首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bovine aortic endothelial cells were cultured in medium containing [3H]glucosamine and concentrations of [35S]sulfate ranging from 0.01 to 0.31 mM. While the amount of [3H]hexosamine incorporated into chondroitin sulfate and heparan sulfate was constant, decreasing concentrations of sulfate resulted in lower [35S]sulfate incorporation. Sulfate concentrations greater than 0.11 mM were required for maximal [35S]sulfate incorporation. Chondroitin sulfate was particularly affected so that the sulfate to hexosamine ratio in [3H]chondroitin [35S]sulfate dropped considerably more than the sulfate to hexosamine ratio in [3H] heparan [35S]sulfate. Sulfate concentration had no effect on the ratio of chondroitin 4-sulfate to chondroitin 6-sulfate. The ratios of sulfate to hexosamine in cell-associated glycosaminoglycans were essentially identical with the ratios in media glycosaminoglycans at all sulfate concentrations. DEAE-cellulose chromatography confirmed that sulfation of chondroitin sulfate was particularly sensitive to low sulfate concentrations. While cells incubated in medium containing 0.31 mM sulfate produced chondroitin sulfate which eluted later than heparan sulfate, cells incubated in medium containing less than 0.04 mM sulfate produced chondroitin sulfate which eluted before heparan sulfate and near hyaluronic acid, indicating that many chains were essentially unsulfated. At intermediate concentrations of sulfate, chondroitin sulfate was found in very broad elution patterns suggesting that most did not fit an "all or nothing" mechanism. Heparan sulfate produced at low concentrations of sulfate eluted with narrower elution patterns than chondroitin sulfate, and there was no indication of any "all or nothing" sulfation.  相似文献   

2.
The catabolism of 35S-labeled aggrecan and loss of tissue glycosaminoglycans was investigated using bovine articular cartilage explant cultures maintained in medium containing 10(-6) M retinoic acid or 40 ng/ml recombinant human interleukin-1alpha (rHuIL-1alpha) and varying concentrations (1-1000 microg/ml) of sulfated glycosaminoglycans (heparin, heparan sulfate, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate) and calcium pentosan polysulfate (10 microg/ml). In addition, the effect of the sulfated glycosaminoglycans and calcium pentosan polysulfate on the degradation of aggrecan by soluble aggrecanase activity present in conditioned medium was investigated. The degradation of 35S-labeled aggrecan and reduction in tissue levels of aggrecan by articular cartilage explant cultures stimulated with retinoic acid or rHuIL-1alpha was inhibited by heparin and heparan sulfate in a dose-dependent manner and by calcium pentosan polysulfate. In contrast, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate did not inhibit the degradation of 35S-labeled aggrecan nor suppress the reduction in tissue levels of aggrecan by explant cultures of articular cartilage. Heparin, heparan sulfate and calcium pentosan polysulfate did not adversely affect chondrocyte metabolism as measured by lactate production, incorporation of [35S]-sulfate or [3H]-serine into macromolecules by articular cartilage explant cultures. Furthermore, heparin, heparan sulfate and calcium pentosan polysulfate inhibited the proteolytic degradation of aggrecan by soluble aggrecanase activity. These results suggest that highly sulfated glycosaminoglycans have the potential to influence aggrecan catabolism in articular cartilage and this effect occurs in part through direct inhibition of aggrecanase activity.  相似文献   

