共查询到20条相似文献,搜索用时 15 毫秒
1.
Small populations may be expected to harbour less genetic variation than large populations, but the relation between census
size (N), effective population size (N
e), and genetic diversity is not well understood. We compared microsatellite variation in four small peripheral Atlantic salmon
populations from the Iberian peninsula and three larger populations from Scotland to test whether genetic diversity was related
to population size. We also examined the historical decline of one Iberian population over a 50-year period using archival
scales in order to test whether a marked reduction in abundance was accompanied by a decrease in genetic diversity. Estimates
of effective population size (N
e) calculated by three temporal methods were consistently low in Iberian populations, ranging from 12 to 31 individuals per
generation considering migration, and from 38 to 175 individuals per generation if they were regarded as closed populations.
Corresponding N
e/N ratios varied from 0.02 to 0.04 assuming migration (mean=0.03) and from 0.04 to 0.18 (mean=0.10) assuming closed populations.
Population bottlenecks, inferred from the excess of heterozygosity in relation to allelic diversity, were detected in all
four Iberian populations, particularly in those year classes derived from a smaller number of returning adults. However, despite
their small size and declining status, Iberian populations continue to display relatively high levels of heterozygosity and
allelic richness, similar to those found in larger Scottish populations. Furthermore, in the R. Asón no evidence was found
for a historical loss of genetic diversity despite a marked decline in abundance during the last five decades. Thus, our results
point to two familiar paradigms in salmonid conservation: (1)␣endangered populations can maintain relatively high levels of
genetic variation despite their small size, and (2) marked population declines may not necessarily result in a significant
loss of genetic diversity. Although there are several explanations for such results, microsatellite data and physical tagging
suggest that high levels of dispersal and asymmetric gene flow have probably helped to maintain genetic diversity in these
peripheral populations, and thus to avoid the negative consequences of inbreeding. 相似文献
2.
A numerical method for computing the eigenvalue variance effective size of a subdivided population connected by any fixed pattern of migration is described. Using specific examples it is shown that total effective size of a subdivided population can become less than the sum of the subpopulation sizes as a result of directionalities in the pattern of migration. For an extension of the model with threshold harvesting and local deterministic logistic population dynamic we consider the problem of maximizing the total harvesting yield with constraints on the total effective size. For some simple source-sink systems and more complicated population structures where subpopulations differ in their degree of isolation, it is shown to be optimal, for a given total effective size, to raise the harvesting thresholds relatively more in small and in isolated populations. Finally, we show how the method applies to populations which are supplemented, either intentionally or unintentionally. It is shown that the total effective size can be reduced by several orders of magnitude if the captive component of a population is much smaller than the wild component, even with symmetric backward migration. 相似文献
3.
Jouni Aspi Eeva Roininen Jukka Kiiskilä Minna Ruokonen Ilpo Kojola Leo Bljudnik Pjotr Danilov Samuli Heikkinen Erkki Pulliainen 《Conservation Genetics》2009,10(4):815-826
We examined the genetic diversity and structure of wolf populations in northwestern Russia. Populations in Republic of Karelia
and Arkhangelsk Oblast were sampled during 1995–2000, and 43 individuals were genotyped with 10 microsatellite markers. Moreover,
118 previously genotyped wolves from the neighbouring Finnish population were used as a reference population. A relatively
large amount of genetic variation was found in the Russian populations, and the Karelian wolf population tended to be slightly
more polymorphic than the Arkhangelsk population. We found significant inbreeding (F = 0.094) in the Karelian, but not in the Arkhangelsk population. The effective size estimates of the Karelian wolf population
based on the approximate Bayesian computation and linkage disequilibrium methods were 39.9 and 46.7 individuals, respectively.
AMOVA-analysis and exact test of population differentiation suggested clear differentiation between the Karelian, Arkhangelsk
and Finnish wolf populations. Indirect estimates of gene flow based on the level of population differentiation (ϕ
ST
= 0.152) and frequency of private alleles (0.029) both suggested a low level of gene flow between the populations (Nm = 1.4 and Nm = 3.7, respectively). Assignment analysis of Karelian and Finnish populations suggested an even lower number of recent migrants
(less than 0.03) between populations, with a larger amount of migration from Finland to Karelia than vice versa. Our findings
emphasise the role of physical obstacles and territorial behaviour in creating barriers to gene flow between populations in
relatively limited geographical areas, even in large-bodied mammalian species with long-distance dispersal capabilities and
an apparently continuous population structure. 相似文献
4.
