首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— The redistribution of rapidly migrating [3H]leucine-labelled proteins and [3H]fucose-labelled glycoproteins was studied in ligated regenerating hypoglossal and vagus nerves of the rabbit. When regenerating and contralateral hypoglossal nerves were ligated 16 h after labelling of the nerve cell bodies, rapidly migrating proteins and glycoproteins accumulated distal to the ligatures indicating a rapid retrograde transport from the peripheral parts of the nerves within 6 h. The retrograde accumulation of both proteins and glycoproteins was greater on the regenerating side than on the contralateral side at both 1 and 5 weeks after a nerve crush. Labelled proteins and glycoproteins also accumulated proximal to the ligatures, indicating a delayed rapid anterograde phase of axonal transport. The accumulation of this phase was also greater on the regenerating side 1 week after a nerve crush for both labelled proteins and glycoproteins. One week after a crush of the cervical vagus nerve, rapidly migrating proteins and glycoproteins redistributed between he crush zone and a proximal ligature applied 16 h after labelling of the nerve cell bodies. A retrograde accumulation occurred distal to the ligature within 6 h, indicating a rapid retrograde transport from the crush zone.  相似文献   

2.
—The redistribution of rapidly migrating [3H]leucine-labelled proteins was studied using double ligatures applied to the vagus nerve and single ligatures, applied to the hypoglossal nerves. Rapidly migrating proteins accumulating for 16 h proximal to a distal ligature of the cervical vagus redistributed to give a retrograde accumulation distal to a second ligature. Within 6 h a substantial redistribution occurred indicating a rapid retrograde transport. After 21 h there was a further accumulation with 70 per cent of the labelled material accumulating at the distal end of the isolated nerve segment and 16 per cent accumulating at the proximal end. It was shown that about a half of the retrograde accumulation was dependent on the distal accumulation zone. Rapidly migrating proteins accumulated distal to a ligature applied to the hypoglossal nerve 16 h after labelling of the nerve cell bodies indicating that a rapid retrograde transport of labelled macromolecules occurs from the peripheral parts of the nerve in the tongue. Labelled proteins accumulated proximal to ligatures and transections of both the hypoglossal and vagus nerve when applied 16 h after labelling of the nerve cell bodies, indicating the presence of axonal proteins, migrating at a rate of transport intermediate to that of rapidly and slowly migrating proteins.  相似文献   

3.
Abstract— The transport, distribution and turnover of choline O -acetyltransferase (ChAc, EC 2.3.1.6) and acetylcholinesterase (AChE, EC 3.1.1.7) in the vagus and hypoglossal nerves were studied in adult rabbits. The enzymes accumulated proximally and distally to single and double ligatures on both nerves and thus indicated both a proximo-distal and retrograde flow of the enzymes. Double ligature experiments indicated that only 5–20 per cent of the enzymes were mobile in the axon. The rate of accumulation of both enzymes above a single ligature corresponded to the slow rate of axonal flow provided that all the enzymes were mobile, but to an intermediate or fast flow if only a small part of the enzymes was transported. The distribution of ChAc along the hypoglossal neurons was studied and only 2 per cent of ChAc was confined to cell bodies, 42 per cent was localized to the main hypoglossal nerve trunks and 56 per cent to the preterminal axons and axon terminals in the tongue. The ratio of AChE to ChAc was about 3 in the hypoglossal nerve and 32 in the vagus nerve.
Transection of the hypoglossal nerve was followed by a decrease in the activity of ChAc in the hypoglossal nucleus and nerve and in the axons and their terminals in the tongue. The activity of AChE decreased in the hypoglossal nucleus and nerve but not in the tongue. The half-life of ChAc in preterminal axons and terminals of the hypoglossal nerve was estimated to be 16-21 days from the results obtained on transport, axotomy and distribution of the enzyme. Intracisternal injection of colchicine inhibited the cellulifugal transport of both enzymes and led to an increase in enzyme activity in the hypoglossal nucleus.  相似文献   

