implicate adenosine acting on esophageal nociceptive pathways in the pathogenesis of noncardiac chest pain originating from the esophagus. However, the effect of adenosine on esophageal afferent nerve subtypes is incompletely understood. We addressed the hypothesis that adenosine selectively activates esophageal nociceptors. Whole cell perforated patch-clamp recordings and single-cell RT-PCR analysis were performed on the primary afferent neurons retrogradely labeled from the esophagus in the guinea pig. Extracellular recordings were made from the isolated innervated esophagus. In patch-clamp studies, adenosine evoked activation (inward current) in a majority of putative nociceptive (capsaicin-sensitive) vagal nodose, vagal jugular, and spinal dorsal root ganglia (DRG) neurons innervating the esophagus. Single-cell RT-PCR analysis indicated that the majority of the putative nociceptive (transient receptor potential V1-positive) neurons innervating the esophagus express the adenosine receptors. The neural crest-derived (spinal DRG and vagal jugular) esophageal nociceptors expressed predominantly the adenosine A(1) receptor while the placodes-derived vagal nodose nociceptors expressed the adenosine A(1) and/or A(2A) receptors. Consistent with the studies in the cell bodies, adenosine evoked activation (overt action potential discharge) in esophageal nociceptive nerve terminals. Furthermore, the neural crest-derived jugular nociceptors were activated by the selective A(1) receptor agonist CCPA, and the placodes-derived nodose nociceptors were activated by CCPA and/or the selective adenosine A(2A) receptor CGS-21680. In contrast to esophageal nociceptors, adenosine failed to stimulate the vagal esophageal low-threshold (tension) mechanosensors. We conclude that adenosine selectively activates esophageal nociceptors. Our data indicate that the esophageal neural crest-derived nociceptors can be activated via the adenosine A(1) receptor while the placodes-derived esophageal nociceptors can be activated via A(1) and/or A(2A) receptors. Direct activation of esophageal nociceptors via adenosine receptors may contribute to the symptoms in esophageal diseases.  相似文献   

6.
大量资料表明,中缝背核(DR)在痛觉调节中具有重要作用。本实验用电生理学方法研究DR在痛觉调制中的下行性抑制作用,主要观察刺激DR对清醒制动大鼠脊髓背角神经元伤害性放电的影响。其主要结果是:①刺激DR或电针可以抑制脊髓背角神经元的伤害性反应,吗啡可加强这种抑制效应;②损毁中缝大核(NRM)、纳洛酮、麦角酰二乙胺(LSD)、赛庚啶及对氯苯丙氨酸(PCPA)均能部分阻断DR对脊髓背角神经元伤害性反应的抑制,实验结果表明:刺激DR抑制脊髓背角神经元的伤害性反应,部分是通过NRM间接控制背角神经元的伤害性传入;还有一部分是不通过NRM,可能是DR直接对脊髓背角伤害性信息的调制。在这种下行性抑制通路中有5-HT和阿片样物质的参与。  相似文献   

7.
刺激蓝斑及电针对大鼠脊髓背角神经元伤害性反应的影响   总被引:2,自引:0,他引:2  
以往的工作表明,蓝斑(LC)-去甲肾上腺素能神经元系统在痛觉调制和针刺镇痛中起着重要作用,本文用电生理学方法研究刺激LC和电针对大鼠脊髓背角神经元伤害性反应的影响,其主要结果如下:1、刺激LC或电针有明显抑制脊髓背角神经元伤害性反应的作用。2、损毁中缝大核和腹腔注射纳洛酮并不明显影响刺激LC的抑制效应。3、α2受体激动剂氯压啶能加强刺激LC或电针的抑制效应,而α受体阻断剂酚妥拉明在一定程度上能削弱这种抑制效应,这些实验结果提示,刺激LC和电针可激活LC神经元,通过其下行纤维,在脊髓水平释放NE,通过α2受体,阻断伤害性信息的传递。  相似文献   