We examined demographic data and microsatellite loci in a supplemented population of Chinook salmon (Oncorhynchus tshawytscha) seeking evidence of changes in genetic diversity or for reduction of the effective size (N e ) arising from supplementation (i.e., the Ryman-Laikre effect). A supplementation program in the North Fork Stillaguamish River (Washington State, USA) was intended to increase abundance (N) and maintain genetic diversity in the depressed population. Since supplementation expanded in 1986, about 9% of the population has been randomly collected for broodstock. The resulting progeny are released into the wild and comprised 10–60% of all returning adults. Genotypic data were obtained at 14 microsatellite loci from adult samples collected in four years between 1985 and 2001; these data indicated that the allelic richness and expected heterozygosity did not significantly change during this period and that genetic diversity in the captive and wild progeny was similar. The inbreeding and variance N e estimated from adult escapement between 1974 and 2004 were different for the same generation, but the ratios of effective size to census size were very similar and decreased following supplementation. The variance N e by the temporal method increased over time, but it is difficult to draw conclusions because of necessary assumptions made during the calculations. Based on these results we conclude that: (1) genetic diversity has been maintained over multiple generations of supplementation; (2) supplementation has not contributed to a loss of genetic diversity; and (3) monitoring genetic effects of supplementation is not straightforward, but it can be useful to look at both demographic and genetic data simultaneously. 相似文献
5.
The effects of tributyltin (TBT) compounds on gill morphology were examined in the mummichog, Fundulus heteroclitus , in 96-h LC50 and 6-week sublethal exposures. Morphometry was used for the identification and quantification of effects with the light microscope. A 96-h LC50 of 17.2 μg 1 1 was determined. Morphometric analysis of gill tissues revealed hypertrophy of the lamellar epithelium in fish exposed to 17.2 μg 1–1. Relative diffusing capacity was significantly decreased (−41 %); ( P <0.05, ANOVA, Bonferroni t -test). At 35.6 μg 1−1 , TBT exposure resulted in a significant reduction (− 40%) in the volume of the lamellar blood channels. Both of these observations occurred in fish that showed signs of acute poisoning including loss of equilibrium. In fish exposed to sublethal concentrations of 0.105–2.000 μg TBT 1−1 for 6 weeks, there were no pathological changes in the gill. There were no treatment-related changes in the surface morphology of the gills of fish from both experiments upon scanning electron microscopic examination. Although gill pathology was observed in acutely toxic exposures, it does not appear to be a major mechanism of TBT toxicity. 相似文献
6.
Populations of endangered taxa in recently fragmented habitats often show high levels of genetic structure, but the role that contemporary versus historical processes play in generating this pattern is unclear. The eastern massasauga rattlesnake (Sistrurus c. catenatus) is an endangered snake that presently occurs throughout central and eastern North America in a series of populations that are isolated because of habitat fragmentation and destruction. Here, we use data from 19 species-specific microsatellite DNA loci to assess the levels of genetic differentiation, genetic effective population size, and contemporary and historical levels of gene flow for 19 populations sampled across the range of this snake. Eastern massasaugas display high levels of genetic differentiation (overall θ(Fst) = 0.21) and a Bayesian clustering method indicates that each population represents a unique genetic cluster even at regional spatial scales. There is a twofold variation in genetically effective population sizes but little genetic evidence that populations have undergone recent or historical declines in size. Finally, both contemporary and historical migration rates among populations were low and similar in magnitude even for populations located <7 km apart. A test of alternate models of population history strongly favours a model of long-term drift-migration equilibrium over a recent isolation drift-only model. These results suggest that recent habitat fragmentation has had little effect on the genetic characteristics of these snakes, but rather that this species has historically existed in small isolated populations that may be resistant to the long-term negative effects of inbreeding. 相似文献
7.
Assessing patterns of genetic variation in rare endangered species is critical for developing both in situ and ex situ conservation strategies. Pinus dabeshanensis Cheng et Law is an endangered species endemic to the Dabieshan Mountains of eastern China. To obtain fundamental information of genetic diversity, population history, effective population size, and gene flow in this species, we explored patterns of genetic variation of natural populations, in addition to an ex situ conserved population, using expressed sequence tag-simple sequence repeats (EST-SSR) markers. Our results revealed moderate levels of genetic diversity (e.g., HE = 0.458 vs. HE = 0.423) and a low level of genetic differentiation (FST = 0.028) among natural and conserved populations relative to other conifers. Both contemporary and historical migration rates among populations were high. Bayesian coalescent-based analyses suggested that 3 populations underwent reductions in population size ca. 10,000 yr ago, and that two populations may have experienced recent genetic bottlenecks under the TPM. Bayesian clustering revealed that individuals from the ex situ population were largely assigned to the ‘red’ cluster. Additionally, our results identified private alleles in the natural populations but not in the ex situ population, suggesting that the ex situ conserved population insufficiently represents the genetic diversity present in the species. Past decline in population size is likely to be due to Holocene climate change. Based on the genetic information obtained for P. dabeshanensis, we propose some suggestions for the conservation and efficient management of this endangered species. 相似文献
8.
