首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
14 new transposable phages (TP) were isolated from approx. 200 clinical isolates of Pseudomonas aeruginosa. The frequent occurrence of TP of P. aeruginosa has been confirmed. There are at least two different groups of TP, namely, the group of D3112 and that of B3. The distinctive features of phages belonging to the groups are as follows: 1) low level of DNA-DNA homology (less than 10%), the whole region of homology in phage genomes of different groups being located on right genome end (29-38 kb); only one of phages of the B3 group shows an additional homology with D3112 DNA outside the above mentioned region; 2) a variable DNA is observed on the left end of the B3 group phage genomes and no such DNA is revealed on the left end of genomes of the D3112 group phages; 3) all phages of the B3 group have specific type of interaction with RPL11 plasmid, which distinguish them from phages of the D3112 group; 4) phages belonging to the two groups differ greatly in their growth in cells harbouring pMG7 plasmid which mediates production of PaeR7 endonuclease and in the number of DNA sites sensitive to SalGI, PstI, BglII endonucleases. Since some of the B3 group phage genomes possess BamH1 sites, resistance to this enzyme cannot be regarded as a general characteristics for all TP of P. aeruginosa, as it was earlier proposed. Some aspects of modular hypothesis of bacteriophage evolution concerning, in particular, the ways of module formation are discussed.  相似文献   

2.
It is found that bacteriophages B3 and B39 specific for Pseudomonas aeruginosa have the same genome structure as previously described phage D3112. On the right (S) end of their genomes a variable non-phage DNA is located (approximately 0.9-2.5 kilobases for different phages). It is probable that this variable DNa has its origin from different regions of bacterial chromosome. In genome of one of the phages, B3 phage, such variable DNA (not more than 150 base pairs) was found on the left end of DNA molecule. Isolation of a viable B3XD3112 recombinant phage and analysis of its genome with restriction technique and with studies of homo- and heteroduplex molecules had confirmed genetical relationship of B3 and D3112. Some essential non-homology of B3 and D3112 DNAs have been found on the right ends of genomes of the phages.  相似文献   

3.
The wild type of D3112, a transposable phage of Pseudomonas aeruginosa can not be introduced as a portion of the hybrid plasmid RP4::D3112 into Pseudomonas putida cells. It is only possible when phage D3112 carries mutations designated lpc (lethal for P. putida and Escherichia coli). Analysis of heteroduplex molecules between DNAs of phages D3112w+ and D3112lpc demonstrated the absence of nonhomology regions, which suggests that lpc is a point mutation. The lpc2 mutation was located within the interval 20-29.9 kb of the phage genome.  相似文献   

4.
Hybrid plasmids obtained as a result of Mu phage insertions into the RP4::D3112 plasmid in Escherichia coli cells were studied. Stable maintenance of RP4::D3112 plasmid in E. coli cells was provided by using the D3112 phage genome with a point polar mutation in the A gene which prevented early genes' expression. The presence of D3112A- in the RP4 plasmid has been shown to have no effect on efficiency of phage Mu transposition into this plasmid. Moreover, RP4 and D3112 genomes were equivalent targets for Mu integration. The integration of transposable phage into genome of nonrelated phage can be used as one of the approaches to construct recombinant phage genomes in vivo in the absence of DNA homology.  相似文献   

5.
Mit'kina LN  Krylov VN 《Genetika》1999,35(9):1182-1190
Bacterial viruses of Pseudomonas aeruginosa assigned to two groups, D3112 and B3, recombine with very low frequencies. Previous study of the genome structure of intergroup hybrids suggested the incompatibility of some genetic modules of these bacteriophages. In this work, several natural hybrid transposable phages that had the genomes largely consisting of modules of phages from group D3112 and B3, were described. The discovery of these phages suggests the continuous genetic exchange in nature of these viruses belonging to different species. This model is considered as promising from the viewpoint of monitoring virus evolution.  相似文献   