4.
—[3H]Leucine, [3H]glucosamine and [3H]fucose were incorporated in vitro into proteins in frog sciatic ganglia and subsequently transported at a rapid rate along the sciatic nerve towards a ligature, in front of which they accumulated. The synthesis of transported fucose-labelled proteins is closely linked to protein synthesis but is not dependent on RNA synthesis, as judged by effects after incubation for 17 h in the presence of cycloheximide and actinomycin D. Labelled ganglionic as well as transported material were solubilized in sodium dodecyl sulphate and characterized by polyacrylamide gel electrophoresis. The bulk of ganglionic proteins, labelled with any of the precursors used, had molecular weights exceeding 40,000. The radioactivity patterns of leucine- and glucosamine-labelled ganglionic proteins showed similarities with dominant peaks corresponding to molecular weights of about 75,000 and 50,000. The last peak was almost lacking in fucose-labelled ganglionic components. Leucine- and glucosamine labelled-transported proteins exhibited characteristic and similar electrophoretic distributions in contrast to the pattern of fucose-labelled nerve proteins, which was more polydisperse. The most conspicious nerve proteins corresponded to molecular weights of about 75,000 and 18,000. There was a remarkable agreement in the profile of leucine-labelled transported nerve proteins and fucose-labelled ganglionic proteins. In the light of these observations the possibility that glycoproteins constitute a large part of rapidly transported proteins will be discussed.  相似文献   

5.
EFFECTS OF COLCHICINE ON AXONAL TRANSPORT IN PERIPHERAL NERVES   总被引:6,自引:1,他引:5  
—Colchicine injected intracisternally markedly inhibited the rapid migration (300-400 mm/day) of labelled proteins in the hypoglossal and vagus nerve of the rabbit. The transport of acetylcholinesterase (EC 3.1.1.7) and choline acetyltransferase (EC 2.3.1.6) previously shown to move with the slow (5-26 mm/day) phase of axoplasmic transport in these nerves, was only partially blocked. In view of this differential effect on axonal flow, we suggest that the neurotubules, on which colchicine acts preferentially, are primarily involved in the rapid (300-400 mm/day) axoplasmic flow. After local injection of colchicine into the nerves both the rapidly migrating labelled proteins and the enzymes (AChE and ChAc) accumulated above the site of injection to the same degree as they accumulate above a nerve ligation. Since this blockage of enzyme transport occurred after concentrations of colchicine much higher than those used for intracisternal injections these findings after local injection may represent more severe effects on axonal transport systems.  相似文献   

6.
—An in vitro system from the frog has been used to study fast axonal transport of glycoproteins. The migration of [3H]fucose-, [3H]glucosamine- and [35S]sulphate-labelled material was followed from the dorsal ganglia, along the sciatic nerve towards the gastrocnemius muscle. The distribution in different subcellular fractions, effect of cycloheximide and transport kinetics did not differ very much between fucose- and glucosamine-incorporation into the nerve. Cycloheximide blocked the synthesis of TCA-insoluble radioactivity, which was transported at a rate of 60–90 mm per day at 18°C, more effectively than the synthesis of stationary proteins in the ganglia. About 10 per cent of the TCA-insoluble and transported radioactivity was extracted by chloroform-methanol (2:1, v/v) and might be glycolipids and the rest glycoproteins. Results suggest that TCA-soluble activity, which was recovered in the nerve, originated in part from labelled macromolecules consumed along the axons. The rapidly transported TCA-insoluble radioactivity was 85 per cent particulate and mainly associated with structures sedimenting in the microsomal fraction. [35S]Sulphate-labelled TCA-insoluble material was resistant towards chloroform-methanol (2:1, v/v) extraction and rapidly transported from the ganglia into the nerve. The synthesis was inhibited by cycloheximide. The material, probably proteoglycans, represented a quantitatively minor part of transported glycoproteins.  相似文献   