Landscape genetics and hierarchical genetic structure in Atlantic salmon: the interaction of gene flow and local adaptation 总被引:3,自引:1,他引:3
Disentangling evolutionary forces that may interact to determine the patterns of genetic differentiation within and among wild populations is a major challenge in evolutionary biology. The objective of this study was to assess the genetic structure and the potential influence of several ecological variables on the extent of genetic differentiation at multiple spatial scales in a widely distributed species, the Atlantic salmon, Salmo salar . A total of 2775 anadromous fish were sampled from 51 rivers along the North American Atlantic coast and were genotyped using 13 microsatellites. A Bayesian analysis clustered these populations into seven genetically and geographically distinct groups, characterized by different environmental and ecological factors, mainly temperature. These groups were also characterized by different extent of genetic differentiation among populations. Dispersal was relatively high and of the same magnitude within compared to among regional groups, which contrasted with the maintenance of a regional genetic structure. However, genetic differentiation was lower among populations exchanging similar rates of local as opposed to inter-regional migrants, over the same geographical scale. This raised the hypothesis that gene flow could be constrained by local adaptation at the regional scale. Both coastal distance and temperature regime were found to influence the observed genetic structure according to landscape genetic analyses. The influence of other factors such as latitude, river length and altitude, migration tactic, and stocking was not significant at any spatial scale. Overall, these results suggested that the interaction between gene flow and thermal regime adaptation mainly explained the hierarchical genetic structure observed among Atlantic salmon populations. 相似文献
9.
Yaisel Juan Borrell David Bernardo Gloria Blanco Emilia Vázquez José Antonio Sánchez 《Conservation Genetics》2008,9(4):807-819
Rivers in Asturias (northern Spain) constitute the southern limit of the distribution of Atlantic salmon (Salmo salar L.) in Europe, a biological resource facing one of the more serious challenges for conservation today. In this work, eight microsatellite
loci have been used to analyse samples collected in 1993 and 1999 from four Asturian rivers (Esva, Narcea, Sella, and Cares),
obtaining information about the temporal and the spatial genetic variation in these populations and, in addition, estimations
of their effective population sizes. The temporal analysis revealed a general decrease in all the estimated genetic variability
parameters when samples from 1993 (mean A
(1993) = 6.47, mean H
O(1993) = 0.472, mean H
E(1993) = 0.530) were compared with those obtained in 1999 (mean A
(1999) = 6.16, mean H
O(1999) = 0.460, mean H
E(1999) = 0.490). This reduction was particularly notable for the case of the Esva river. Our results pointed to a pattern of spatial
genetic differentiation inside the Asturian region (F
ST (1993) = 0.016 P < 0.01; F
ST (1999) = 0.023 P < 0.01). Using the standard Temporal Method we found estimates of N
e^
(Esva) = 75.1 (33.2–267.2); N
e^
(Cares) = 96.6 (40.0–507.5), N
e^
(Sella) = 106.5 (39.1–9396.4) and N
e^
(Narcea) = 113.9 (42.0–3693.3). The use of likelihood-based methods for the N
e^ estimations improved the results (smaller CIs) for the Esva and Cares rivers (N
e^
(Esva) = 63.9 (32.3–165.3); N
e^
(Cares) = 76.4 (38.8–202.0) using a Maximum likelihood approach) and suggested the presence of larger populations for the Sella and
Narcea rivers (N
e^≈200). These results showed that the Asturian Atlantic salmon populations (in particular Esva and Cares river populations)
could be close to the conservation genetic borderline for avoiding inbreeding depression although we discuss some implications
of the analysis of temporal genetic change in populations with overlapping generations. 相似文献
10.