8.
Abstract: We investigated the effect of the adenosine receptor agonist 5'-( N -ethylcarboxamido)adenosine (NECA) in catecholamine secretion from adrenal chromaffin cells that exhibit only the A2b subtype adenosine receptor. NECA reduced catecholamine release evoked by the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP) in a time-dependent manner. Inhibition reached 25% after 30–40-min exposure to NECA. This effect on DMPP-evoked catecholamine secretion was mirrored by a similar (27.7 ± 3.3%), slowly developing inhibition of [Ca2+]i transients induced by DMPP that peaked at 30-min preincubation with NECA. The capacity of the chromaffin cells to buffer Ca2+ load was not affected by the treatment with NECA. Short-term treatment with NECA failed both to modify [Ca2+]i levels and to increase endogenous diacylglycerol production, showing that NECA does not activate the intracellular Ca2+/protein kinase C signaling pathway. The inhibitory effects of NECA were accompanied by a 30% increase of protein phosphatase activity in chromaffin cell cytosol. We suggest that dephosphorylation of a protein involved in DMPP-evoked Ca2+ influx pathway (e.g., L-type Ca2+ channels) could be the mechanism of the inhibitory action of adenosine receptor stimulation on catecholamine secretion from adrenal chromaffin cells.  相似文献   

9.
The present study was performed to explore the effect of calcitonin gene-related peptide 8-37 (CGRP8-37) on the electrical stimulation-evoked discharge frequency of wide dynamic range (WDR) neurons in the dorsal horn of the spinal cord in rats. The discharge frequencies of WDR neurons were evoked by transdermic electrical stimulation applied on the ipsilateral hindpaw. CGRP8-37 was applied directly on the dorsal surface of the L3 to L5 spinal cord. After the administration of 3 nmol of CGRP8-37, the evoked discharge frequency of WDR neurons decreased significantly, an effect lasting more than 30 min. The results indicate that CGRP receptors play an important role in the transmission of presumed nociceptive information in the dorsal horn of the spinal cord.  相似文献   

10.
Prolonged exposure of rat basophilic leukemia (RBL-2H3) cells, a cultured analog of rat mast cells, to 0.1 microM dexamethasone resulted in global suppression of various stimulatory events in response to Ag and a global enhancement of the same stimulatory events to the adenosine analog, N-(ethylcarboxamide)adenosine (NECA). We had previously shown that Ag and NECA both activate phospholipase C but by different mechanisms; cells that had been treated with cholera or pertussis toxin, for example, responded to Ag but not to NECA with the release of inositol phosphates, increase in levels of cytosolic Ca2+, and secretion. Because the toxins still inhibited the responses to NECA in dexamethasone-treated cells, the effects of dexamethasone may have been exerted at the level of receptor/G-protein coupling rather than at the level of effector systems. Additional evidence for this was the following: 1) NECA-induced hydrolysis of the inositol phospholipids was still enhanced after permeabilizing (with streptolysin O or Staphylococcus alpha-toxin) and washing the cells; 2) the response to the G-protein stimulant, guanosine 5'-(3-O-thio)triphosphate was also enhanced in permeabilized, dexamethasone-treated cells and 3) binding and kinetic studies suggested that the enhanced responsiveness to NECA was attributable in part to an increase in receptor number. The suppressive action of dexamethasone on Ag-induced hydrolysis of inositol phospholipids, however, was readily lost by permeabilizing RBL-2H3 cells. The results indicate, therefore, that treatment with dexamethasone leads to changes in receptor-coupling mechanisms that are either resistant to (i.e., NECA-mediated responses) or reversed by (i.e., Ag-mediated responses) cell permeabilization.  相似文献   

11.
Pain and neurotransmitters   总被引:5,自引:0,他引:5  
1. To study physiological roles of substance P (SP), gamma-aminobutyric acid (GABA), enkephalins and other endogenous substances, we developed several kinds of isolated spinal cord preparations of newborn rats. 2. In these preparations, various slow responses of spinal neurons evoked by stimulation of primary afferent C fibers were depressed by a tachykinin antagonist, spantide. These results together with many other lines of evidence suggest that SP and neurokinin A serve as pain transmitters in a subpopulation of primary afferent C fibers. 3. Some C-fiber responses in various isolated spinal cord preparations were depressed by GABA, muscimol, and opioid peptides. In contrast, bicuculline (GABA antagonist) and naloxone (opioid antagonist) potentiated the "tail pinch potential," i.e., a nociceptive response of the ventral root evoked by pinch stimulation of the tail in isolated spinal cord-tail preparation of the newborn rat. The latter results support the hypothesis that some primary afferents activate inhibitory spinal interneurons which release GABA and enkephalins as transmitters to modulate pain inputs.  相似文献   