7.
1. Confluent human skin fibroblasts maintained in a chemically defined medium incorporate l-[1-3H]fucose in a linear manner with time into non-diffusible macromolecules for up to 48h. Chromatographic analysis demonstrated that virtually all the macromolecule-associated 3H was present as [3H]fucose. 2. Equilibrium CsCl-density-gradient centrifugation established that [3H]fucose-labelled macromolecules released into the medium were predominantly glycoproteins. Confirmation of this finding was provided by molecular-size analyses of the [3H]fucose-labelled material before and after trypsin digestion. 3. The [3H]fucose-labelled glycoproteins released into fibroblast culture medium were analysed by gel-filtration chromatography and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. These techniques demonstrated that the major fucosylated glycoprotein had an apparent mol.wt. of 230000–250000; several minor labelled species were also detected. 4. Dual-labelling experiments with [3H]fucose and 14C-labelled amino acids indicated that the major fucosylated glycoprotein was synthesized de novo by cultured fibroblasts. The non-collagenous nature of this glycoprotein was established by three independent methods. 5. Gel-filtration analysis before and after reduction with dithiothreitol showed that the major glycoprotein occurs as a disulphide-bonded dimer when analysed under denaturing conditions. Further experiments demonstrated that this glycoprotein was the predominant labelled species released into the medium when fibroblasts were incubated with [35S]cysteine. 6. The relationship between the major fucosylated glycoprotein and a glycoprotein, or group of glycoproteins, variously known as fibronectin, LETS protein, cell-surface protein etc., is discussed.  相似文献   

8.
—Rabbit vagus nerves and nodose ganglia were incubated in vitro for up to 24 h in two-compartment chambers. After the introduction of [3H]leucine or [3H]fucose to the ganglion compartments a rapid anterograde axonal transport of labelled proteins or glycoproteins occurred at rates of 330 ± 44 mm/day and 336 ± 30 mm/day respectively. Accumulation of [3H]leucine-labelled proteins proximal to a ligature on the nerve was unaffected by a delay of up to 6 h between removal of the nerve and labelling in vitro. Accumulation was prevented by inhibition of protein synthesis in the ganglion but not in the axon and was inhibited in a graded manner by colchicine.  相似文献   

9.
The in vivo incorporation of [3 5S]sulfate, [3H]fucose and [3H]leucine into sciatic nerve myelin was investigated. Polyacrylamide gel electrophoresis of the proteins indicated that the 3 5S-labeling of proteins occurred almost exclusively in the major myelin protein. A smaller myelin glycoprotein migrating just ahead of the major one was labeled with [3H]fucose but did not incorporate 3 5S to a detectable extent. There was little or no 3 5S associated with basic proteins on polyacrylamide gels when the proteins were extracted with chloroform/methanol. Fucose-labeled myelin glycoproteins were converted to glycopeptides by pronase digestion. The glycopeptides gave a single peak on Sephadex G-50 in which the 3H and 3 5S coincided. The association of 3 5S with glycopeptides was not caused by binding of sulfatide or free inorganic sulfate. This study shows that the major myelin protein in the sciatic nerve of the rat is glycosylated and sulfated.  相似文献   

10.
A number of axonal proteins display changes in phosphorylation during goldfish optic nerve regeneration (Larrivee and Grafstein, 1989). (1) To determine whether the phosphorylation of these proteins was closely linked to their synthesis in the retinal ganglion cell body, cycloheximide was injected intraocularly into goldfish whose optic nerves had been regenerating for 3 weeks. Cycloheximide reduced the incorporation of [3H]proline and32P orthophosphate into total nerve protein by 84% and 46%, respectively. Of the 20 individual proteins examined, 17 contained less than 15% of the [3H]proline label measured in corresponding controls, whereas 18 proteins contained 50% or more of the32P label, suggesting that phosphorylation was largely independent of synthesis. (2) To deterine whether the proteins were phosphorylated in the ganglion cell axons, axonal transport of proteins was blocked by intraocular injection of vincristine. Vincristine reduced [3H]proline labeling of total protein by 88% and32P labeling by 49%. Among the individual proteins [3H]proline labeling was reduced by 90% or more in 18 cases but32P labeling was reduced only by 50% or less. (3) When32P was injected into the cranial cavity near the ends of the optic axons, all of the phosphoproteins were labeled more intensely in the optic tract than in the optic nerve. These results suggest that most of the major phosphoproteins that undergo changes in phosphorylation in the course of regeneration are phosphorylated in the optic axons.Abbreviations SDS sodium lauryl sulfate - GAP growth associated protein - TCA trichloracetic acid - kD kilodalton  相似文献   