3.
The amount of glycosaminoglycan (GAG) in dry costal cartilage tissue of rats decreased with aging, while the GAG content in mg DNA (unit cartilage cell) remained the same with aging. These results can be explained by the finding that the total number of cartilage cells decreased with aging. Electrophoretic analysis showed that chondroitin 4-sulfate was the major GAG in rat costal cartilage of various ages. Rat costal cartilage of different ages was incubated with radioactive precursors, and newly synthesized GAG was prepared and the radioactivity analyzed to determine the biosynthetic activity. As to changes in the radioactivity uptake with aging per mg dry cartilage tissue, aging influenced [35S]sulfate incorporation into GAG more significantly than [3H]glucosamine incorporation into GAG. There was a significant decrease in the specific radioactivity of [35S]sulfate per mg DNA (unit cartilage cell), whereas the specific radioactivity of [3H]glucosamine per mg DNA did not change significantly with aging. Both the total sulfotransferase activity and the specific activity per mg DNA decreased significantly with aging. Analysis of disaccharide units formed after chondroitinase ABC digestion of labeled GAG isolated from young and old cartilage showed that the percentage of incorporation of [3H]glucosamine into deltaDi-OS increased significantly with aging. These results suggested that the appearance of nonsulfated positions in the structure of the chondroitin sulfate chain increased with aging. On the basis of gel chromatography on Bio-Gel A-1.5 m no significant difference in the approximate molecular size of chondroitin sulfate was observed between the young and old GAG samples. The present study indicated that the sulfation of chondroitin sulfate chains from rat costal cartilage decreased with the process of aging.  相似文献   

4.
The effect of concanavalin A on proteoglycan synthesis by rabbit costal and articular chondrocytes was examined. Chondrocytes were seeded at low density and grown to confluency in medium supplemented with 10% fetal bovine serum, and then the serum concentration was reduced to 0.3%. At the low serum concentration, chondrocytes adopted a fibroblastic morphology. Addition of concanavalin A to the culture medium induced a morphologic alteration of the fibroblastic cells to spherical chondrocytes and increased by 3- to 4-fold incorporation of [35S]sulfate and [3H]glucosamine into large chondroitin sulfate proteoglycan that was characteristically found in cartilage. The stimulation of incorporation of labeled precursors reflected real increases in proteoglycan synthesis, as chemical analyses showed a 4-fold increase in the accumulation of macromolecules containing hexuronic acid in concanavalin A-maintained cultures. Furthermore, the effect of concanavalin A on [35S]sulfate incorporation into proteoglycans was greater than that of various growth factors or hormones. However, concanavalin A had smaller effects on [35S]sulfate incorporation into small proteoglycans and [3H]glucosamine incorporation into hyaluronic acid and chondroitinase AC-resistant glycosaminoglycans. Since other lectins tested, such as wheat germ agglutinin, lentil lectin, and phytohemagglutinin, had little effect on [35S]sulfate incorporation into proteoglycans, the concanavalin A action on chondrocytes seems specific. Although concanavalin A decreased [3H]thymidine incorporation in chondrocytes, the stimulation of proteoglycan synthesis could be observed in chondrocytes exposed to the inhibitor of DNA synthesis, cytosine arabinoside. These results indicate that concanavalin A is a potent modulator of proteoglycan synthesis by chondrocytes.  相似文献   

5.
The glycosaminoglycans of neural retinas from 5-, 7-, 10-, and 14-day chick embryos were labeled in culture with [3H]glucosamine and 35SO4, extracted, and isolated by gel filtration. The incorporation of label per retina into glycosaminoglycans increased with embryonic age, but that per cell and per unit weight of uronic acid decreased. Specific enzyme methods coupled with gel filtration and paper chromatography demonstrated that [3H]glucosamine incorporation into chondroitin sulfate increased between 5 and 14 days from 7 to 34% of the total incorporation into glycosaminoglycans. During this period, incorporation into chondroitin-4-sulfate increased relative to that into chondroitin-6-sulfate. Between 5 and 10 days, incorporation into heparan sulfate showed a relative decline from 89 to 61%. Incorporation into hyaluronic acid always represented less than 2% of the total. A twofold greater increase in galactosamine concentration than in glucosamine concentration in the glycosaminoglycan fraction between 7 and 14 days supports the conclusion that chondroitin sulfate was the most rapidly accumulating glycosaminoglycan. ECTEOLA-cellulose chromatography revealed a heterogeneity in the size and/or net charge of chondroitin sulfate and heparan sulfate. We conclude that incorporation of exogenous precursors into glycosaminoglycans in the chick retina decreases relative to cell number as differentiation progresses from a period of high mitotic activity to one of tissue specialization, and that it is accompanied by a net accumulation of glycosaminoglycan and a change in the pattern of its synthesis.  相似文献   