12.
A1 and A2 adenosine receptor regulation of erythropoietin production   总被引:1,自引:0,他引:1  
The effects of adenosine (ADE) and ADE agonists on erythropoietin (Ep) production were determined using percent (%) 59Fe incorporation in red cells of exhypoxic polycythemic mice. The hemisulfate salt of ADE produced a significant increase in % 59Fe incorporation in response to hypoxia in concentrations of 400 to 1600 nmol/kg/day (i.v.). 5'-N-ethyl-carboxamideadenosine (NECA), a selective A2 receptor agonist, increased radioiron incorporation in a dose-dependent manner (10-100 nmol/kg/day, i.v.). In contrast, N6-cyclohexyladenosine (CHA), a selective A1 receptor agonist, did not affect radioiron incorporation in concentrations up to 1600 nmol/kg/day (i.v.). Albuterol, a beta 2-adrenergic agonist, enhanced % 59Fe incorporation in polycythemic mice and low doses of CHA (50 and 100 nmol/kg/day), which were not effective alone on % 59Fe incorporation in polycythemic mice exposed to hypoxia, inhibited the enhancement in radioiron induced by albuterol (25 and 100 micrograms/kg/day, i.p.) plus hypoxia. Theophylline (20 and 80 mg/kg/day, i.p.), a well-known antagonist of ADE receptors, blocked the ADE and NECA enhancement in radioiron incorporation at a dose of theophylline alone which produced only a slight enhancement of % 59Fe incorporation. These results suggest that ADE may both inhibit through A1 receptor activation and increase via A2 receptor stimulation the production of Ep.  相似文献   

13.
E. V. Gura 《Neurophysiology》1998,30(6):375-377
Effect of vasopressin on responses of individual neurons of thenucl. caudalis of the spinal trigeminal tract was studied on rats under urethan anesthesia; the responses were evoked by nociceptive (stimulation of the tooth pulp) or non-nociceptive (stimulation of Aa fibers of the infraorbital nerve) afferent activation. After injection of 10 nM vasopressin into the recording zone, responses evoked by stimulation of the tooth pulp were suppressed in all studied neurons of the high-threshold group; the same was true as to responses induced by stimulation of the tooth pulp and infraorbital nerve in most neurons of the convergent group. At the same time, vasopressin did not change the responses evoked by stimulation of Aa fibers of the infraorbital nerve in neurons of the low-threshold group. Possible involvement of vasopressin in the process of pain suppression is discussed.  相似文献   

14.
Single unit extracellular recordings from dorsal horn neurons were performed with glass micropipettes in pentobarbital-anesthetized rats. A total of 60 wide dynamic range (WDR) neurons were obtained from 34 rats. In normal rats (20/34), spinally administered D-serine (10 nmol), a putative endogenous agonist of glycine site of NMDA receptors, significantly enhanced the C- but not Abeta-, and Adelta-fiber responses of WDR neurons in the spinal dorsal horn. When 1 nmol of the glycine site antagonist 7-chlorokynurenic acid (7-CK) was co-administered with 10 nmol D-serine, the facilitation of D-serine on C-fiber response was completely blocked. 7-CK (1 nmol) alone failed to influence Abeta-, Adelta-, and C-fiber responses of WDR neurons. In contrast, in carrageenan-injected rats (14/34), 10 nmol D-serine had no effect on C-fiber response, while 1 nmol 7-CK per se markedly depressed C-fiber response of WDR neurons. These findings suggest that under physiological conditions, glycine sites in the spinal cord were available but became saturated following peripheral inflammation. Thus, increased endogenous d-serine or glycine may be involved in nociceptive transmission by modulating NMDA receptor activities. The glycine site of NMDA receptors may become a target for the prevention of inflammatory pain.  相似文献   