11.
Alterations in the axonal transport of proteins, glycoproteins, and gangliosides in sensory neurons of the sciatic nerve were examined in adult male rats exposed to acrylamide (40 mg ip/kg body wt/d for nine consecutive days). Twenty-four hours after the last dose, the L5 dorsal root ganglion (DRG) was injected with either [35S]methionine to label proteins or [3H]glucosamine to label glycoproteins and gangliosides. The downflow patterns of radioactivity for [35S]methionine-labeled proteins and [3H]glucosamine-labeled gangliosides were unaltered by acrylamide treatment. In contrast, the outflow pattern of labeled glycoproteins displayed a severely attenuated crest with no alteration in velocity, suggesting a preferential transfer with the unlabeled stationary components in the axolemma. Retrograde accumulation of transported glycoproteins and gangliosides was unaltered for at least 6 h; however, by 24 h, there was a 75% decrease in the amount of accumulated material. The accumulation of [35S]methionine-labeled proteins was not altered. Autoradiographic analysis revealed an acrylamide-induced paucity of transported radiolabeled glycoproteins selectively in myelinated axons with no effect on "nonmyelinated" axons. The pattern of transported proteins was similar in both control and acrylamide-exposed animals. These results suggest a preferential inhibition of glycosylation or axonal transport of glycoproteins in neurons bearing myelinated axons. More importantly, it suggests that interpretations of axonal transport data must be made with the consideration of alterations in selective nerve fibers and not with the tacit assumption that all fibers in the nerve population are equally affected.  相似文献   

12.
—The concentration of lipid- and non-lipid-bound sialic acid in the optic nerve tract and tectum and in whole brain of fish was estimated. The incorporation of sialic acid into gangliosides and non-lipid components was studied in fish by intracranial or intraocular application of N-[3H]acetylmannosamine or N-[3H]acetylglucosamine. After intracranial injection of N-[3H]acetylmannosamine autoradiography showed lipid- and non-lipid-bound radioactivity in the tectum opticum evenly distributed over regions of nerve fibres or perikarya indicating an ubiquitous incorporation of label. Sialic acid incorporation into glycoproteins after intracranial injection of N-acetylmannosamine always exceeded that into gangliosides. TCA-precipitable non-lipid material is labelled from intracranially applied N-acetylmannosamine in the sialic acid portion and also in nonsialic acid components, whereby the percentage of label in sialic acid increases reaching 90 per cent of the total radioactivity after 90 min. After intraocular application of N-[3H]acetylmannosamine, sialic acid in gangliosides was generally found to be more highly labelled than in glycoproteins. The ratio of radioactivity in gangliosides and glycoproteins increased with time of incubation and the distance from the eye. TCA-soluble radioactivity was translocated by fast axonal transport. Cycloheximide inhibited incorporation of N-acetylmannosamine-derived radioactivity into gangliosides and proteins but not the transport of TCA-soluble material, which accumulates in the tectum. After intraocular application of N-[3H]acetylglucosamine, TCA-soluble label arrives later in the optic tectum than radioactivity of high molecular weight components. The ratio of lipid to non-lipid-bound radioactivity does not change considerably with the time after injection or the distance from the eye. There was no accumulation of TCA-soluble radioactivity after the inhibition of incorporation into high molecular weight components.  相似文献   