Synopsis Juvenile Atlantic salmon of the Pigou and Bouleau Rivers, Quebec, were studied during the summer of 1972 and 1973. Growth increments for Pigou salmon averaged 36–50 mm yr–1 and smolts averaged 2.9 yrs old. Bouleau salmon grew slower (26–41 mm yr–1) and became smolts at a slightly older mean age (3.1 yrs). Mature male parr were more abundant in all age-groups from the Plgou River, possibly because of the faster growth. In terms of management, the Pigou River has little potential for increased salmon production because of limited habitat. On the other hand, the Bouleau River has considerable potential, and salmon production could be increased if the upper reaches were made accessible to migrating salmon.Contribution number 36 of the Matamek Research Station, Woods Hole Oceanographic Institute. 相似文献
11.
Four tributaries of Lake St-Jean (Québec, Canada) are used for spawning and juvenile habitat by land-locked Atlantic salmon. Spawning runs have drastically declined since the mid-1980s, and consequently, a supportive-breeding programme was undertaken in 1990. In this study, we analysed seven microsatellite loci and mtDNA, and empirically estimated effective population sizes to test the hypotheses that (i) fish spawning in different tributaries form genetically distinct populations and (ii) the supportive breeding programme causes genetic perturbations on wild populations. Allele frequency distribution, molecular variance and genetic distance estimates all supported the hypothesis of genetic differentiation among salmon from different tributaries. Gene flow among some populations was much more restricted than previously reported for anadromous populations despite the small geographical scale (40 km) involved. Both mtDNA and microsatellites revealed a more pronounced differentiation between populations from two tributaries of a single river compared with their differentiation with a population from a neighbouring river. The comparison of wild and F1-hatchery fish (produced from breeders originating from the same river) indicated significant changes in allele frequencies and losses of low-frequency alleles but no reduction in heterozygosity. Estimates of variance and inbreeding population size indicated that susceptibility to genetic drift and inbreeding in one population increased by twofold after only one generation of supplementation. 相似文献
12.
Stamenkovic-Radak M Rasic G Savic T Kalajdzic P Kurbalija Z Kenig B Andjelkovic M 《Genetica》2008,133(1):57-63
We analyzed changes in the genetic structure and effective population size of two ecologically distinct populations of Drosophila subobscura over several years. Population sizes of D. subobscura in beech and oak wood habitats for a period of 6 years were estimated by the capture-mark-release-recapture method. Inversion polymorphism
parameters were also assessed in the same populations for a period of 3 years.
Significant differences in the numbers of individuals were observed between sexes. This affected the effective population
sizes between particular years. The ratio of the effective size over the cenzus dropped significantly in beech wood in 2 years.
Although overall heterozygosity remained unchanged during the years in both habitats, frequencies of gene arrangements on
five chromosomes show variability. After the bottleneck, some complex chromosomal arrangements appeared for the first time
in both populations. Standard gene arrangements of chromosome A increased in frequency over the years in each habitat, while
the complex arrangements remain rather stable and specific for each population.
The results obtained indicate that the population structure may significantly change if the effective size of D. subobscura population is reduced, which is mostly related to microclimatic changes in habitats. Based on the results to date, monitoring
of microevolutionary changes by using D. subobscura and its relatives seems a promising way to study the effects of global climate changes. 相似文献
13.
We assessed the effects of population size and genetic relatedness on rates of pollen gene flow into experimental populations of the insect-pollinated, self-incompatible plant Raphanus sativus. We created synthetic populations of sizes 2, 5, 10, and 20 with three genetic structures (full siblings, half siblings, and unrelated plants). Following pollination in a natural setting, we conducted a simple paternity exclusion analysis using the allozyme genotypes of progeny to measure apparent gene flow and Monte Carlo simulations to estimate total gene flow. Estimates of apparent pollen gene flow rates ranged from 0 to 100% and were similar in rank to estimates of total gene flow. There were significant effects of population size and relatedness on the rate of apparent gene flow, and there were significant population size by relatedness interactions. Populations of size 2 had higher gene flow rates than larger populations, gene flow being negatively associated with the level of cross-compatibility (as measured by hand pollinations). Gene flow into populations of size 2 was also negatively associated with the distance to the nearest population of size 10 or 20. These results suggest that interactions among demography (population size), genetics (cross-compatibility), and ecology (pollinator behavior) are important influences on pollen gene flow rates into small plant populations. 相似文献
14.