15.
实验在56只水合氯醛麻醉的成年雄性大鼠上进行。实验结果表明:电刺激中缝背核(DR)能减慢蓝斑(LC)大多数神经元自发放电频率;而损毁DR则增加大多数LC神经元的自发放电频率。电刺激下丘脑弓状核(ARC)能抑制LC神经元对外周坐骨神经伤害性刺激的反应。刺激DR可增强此种抑制作用;相反,损毁DR能部分减弱此种抑制效应。结果提示,DR对LC神经元有紧张性抑制作用,并对刺激ARC抑制LC神经元伤害性反应起着调制作用。  相似文献   

16.
In cats anesthetized with chloralose nociceptive heating of the skin of the foot to 44–60°C led to a two- to fourfold increase in amplitude of primary cortical responses to direct stimulation of neurons of the spinocervical tract receiving information from the heated area of skin, but did not affect primary responses evoked by stimulation of axons of these neurons in the dorsolateral funiculus, and actually inhibited the response to stimulation of the nerve innervating the heated area of skin. Inhibition was accompanied by depolarization of central terminal of low-threshold fibers of this nerve: During heating the amplitude of the antidromic discharges evoked in the nerve by stimulation of its presynaptic endings in the spinal cord was increased two- to threefold. After abolition of presynaptic depolarization with picrotoxin (0.2–0.7 mg/kg, intravenously) or as a result of asphyxia, nociceptive heating acquired the ability to facilitate primary responses arising as a result of stimulation of the nerve also. The amplitude of the responses was increased under these circumstances by 3–20 times. It is concluded that acute nociceptive stimulation causes such powerful presynaptic inhibition of impulse transmission from low-threshold fibers of the cutaneous nerve that it virtually abolishes the facilitating effect of nociceptive impulses on sensory neurons of the spinal cord. It is suggested that it is this inhibitory mechanism which prevents the development of hyperalgesia during acute nociceptive stimulation.Institute of General Pathology and Pathological Physiology, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 6, pp. 621–627, November–December, 1981.  相似文献   

17.
Effects of two commonly used tachykinin NK-3 receptor antagonists (SR 142801 and R820) intrathecally (i.t.) administered were assessed in the rat tail-flick test. SR142801 and its (R)-enantiomer SR142806 (1.3, 6.5 and 65 nmol) were found as potent as senktide and [MePhe7]NKB (NK-3 selective agonists) to induce transient antinociceptive effects. Naloxone (10 microg) and R820 (6.5 nmol) blocked reversibly the responses to 6.5 nmol senktide, [MePhe7]NKB, SR142801 and SR142806 when administered i.t. 15 min earlier. However, the antinociceptive responses induced by SR142801 and SR142806 were not affected by i.t. pretreatments with NK-1 (6.5 nmol SR140333) and NK-2 (6.5 nmol SR48968) receptor antagonists. In control experiments, the NK-1 and NK-2 antagonists prevented the hyperalgesic effects to NK-1 ([Sar9,Met(O2)11]SP) and NK-2 ([beta-Ala8] NKA(4-10)) receptor agonists (6.5 nmol i.t.), respectively. R820 had no direct effect on nociceptive threshold and failed to alter angiotensin II-induced antinociception. The data suggest that the antinociceptive effect of SR142801 is due to an agonist effect at NK-3 receptor in the rat spinal cord that involves a local opioid mechanism. These results can be best explained by the existence of inter-species NK-3 receptor subtypes.  相似文献   