13.
O-Linked fucose in glycoproteins from Chinese hamster ovary cells   总被引:2,自引:1,他引:1  
We report our discovery that many glycoproteins synthesizedby Chinese hamster ovary (CHO) cells contain fucose in O-glycosidiclinkage to polypeptide. To enrich for the possible presenceof O-linked fucose, we studied the lectin-resistant mutant ofCHO cells known as Lec1. Lec1 cells lack N-acetylglucosaminyltransferaseI and are therefore unable to synthesize complex-type N-linkedoligosaccharides. Lec1 cells were metabolically radiolabelledwith [6-3H]fucose and total glycoproteins were isolated. Glycopeptideswere prepared by proteolysis and fractionated by chromatographyon a column of concanavalin A (Con A)— Sepharose. Thesets of fractionated glycopeptides were treated with mild base/borohydrideto effect the ß-elimination reaction and release potentialO-linked fucosyl residues. The ß-elimination produced[3H]fucitol quantitatively from [3H]fucose-labelled glycopeptidesnot bound by Con A-Sepharose, whereas none was generated bytreatment of glycopeptides bound by the lectin. The total [3H]fucose-labelledglycoproteins from Lec1 cells were separated by SDS—PAGEand detected by fluorography. Treatment of selected bands ofdetectable glycoproteins with mild base/borohydride quantitativelygenerated [3H]fucitol. Pretreatment of the glycoproteins withN-glycanase prior to the SDS—PAGE method of analysis causedan enrichment in the percentage of radioactivity recovered as[3H]fucitol. Trypsin treatment of [3H]fucose-labelled intactCHO cells released glycopeptides that contained O-linked fucose,indicating that it is present in surface glycoproteins. Thesefindings demonstrate that many glycoproteins from CHO cellscontain O-linked fucosyl residues and raise new questions aboutits biosynthesis and possible function. fucose glycoproteins monosaccharide O-linked  相似文献   

14.
Synthesis of RNA in neurons of the hypoglossal nerve nucleus after axonal section was studied by means of [5-3H]uridine administration and radioautographic counting techniques in mice. The results of the experiments were evaluated by counts of silver grains over the nucleoplasm and cytoplasm of the neurons. RNA synthesis was greater in neurons after axonal section, and this increase was evident from 12 hr after the operation. The greatest increases in the operated side were observed in the 1st, 2nd and 3rd days after operation. In the 7th and 14th days RNA synthesis was still greater in the hypoglossal nucleus of the sectioned nerve but the difference in the control nucleus was not so striking. In the 30th day synthesis of RNA in left and right hypoglossal nuclei was comparable.  相似文献   

15.
[2-3H]Glycerol was injected into one substantia nigra of adult rats. Incorporation of radioactivity into lipids at the injection site was maximal by 2 hr, after which it declined. Rapidly transported3H-labeled lipids were just beginning to accumulate in the primary projection site, the ipsilateral corpus striatum by 2 hr, as evidenced by 20-fold higher levels of lipid radioactivity in the projection site relative to control regions. However, the bulk of labeled lipid arrived between 6 hr and 3 days postinjection, suggesting either a prolonged period of release of rapidly transported lipids from the nerve cell bodies or a slow rate of transport for the later arriving lipids. Colchicine applied locally to the fibers of this tract blocked the axonal transport of lipids to the striatum almost completely. Choline and ethanolamine phosphoglycerides were the major transported lipids, accounting for approximately 60% and 25%, respectively, of the total. Similar results were obtained in studies of [2-3H]glycerol-labeled lipids synthesized in the lateral geniculate body and transported to the visual cortex. The rapid axonal transport of lipids labeled with [32P]phosphate (injected simultaneously with [2-3H]glycerol) could also be demonstrated in both tracts. However, in contrast to [2-3H]glycerol, considerable amounts of32P soluble label were present in the projection sites, and colchicine only partially blocked the accumulation of32P-labeled lipid. These results demonstrate the relative utility of [2-3H]glycerol as a lipid precursor for examination of axonal transport in intrabrain tracts. Characteristics of lipid axonal transport in these two intrabrain tracts are similar to each other and are also similar to those previously described for retinal ganglion cells, indicating a common requirement for the axonal transport of these membrane constituents to axons and nerve endings in widely divergent CNS tracts.Presented in part at the 11th meeting of the American Society for Neurochemistry, Houston, Texas, March 1980.  相似文献   