6.
Bacteriophage B3 is a transposable phage of Pseudomonas aeruginosa. In this report, we present the complete DNA sequence and annotation of the B3 genome. DNA sequence analysis revealed that the B3 genome is 38,439 bp long with a G+C content of 63.3%. The genome contains 59 proposed open reading frames (ORFs) organized into at least three operons. Of these ORFs, the predicted proteins from 41 ORFs (68%) display significant similarity to other phage or bacterial proteins. Many of the predicted B3 proteins are homologous to those encoded by the early genes and head genes of Mu and Mu-like prophages found in sequenced bacterial genomes. Only two of the predicted B3 tail proteins are homologous to other well-characterized phage tail proteins; however, several Mu-like prophages and transposable phage D3112 encode approximately 10 highly similar proteins in their predicted tail gene regions. Comparison of the B3 genomic organization with that of Mu revealed evidence of multiple genetic rearrangements, the most notable being the inversion of the proposed B3 immunity/early gene region, the loss of Mu-like tail genes, and an extreme leftward shift of the B3 DNA modification gene cluster. These differences illustrate and support the widely held view that tailed phages are genetic mosaics arising by the exchange of functional modules within a diverse genetic pool.  相似文献   

7.
Bacterial cells lysogenic for D3112, a transposable Pseudomonas aeruginosa phage restrict the growth of a related heteroimmune B39 phage. The lysogens are divided into two different types PAO(D3112). In the lysogens of the type I the efficiency of B39 growth only decreases slightly, the lysogens of the type II restricting completely the growth of this phage (e.o.p. is less than 10(-7). As shown by the results of Southern hybridization experiments, lysogens of the type I are monolysogens, while those of the type II are double or polylysogens. Restriction of B39 in PAO(D3112) is caused by expression of a locus in the D3112 genome. The locus has been termed as cip (control of interaction of phages). The cip locus was mapped at the interval 1.3-2.45 kb of the D3112 physical map using different deletion derivatives of D3112. Expression of cip only takes place in the prophage state and not during the phage lytic development. When expressed, cip affects the early steps in the growth of B39 lowering the level of integration and transposition processes; the effect is not dependent on the way of initiation of the lytic cycle (through prophage induction or infection).  相似文献   

8.
9.
Escherichia coli (RP4 :: D3112) bacteria manifest Tcs phenotype (thirty centigrade sensitivity), i.e. the cells do not divide and form colonies under conditions of lowered temperature (30 degrees C and lower), while cells grow normally at 42 degrees C. In this work it is demonstrated that replication-transposition of D3112 and the Tcs phenotype depend on no recA system of E.coli. Following events lead to the loss of the Tcs phenotype (in E.coli (RP4 :: D3112) cells survived after growing at 30 degrees C): occurrence of mutations in bacterial, phage and plasmid genomes, elimination of DNA of hybrid plasmid or RP4 DNA (a portion of DNA) as well as integration of the hybrid plasmid into bacterial chromosome. In the latter case, the E.coli (D3112) cells acquired the properties shared by the initial bacteria and those with the Tcs phenotype. Such clones are designated tcl (thirty centigrade low sensitivity), they are able to form colonies at 30 degrees C but their growth is more slow, they maintain instability at lowered temperature and continue to produce D3112 phage. The tcl clones in which replication-transposition of D3112 DNA in less effective than in the tcs clones are a suitable object for the study of genetic rearrangements caused by D3112 phage transposon. It is shown that either complete RP4 genome or its portion are comprised between direct repeats of D3112 and are built into various chromosomal sites, i.e. cointegrates are being formed. Two types of deletions are revealed: eliminating sites of RP4 plasmid adjacent to the left end of D3112 genome as well as deletions of the D3112 genome. It is demonstrated that alteration in the growth nature of E.coli, carrying D3112 DNA, at 30 degrees C depends on the copy number of D3112 per bacterial cell.  相似文献   

10.
The processes of replication and transposition of Pseudomonas aeruginosa transposable phage D3112 in cells of Escherichia coli (D3112) and E. coli (RP4::D3112) were studied. D3112 genome is a "silent cassette" ("conex-phage"--conditionally expressible) in E. coli cells incubated at 42 degrees C. Two compulsory conditions for D3112 genome expression are incubation at 30 degrees C and the presence in cells of RP4 plasmid. Processes of replication and transposition in E. coli are coupled. RP4 plasmid stimulates D3112 DNA synthesis in E. coli at least by two order of magnitude. In correspondence with this observation is the fact that when Mg2+ is present in high concentration (0.1 M) in a cultural medium, the production of mature phage is enhanced by two order of magnitude in E. coli (RP4::D3112) or in E. coli (D3112, RP4) cells, and is approx. 10(-1)-10(-2) phage per cell. No influence of Mg on phage production is observed in E. coli (D3112) cells.  相似文献   