L. W. ANDERSEN E. W. BORN I. GJERTZ Ø. WIIG L.-E. HOLM & C. BENDIXEN 《Molecular ecology》1998,7(10):1323-1336
The population structure of the Atlantic walrus, Odobenus rosmarus rosmarus , was studied using 11 polymorphic microsatellites and restriction fragment length polymorphism detected in the NADH-dehydrogenase ND1, ND2 and ND3/4 segments in mtDNA. A total of 105 walrus samples were analysed from northwest (NW) Greenland, east (E) Greenland, Svalbard and Franz Joseph Land. Two of the 10 haplotypes detected in the four samples were diagnostic for the NW Greenland sample, which implied that the group of walruses in this area is evolutionary distinct from walruses in the other three areas. One individual sampled in E Greenland exhibited a Pacific haplotype, which proved a connection between the Pacific walrus and walruses in eastern Greenland. The Franz Joseph Land, Svalbard and E Greenland samples shared the most common haplotype, indicating very little differentiation at the mtDNA level. Gene flow ( Nm ) estimates among the four areas indicated a very restricted exchange of female genes between NW Greenland and the more eastern Atlantic Arctic samples, and a closer relationship between the three samples composing the eastern Atlantic Arctic. The genetic variation at 11 polymorphic microsatellite loci grouped individuals into three populations, NW Greenland, E Greenland and a common Franz Joseph Land–Svalbard population, which were connected by moderate gene flow. 相似文献
15.
A major goal of population genetics research is to identify the relative influences of historical and contemporary processes that serve to structure genetic variation. Most population genetic models assume that populations exist in a state of migration-drift equilibrium. However, in the past this assumption has rarely been verified, and is likely rarely achieved in natural populations. We assessed the equilibrium status at both local and regional scales of the Atlantic killifish, Fundulus heteroclitus . This species is a model organism for the study of adaptive clinal variation, but has also experienced a complicated history of range expansion and secondary contact following allopatric divergence, potentially obscuring the influence of contemporary evolutionary processes. Presumptively neutral genetic markers (microsatellites) demonstrated zones of secondary intergradation among coastal populations centred around northern New Jersey and the Chesapeake Bay region. Analysis of genetic variation indicated isolation by distance among some populations and provided supporting evidence that the Delaware Bay, but not the Chesapeake Bay, has acted as a barrier to dispersal among coastal populations. Bayesian estimates indicated large effective population sizes and low migration rates, and were in good agreement with empirically derived estimates of population and neighbourhood size from mark–recapture studies. These data indicate that populations are not in migration-drift equilibrium at a regional scale, and suggest that contributing factors include large population size combined with relatively low migration rates. These conditions should be considered when interpreting the evolutionary significance of the distribution of genetic variation among F. heteroclitus populations. 相似文献
16.
Barker JS 《Molecular ecology》2011,20(21):4452-4471
Allozyme and microsatellite data from numerous populations of Drosophila buzzatii have been used (i) to determine to what degree N(e) varies among generations within populations, and among populations, and (ii) to evaluate the congruence of four temporal and five single-sample estimators of N(e) . Effective size of different populations varied over two orders of magnitude, most populations are not temporally stable in genetic composition, and N(e) showed large variation over generations in some populations. Short-term N(e) estimates from the temporal methods were highly correlated, but the smallest estimates were the most precise for all four methods, and the most consistent across methods. Except for one population, N(e) estimates were lower when assuming gene flow than when assuming populations that were closed. However, attempts to jointly estimate N(e) and immigration rate were of little value because the source of migrants was unknown. Correlations among the estimates from the single-sample methods generally were not significant although, as for the temporal methods, estimates were most consistent when they were small. These single-sample estimates of current N(e) are generally smaller than the short-term temporal estimates. Nevertheless, population genetic variation is not being depleted, presumably because of past or ongoing migration. A clearer picture of current and short-term effective population sizes will only follow with better knowledge of migration rates between populations. Different methods are not necessarily estimating the same N(e) , they are subject to different bias, and the biology, demography and history of the population(s) may affect different estimators differently. 相似文献
17.