6.
Human skin fibroblast monolayer cultures from two normal men, three Type I diabetic men, and one Type I diabetic woman were incubated with [3H]glucosamine and [35S]-sulfate for varying periods of time. Incorporation of 3H into macromolecules appearing in the medium was linear after approximately 45 min, and incorporation of 35S was linear after approximately 30 min. The amounts of 35S-proteoglycan formed by each of the cultures during 5-h incubations were compared and were found to be fairly similar for the six lines, varying from 0.08 to 0.14 nmol sulfate/microgram DNA. Isolated 3H,35S-glycosaminoglycans were then treated with chondroitin ABC lyase to characterize the location and degree of sulfation. Results indicated a considerable variation in completeness of chondroitin/dermatan sulfation and in proportions of 6-sulfation to 4-sulfation among the various lines. However these variations did not seem to be related to whether the cells were from normals or diabetics. 3H,35S-Labeled disaccharides were isolated and ratios of 3H to 35S determined in order to calculate the [3H]glucosamine dilution by endogenous glucosamine derived from glucose or other sources during the period of incubation. Dilutions varied widely from 160- to 635-fold among the different cell lines, but the variations did not seem to be related to whether the cells were from normals or diabetics.  相似文献   

7.
Proteoglycan synthesis by cultured chondrocytes from the Swarm rat chondrosarcoma was examined after treatment with 0.1 mg/ml of cycloheximide which inhibited [3H]serine incorporation into total protein by greater than 90%. Incorporation of [35S]sulfate into proteoglycans decreased with nearly first order kinetics (t 1/2 = 96 +/- 6 min) with an accompanying increase in the size of the proteoglycan molecules, primary due to an increase in chondroitin sulfate chain sizes. After 5 h of cycloheximide treatment, when [35S]sulfate incorporation was inhibited by about 90%, addition of 1 mM beta-D-xyloside restored 76% of the incorporation into chondroitin sulfate observed in cultures treated only with xyloside. This suggests that the biochemical pathways for the affected by cycloheximide treatment. Cultures were prelabeled for 15 min with either [3H]serine or [35S]-methionine, and then cycloheximide was added to block further protein synthesis. Both precursors appeared in completed proteoglycan molecules with nearly first order kinetics with t 1/2 values of 92 +/- 8 and 101 +/- 11 min for [3H]serine and [35S]methionine, respectively, values in close agreement with the t 1/2 from the [35S]sulfate data. These results suggest that after cycloheximide treatment, the rate of [35S]sulfate incorporation into proteoglycan, after a correction for increases in chondroitin sulfate chain size, was directly proportional to the size of the intracellular pool of core protein. From the steady state rate of proteoglycan synthesis (estimated to be about 80 ng/min/10(6) cells in separate experiments) and a corrected t 1/2 value of 60 min, the amount of precursor core protein can be calculated to be about 500 ng/10(6) cells in these experiments.  相似文献   

8.
A Fisher rat thyroid cell line was maintained in culture and the cells were labeled with [3H]glucosamine, [35S]sulfate, and [35S]cysteine to examine the synthesis of proteoglycans. 3H and 35S radioactivity from these precursors were incorporated into both chondroitin sulfate (CS) and heparan sulfate (HS) proteoglycans. CS proteoglycans were almost exclusively secreted into the medium while HS proteoglycans remained mainly associated with the cell layer. Single chain glycosaminoglycans released by papain digestion or alkaline borohydride treatment of either the CS or HS proteoglycans had average molecular weights of approximately 30,000 on Sepharose CL-6B chromatography. Both CS and HS proteoglycans were relatively small and contained only one or two glycosaminoglycans chains. 3H and 35S incorporation into both CS and HS proteoglycans were increased by thyroid-stimulating hormone (TSH) in a dose-dependent manner, which is in part explained by an adenylate cyclase-dependent mechanism as indicated by a similar effect in response to dibutyryl cAMP. TSH enhanced the incorporation of 35S into CS from [35S]cysteine about 1.5-fold and that from [35S]sulfate about 2-fold. This result demonstrated that the increased 35S incorporation from the [35S]sulfate precursor reflects an actual increase in sulfate incorporation and is not simply a result from an apparent increase in specific activity of the phosphoadenosine phosphosulfate donor. Analysis of disaccharides from chondroitinase digests revealed that the proportion of non-sulfated, 4-sulfated, and 6-sulfated disaccharides was not altered appreciably by TSH. These results, together with the disproportionate increase in 3H incorporation into CS from [3H]glucosamine, indicated that TSH increased the specific activity of the 3H label as well. Chase experiments revealed that CS proteoglycans were rapidly (t1/2 = 15 min) secreted into the medium and that the degradation of cell-associated proteoglycans was enhanced by TSH.  相似文献   