11.
Temperate siphophages (MP29, MP42, and MP48) were isolated from the culture supernatant of clinical Pseudomonas aeruginosa isolates. The complete nucleotide sequences and annotation of the phage genomes revealed the overall synteny to the known temperate P. aeruginosa phages such as MP22, D3112, and DMS3. Genome-level sequence analysis showed the conservation of both ends of the linear genome and the divergence at the previously identified dissimilarity regions (R1 to R9). Protein sequence alignment of the c repressor (ORF1) of each phage enabled us to divide the six phages into two groups: D3112 group (D3112, MP29, MP42, and MP48) and MP22 group (MP22 and DMS3). Superinfection exclusion was observed between the phages belonging to the same group, which was mediated by the specific interaction between the c repressor and the cognate operator. Based on these, we suggest that the temperate siphophages prevalent in the clinical strains of P. aeruginosa represent at least two distinct heteroimmunity groups.  相似文献   

12.
Bacteriophages of the family Myoviridae represent one of the most widespread domains of the biosphere substantially affecting the ecological balance of microorganisms. Interestingly, sequence analysis of genomic DNAs of large bacteriophages revealed many genes coding for proteins with unknown functions. A new approach is proposed to improve the functional identification of genes. This approach is based on comparing the genome sequence for phylogenetically and morphologically related phages showing no considerable homology at the level of genomic DNA. It is assumed that gene functions essential for the development of phages of a given family are conserved and that the corresponding genes code for similar orthologous proteins even when lacking sequence homology. The genome was sequenced and compared for two Pseudomonas aeruginosa giant bacteriophages, phiKZ and EL, which belong to a group of (phiKZ-related phages. A substantial difference in genome organization was observed, suggesting specific features of phage evolution. In addition, the problem of the minimal genome of the superfamily is discussed on the basis of the difference in size and structure between the phiKZ and EL genomes.  相似文献   

13.
14.
The hybrid plasmid RP4::D3112 becomes unstable in Escherichia coli K-12 cells under certain growth conditions. The deletion mutants of this plasmid are formed at a high frequency. All the deletions selected have a specific feature: they start in the left end, at the point of joining of plasmid and phage DNA, and remove different portions of the phage genome. The deletion mutants have been used for genetic mapping of D3112. We have localized the repressor gene cI (0-1.3 kb), 3 early genes (1.3-14.2 kb) and two groups of late genes (14.2-29.9 and 29.9-38 kb). Electron microscope studies of RP4::D3112 DNA and its deletion derivatives have shown that integration of D3112 genome in RP4 occurs through the ends of the genome, without permutations. It appears that bacterial nucleotide sequences joined to DNA from mature D3112 particles, to the right end of D3112 genome, are lost. Thus, transposable phages D3112 of Pseudomonas aeruginosa and E. coli Mu phage have some similarities in the genome organization and in the way of their integration into the host DNA.  相似文献   

15.
Summary Twelve isometric-headed bacteriophages virulent against Streptococcus salivarius subsp. thermophilus were differentiated into three subgroups by analysis of the phage genomes and the structural proteins. Subgroup I is composed of two phages (P6 and P8) with a genome size of 41.2 and 44.2 kb pairs, respectively, complete DNA homology, and identical protein composition (main proteins of sizes 39.8, 24.0, 14.8 kilodaltons in sodium dodecyl sulphate-polyacrylamide gel electrophoresis). One phage (a10/J9) with low DNA homology to the other phages was classified into subgroup II. Subgroup III consists of nine phages with a genome size of 33.8 to 36.7 kb pairs and two major structural proteins (30.9 and 24.0 kilodaltons, or 30.9 and 26.3 kilodaltons). In general, phages with different host spectra revealed different restriction enzyme patterns, and DNA homologies of various degrees were detected among all phages tested.  相似文献   