16.
Antennae of the moth, Manduca sexta, are thickly populated with sensory neurons, which send axons through antennal nerves to the brain. These neurons arise by cell divisions and differentiate synchronously during the 18 days of metamorphosis from pupa to adult. Biochemical studies support the hypothesis that antennal neurons use acetylcholine (ACh) as a neurotransmitter: (1) Antennae incubated with [14C]choline synthesize and store [14C]ACh; several other transmitter candidates do not accumulate detectably when appropriate radioactive precursors are supplied; (2) antennae and antennal nerves contain endogenous ACh; and (3) extracts of mature antennae contain choline acetyltransferase (ChAc) and acetylcholinesterase (AChE) with properties similar to those reported for the enzymes from other arthropods. Levels of ACh, ChAc, and AChE begin to increase in antennae soon after the sensory neurons are “born.” Levels rise exponentially for over a week as the neurons differentiate and then reach a plateau, at about the time the neurons reach morphological maturity, that is maintained into adulthood. In contrast, levels of carnitine acetyltransferase, cholinesterase, and soluble protein, presumably not confined to nervous tissue, change little during metamorphosis. Levels of ACh, ChAc, and AChE rise in an intracranial segment of antennal nerve at about the same time as in the antenna, indicating that axons can transport neurotransmitter machinery at an early stage in their development.  相似文献   

17.
Abstract— Seventeen day old rats were injected intraocularly with a phospholipid precursor, [32P]phosphate, and a glycoprotein precursor, [3H]fucose. Animals were killed between 1 h and 21 days later, and structures of the visual pathway (retina, optic nerve, optic tract, lateral geniculate body, and superior colliculus) were dissected. Radioactivity in phospholipids ([32P] in solvent-extracted material) and in glycoproteins ([3H] in solvent-extracted residue) was determined. Incorporation of [3H]fucose into retinal glycoproteins peaked at 6–8 h. Labelled glycoproteins were present in superior colliculus by 2h after injection, indicating a rapid rate of transport; maximal labelling was at 8–10 h after injection. Incorporation of [32P]phosphate into retinal phospholipids peaked at 1 day after injection. Phospholipids were also rapidly transported since label was present in the superior colliculus by 3 h after injection: however, maximal labelling did not occur until 5–6 days. These results indicate that newly synthesized phospholipids enter a preexisting pool, part of which is later committed to transport at a rapid rate. Transported phospholipids were catabolized at the nerve endings with a maximum half-life of several days; there was minimal recycling of precursor label. Lipids were fractionated by thin-layer chromatography, and radioactivity in individual phospholipid classes determined. Choline and ethanolamine phosphoglycerides were the major transported phospholipids, together accounting for approx 85% of the total transported lipid radioactivity. At early time points, the ratio of radioactivity in choline phosphoglycerides to that in ethanolamine phosphoglycerides increased in structures progressively removed from the site of synthesis (retina) but by 2 days approached a constant value. In each structure, choline phosphoglyceride-ethanolamine phosphoglyceride radioactivity ratios decreased with time, rapidly at first, but plateaued by 2 days. These results indicate that choline phosphoglycerides are committed to transport sooner than ethanolamine phosphoglycerides. Some experiments were also conducted using [2-3H]glycerol as a phospholipid precursor. Results concerning incorporation of this precursor into individual phospholipid classes and their subsequent axonal transport were comparable to those obtained using [32P]phosphate, with the following exceptions: (a) incorporation of [2-3H]glycerol into retinal phospholipids was relatively rapid (near-maximal levels at 1 h after injection) although transport to the superior colliculus showed an extended time course very similar to [32P]-labelled lipids; (b) [2-3H]glycerol was somewhat less efficient than [32P]phosphate in labelling lipids committed to transport relative to labelling those which remained in the retina; and (c) [2-3H]glycerol did not label plasmalogens.  相似文献   