18.
Our previous studies showed that preganglionic adrenal (pre-ASNA), renal (RSNA), lumbar, and postganglionic adrenal sympathetic nerve activities (post-ASNA) are inhibited after stimulation of arterial baroreceptors, nucleus of the solitary tract (NTS), and glutamatergic and P2x receptors and are activated after stimulation of adenosine A1 receptors. However, stimulation of adenosine A2a receptors inhibited RSNA and post-ASNA, whereas it activated pre-ASNA. Because the effects evoked by NTS A2a receptors may be mediated via activation of nitric oxide (NO) mechanisms in NTS neurons, we tested the hypothesis that NO synthase (NOS) inhibitors would attenuate regional sympathetic responses to NTS A2a receptor stimulation, whereas NO donors would evoke contrasting responses from pre-ASNA versus RSNA and post-ASNA. Therefore, in chloralose/urethane-anesthetized rats, we compared hemodynamic and regional sympathetic responses to microinjections of selective A2a receptor agonist (CGS-21680, 20 pmol/50 nl) after pretreatment with NOS inhibitors Nomega-nitro-L-arginine methyl ester (10 nmol/100 nl) and 1-[2-(trifluoromethyl)phenyl]imidazole (100 pmol/100 nl) versus pretreatment with vehicle (100 nl). In addition, responses to microinjections into the NTS of different NO donors [40 and 400 pmol/50 nl sodium nitroprusside (SNP); 0.5 and 5 nmol/50 nl 3,3-bis(aminoethyl)-1-hydroxy-2-oxo-1-triazene (DETA NONOate, also known as NOC-18), and 2 nmol/50 nl 3-(2-hydroxy-2-nitroso-1-propylhydrazino)-1-propanamine (PAPA NONOate, also known as NOC-15)], the NO precursor L-arginine (10-50 nmol/50 nl), and sodium glutamate (500 pmol/50 nl) were evaluated. SNP, DETA NONOate, and PAPA NONOate activated pre-ASNA and inhibited RSNA and post-ASNA, whereas l-arginine and glutamate microinjected into the same site of the NTS inhibited all these sympathetic outputs. Decreases in heart rate and depressor or biphasic responses accompanied the neural responses. Pretreatment with NOS inhibitors reversed the normal depressor and sympathoinhibitory responses to stimulation of NTS A2a receptors into pressor and sympathoactivatory responses and attenuated the heart rate decreases; however, it did not change the increases in pre-ASNA. We conclude that NTS NO mechanisms differentially affect regional sympathetic outputs and differentially contribute to the pattern of regional sympathetic responses evoked by stimulation of NTS A2a receptors.  相似文献   

19.
Ma J  Qiao JT  Dafny N 《Life sciences》2001,69(8):969-976
After subcutaneous injection of formalin (5%, 50 microl) into a hindpaw of rats, biphasic excitatory nociceptive discharges were recorded extracellularly in thalamic parafascicular neurons. Intrathecal (i.t.) administration of either norepinephrine (NE. 6 nmol, 10 microl) or serotonin (5-HT, 120 nmol, 10 microl) prior to the second phase significantly inhibited the second phase of the formalin-induced parafascicular nociceptive discharges. Intrathecal naloxone (Nal, 50 nmol, 10 microl) did not show any effect on the parafascicular nociceptive discharges. However, when i.t. Nal was given 5 min before NE, Nal prevented the NE antinociceptive effect. Pre-administration of Nal before 5-HT did not affect the antinociceptive effects of 5-HT on the second phase of nociceptive discharges. These results indicate that opiate-like substances are involved in the mediation of NE-induced antinociception. It is suggested that endogenous NE and 5-HT released from brainstem descending terminals at the spinal level carry out their antinociceptive actions differently.  相似文献   

20.
Effects of met-enkephalin (opioid peptide) and naloxone (opioid antagonist) on nociceptive sensitization were studied in L-RP11 Helix neurons. In control snails sensitizing stimulation produced reversible membrane depolarization and depression of neural responses evoked by sensory stimuli during the short-term stage of sensitization and facilitation of these responses at the long-term stage. Met-enkephalin (10 but not 0.1 microM) suppressed the neural responses evoked by nociceptive stimuli. Sensitizing stimulation during metenkephalin application prevented the facilitation of neural responses evoked by tactile stimulation of snail head, whereas facilitation of neural responses evoked by chemical stimulation of head or tactile stimulation of foot were similar to that in control sensitized snails. Sensitizing stimulation during met-enkephalin and/or naloxone application prevented the facilitation of neural responses evoked by chemical stimulation of snail head, whereas responses evoked by tactile stimulation of snail head or foot were facilitated (as in neurons of control sensitized snails). Opioids are suggested to be involved in regulation of nociceptive mechanisms and selective induction of long-term plasticity in L-RP11 neural inputs activated by tactile of chemical stimulation of snail head.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号