16.
The basic criterion to confirm the recombinational origin of bacteriophages belonging to the same phage family is revealing several different combinations of differentiated segments in phage genomes which determine specific functions (modules). The results of phage-to-phage comparison of several regions in genomes of closely related transposable phages of Pseudomonas aeruginosa D3112, B39, PH2, PH51, PH93, PH132 have supported the modular hypothesis for this group of phages.  相似文献   

17.
The complete DNA genomes of four distinct human papilloma viruses (human papilloma virus subtype 1a [HPV-1a], HPV-1b, HPV-2a, and HPV-4) were molecularly cloned in Escherichia coli, using the certified plasmid vector pBR322. The restriction endonuclease patterns of the cloned HPV-1a and HPV-1b DNAs were similar to those already published for uncloned DNAs. Physical maps were constructed for HPV-2a DNA and HPV-4 DNA, since these viral DNAs had not been previously mapped. By using the cloned DNAs, the genomes of HPV-1a, HPV-2a, and HPV-4 were analyzed for nucleotide sequence homology. Under standard hybridization conditions (Tm = --28 degrees C), no homology was detectable among the genomes of these papilloma viruses, in agreement with previous reports. However, under less stringent conditions (i.e., Tm = --50 degrees C), stable DNA hybrids could be detected between these viral DNAs, indicating homologous segments in the genomes with approximately 30% base mismatch. By using specific DNA fragments immobilized on nitrocellulose filters, these regions of homology were mapped. Hybridization experiments between radiolabeled bovine papilloma virus type 1 (BPV-1) DNA and the unlabeled HPV-1a, HPV-2a, or HPV-4 DNA restriction fragments under low-stringency conditions indicated that the regions of homology among the HPV DNAs are also conserved in the BPV-1 genome with approximately the same degree of base mismatch.  相似文献   

18.
The typing bacteriophages 55, 80, 83A, and 85 of Staphylococcus aureus, representative of the three major lytic groups of serological group B aureophages, have been examined for relatedness of their genomes and virion proteins. Phages 11 and 80 alpha were also examined to determine the relationship of phage 80 alpha to phages 11 and 80. Total genome hybridization measurements divided the phages into two groups. Phages 55 and 80, in the first group, had DNA homology of 50%. Phages 11, 80 alpha, 83A, and 85 formed a second group with 27 to 65% homology. Homology between the two groups was in the range of 14 to 22%. Phage 80 alpha is more closely related to phage 11 than to phage 80, though it is probably not a simple recombinant of phages 11 and 80. Restriction enzyme digestion and phage [32P]DNA hybridization analysis of the endonuclease-generated fragments from each phage DNA confirmed the findings of the DNA homology measurements. The endonuclease fragment patterns generated by EcoRI and HindIII were distinctive for each phage, confirming that none of the phages are closely related. Common sequences were present in most fragments from the phage DNAs when the labeled probe DNA was from a different phage in the same group. Cross-group probing of endonuclease fragments revealed both a diminished level of homology when similar sequences were present and the probable absence of some sequences. Virion proteins, examined by polyacrylamide gel electrophoresis, were similar in number and molecular weight for phages 11, 80 alpha, 83A, and 85, reflecting the DNA homology analyses. The virion proteins from phages 55 and 80, however, were more distinctive, and both differed from the phages in the other group.  相似文献   

19.
20.
Results of studying the novel virulent phage phiPMG1 active on Pseudomonas aeruginosa are presented. It is shown that phiPMG1 exhibits significant homology and the similarity in the overall structure with the genome of a temperate phage converts D3. Phage phiPMG1 differs from D3 in that it fails to stably lysogenize bacteria and can grow on strains carrying plasmids that cause growth inhibition of phage D3 and some other phages. This significantly diminishes the probability of horizontal gene transfer with phage phiPMG1 and suggests the possible employment of this phage in phage therapy. A comparison of phages phiPMG1 and D3 structures of genomes in demonstrated not only high homology of 65 genes, but also the presence of 16 genes in the phiPMG1 genome that were not included in the in NCBI database. Apparently, the evolution of genomes in phages of this species is mostly associated with migrations into other species of bacteria, and recombinations with phages of other species (for example, F116). A detailed analysis of structure of one region genomes, which significant nonhomology for the three D3-like phages (D3, phiPMG1 and PAJU2), revealed that the phiPMG1 genome possible closest to a hypothetical genome of ancestral phage of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号