MICHAEL M. HANSEN DYLAN J. FRASER† KRISTIAN MEIER KAREN-LISE D. MENSBERG 《Molecular ecology》2009,18(12):2549-2562
Analyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human activities. Here, we analyse 21 microsatellite loci in historical (archived scales from 1927 to 1956) and contemporary samples of brown trout ( Salmo trutta ) from six neighbouring rivers in Denmark, to compare the genetic structure of wild populations before and after population declines and stocking with nonlocal strains of hatchery trout. We show that all populations have been strongly affected by stocking, with admixture proportions ranging from 14 to 64%. Historical population genetic structure was characterized by isolation by distance and by positive correlations between historical effective population sizes and habitat area within river systems. Contemporary population genetic structure still showed isolation by distance, but also reflected differences among populations in hatchery trout admixture proportions. Despite significant changes to the genetic composition within populations over time, dispersal rates among populations were roughly similar before and after stocking. We also assessed whether population declines or introgression by hatchery strain trout should be the most significant conservation concern in this system. Based on theoretical considerations, we argue that population declines have had limited negative effects for the persistence of adaptive variation, but admixture with hatchery trout may have resulted in reduced local adaptation. Collectively, our study demonstrates the usefulness of analysing historical samples for identifying the most important consequences of human activities on the genetic structure of wild populations. 相似文献
18.
Sewall Wright demonstrated 70 years ago thatthe number of migrants required to maintainspecified levels of gene flow (i.e. avoidexcessive inbreeding) is virtually independentof the size of the recipient population. According to conventional wisdom, this idea isvalid provided population size exceeds 20. Itis well known that this independence implicitlyassumes that a population's effective size(N
e) is equal to its census size(N). However, it is not obvious whetherindependence between the required number ofmigrants (to avoid excessive inbreeding) andpopulation size constitutes a reasonableassumption for real populations of conservationconcern. Relying on empirical data, wedemonstrate that for real populations, theassumption (i.e. N
e = N) isroutinely violated to a degree such that therequired number of migrants is stronglydependent on the size of the recipientpopulation. Because a population's effectivesize (N
e) is typically much smallerthan its census size (N), the number ofmigrants required to avoid inbreeding isactually dependent on N even when it isconsiderably greater than 20. For example,when N
e/N = 0.1, the number ofmigrants required to maintain the inbreedingcoefficient (F) at 0.2 doubles (from 4 to8) as N increases from 9 to 60. Similarly, when N
e/N = 0.05, thenumber of migrants required increases by 50%as N increases from 18 to 45, andincreases again by 50% as N increasesfrom 45 to 260. Thus, for populations muchlarger than 20, the required number of migrantsincreases asymptotically with N, anddramatically so when N
e/N1. Simple conventions regarding the requisitenumber of migrants may not apply to manypopulations of conservation concern. Geneticmanagement should routinely rely on models thatexplicitly account for this and other recentconsiderations. Failure to do so mayjeopardize the viability of populations thatare sensitive to altered levels of inbreeding. 相似文献
19.
Kristin A. Mylecraine Natalie L. Bulgin H. Lisle Gibbs Peter D. Vickery Dustin W. Perkins 《Conservation Genetics》2008,9(6):1633-1638
The Florida grasshopper sparrow, Ammodramus savannarum floridanus, is a non-migratory, endangered subspecies endemic to the prairie region of south-central Florida. It has experienced significant
population declines and is currently restricted to five locations. We found substantial levels of variation in microsatellites
and mtDNA control region sequences, estimates of inbreeding genetic effective population sizes that were much larger than
the estimated census size, and no evidence of inbreeding within five sampled populations (n = 105). We also found a lack of genetic structure among populations (F
ST = 0.0123 for microsatellites and θ = 0.008 for mtDNA), and evidence for dispersal between populations, with 7.6% of all individuals
identified as immigrants to their population of capture. We suggest that the subspecies be managed as a single management
unit on a regional scale rather than as multiple management units on a local subpopulation scale. There is still a limited
opportunity to preserve much of the present genetic variation in this subspecies, if immediate measures are taken to reverse
the current population decline before this variation is reduced by genetic drift. 相似文献
20.
Gene flow and drift shape the distribution of neutral genetic diversity in metapopulations, but their local rates are difficult to quantify. To identify gene flow between demes as distinct from individual migration, we present a modified Bayesian method to genetically test for descendants between an immigrant and a resident in a nonmigratory life stage. Applied to a metapopulation of pond-breeding European newts (Triturus cristatus, T. marmoratus) in western France, the evidence for gene flow was usually asymmetric and, for demes of known census size (N), translated into maximally seven reproducing immigrants. Temporal sampling also enabled the joint estimation of the effective demic population size (Ne) and the immigration rate m (including nonreproductive individuals). Ne ranged between 4.1 and 19.3 individuals, Ne/N ranged between 0.05 and 0.65 and always decreased with N; m was estimated as 0.19-0.63, and was possibly biased upwards. We discuss how genotypic data can reveal fine-scale demographic processes with important microevolutionary implications. 相似文献