18.
—The uptake into subcellular fractions of developing rat brain in vivo of intracerebrally injected [4-14C]cholesterol, [24-3H]cerebrosterol, and [24-3H]24-epicerebrosterol was measured for periods up to 30 days following administration. [4-14C]cholesterol was accumulated rapidly in nuclei, nerve endings, and microsomes, more slowly in myelin and mitochondria. [24-3H]cerebrosterol was accumulated rapidly in myelin, nerve endings, and microsomes, more slowly in nuclei and mitochondria. The uptake of [24-3H]24-epicerebrosterol was essentially the same as that of [24-3H]cerebrosterol. Ratios of radioactivities of [24-3H]cerebrosterol and [4-14C]cholesterol accentuated the early accumulation of [24-3H]cerebrosterol in myelin, nerve endings, and microsomes, and declining 3H:14C ratios disclosed the rapid elimination of [24-3H]cerebrosterol and [24-3H]24-epicerebrosterol relative to [4-14C]cholesterol in nerve endings and microsomes. The data suggest that the removal of [24-3H]cerebrosterol from brain results from an enzymic metabolism of the sterol, therefore that cerebrosterol exists in brain in a dynamic state of biosynthesis and catabolism.  相似文献   

19.
The axonal transport of labelled proteins was studied in the optic system of adult rabbits after an intraocular injection of [3H]Ieucine. It was demonstrated that the precursor was incorporated into protein, which was transported along the axons of the retinal ganglion cells. Intraocularly injected puromycin inhibited protein synthesis in the retina and markedly inhibited the appearance of labelled protein in the optic nerve and tract. It was further demonstrated by intracisternal injection of [3H]leucine that an intraocular injection of puromycin did not affect the local protein synthesis in the optic nerve and tract. Cell fractionation studies of the optic nerve and tract showed that the rapidly migrating component, previously described as moving at an average rate of 110-150 mm/day, was largely associated with the microsomal fraction. About 40 per cent of the total protein-bound radioactivity in this component was found in the microsomal fraction and about 15 per cent was recovered in the soluble protein fraction. Most of the labelled material moving at a rate of 1-5-2 mm/day was soluble protein. The specific radioactivity of this component was about ten times greater than that of the fast one. In the slow component about 50 per cent of the radioactivity was found in the soluble protein fraction and about 10 per cent of the radioactivity was recovered in the microsomal fraction. Radioautography demonstrated incorporated label in the neuropil structures in the lateral geniculate body as early as 4-8 hr after intraocular injection. The labelling of the neuropil increased markedly during the first week, and could be observed after 3 weeks.  相似文献   

20.
Quantitative measurements were made of choline acetyltransferase (CAT) activity, acetylcholinesterase (AChE) acitivity and cholinergic muscarinic receptor binding ([3H]QNB) in eight areas of a cross-section of the rat medulla oblongata. A fourth cholinergic parameter, high-affinity choline uptake, was measured in three groups of these areas. CAT, AChE and [3H]QNB binding were found to be highest in the hypoglossal nucleus and the dorsal motor nucleus of the vagus; the lowest value was in the area which contains the inferior olive and the corticospinal tract. The distribution of AChE and CAT acitivities varied approximately 7- to 10-fold among the eight regions examined, whereas that of the muscarinic receptor varied only about 4-fold. The Na+-dependent high-affinity choline uptake varied approximately 20-fold from the region with the lowest activity (inferior olivary nucleus and corticospinal tract) to that with the highest activity (tissue areas containing the dorsal motor nucleus, hypoglossal nucleus, nucleus of the solitary tract and nucleus cuneatus). The four cholinergic parameters are statistically correlated throughout all the areas of the medulla which were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号