9.
We isolated 59 Chinese hamster ovary cell mutants defective in 35SO4 incorporation into glycosaminoglycans. Thirty-five mutants incorporated [6-3H]glucosamine into glycosaminoglycans normally, suggesting that they were specifically impaired in sulfate incorporation. Cell hybridization studies revealed that the 35 mutants defined a unique complementation group. Pulse-labeling one of the mutants with 35SO4 showed that it possessed a defect in a saturable, 4-acetamido-4-isothiocyanostilbene-2,2'-disulfonic acid-sensitive transport system required for sulfate uptake. Despite the dramatic reduction in 35SO4 incorporation, the mutant synthesized sulfated heparan and chondroitin chains. Incubation of the mutant with [35S]cysteine resulted in the formation of 35SO4, which was subsequently incorporated into the glycosaminoglycans. Similar results were obtained when wild-type cells were incubated in sulfate-free growth medium containing [35S]cysteine, and isotope dilution analysis indicated that about 15 microM of sulfate was derived from cysteine catabolism. We also found that the sulfate transport deficiency rendered the mutant resistant to 5 microM sodium chromate, whereas wild-type cells did not divide under these conditions. However, the mutant also did not proliferate in medium containing 5 microM chromate when grown in the presence of wild-type cells, suggesting that chromate was transported through cell-cell contacts. Since co-cultivating sulfate transport-deficient mutants with mutants defective in xylosyltransferase or galactosyltransferase I partially restored 35SO4 incorporation into glycosaminoglycans, intercellular sulfate transport occurred as well. Therefore, the availability of sulfate for glycosaminoglycan synthesis depends on sulfate uptake, turnover of sulfur-containing amino acids, and sulfate transport between cells.  相似文献   

10.
Radioactivity was significantly incorporated from ascorbate 2-[35S]sulfate into chondroitin sulfate by embryonic chick cartilage epiphyses. The extent of incorporation was comparable with that from inorganic [35S]sulfate. The radioactive chondroitin sulfate formed from ascorbate 2-[35S]sulfate gave two radioactive disaccharides on chondroitinase-ABC [EC 4.2.2.4] digestion. The incorporation was markedly decreased by inorganic sulfate. The time course of incorporation from ascorbate 2-[35S]sulfate and inorganic [35S]sulfate into chondroitin sulfate and the constituent disaccharides suggest that the incorporation rates from the two radioactive substances are different.  相似文献   

11.
Summary Human platelet-derived transforming growth factor-beta (TGF-beta) is a cell-type specific promotor of proteoglycan synthesis in human adult arterial cells. Cultured human adult arterial smooth muscle cells synthesized chondroitin sulfate, dermatan sulfate, and heparan sulfate proteoglycans, and the percent composition of these three proteoglycan subclasses varied to some extent from cell strain to cell strain. However, TGF-beta consistently stimulated the synthesis of chondroitin sulfate proteoglycan. Both chondroitin 4- and chondroitin 6-sulfate were stimulated by TGF-beta to the same extent. TGF-beta had no stimulatory effect on either class of [35S]sulfate-labeled proteoglycans which appeared in an approximately 1:1 and 2:1 ratio of heparan sulfate to dermatan sulfate of the medium and cell layers, respectively, of arterial endothelial cells. Human adult arterial endothelial cells synthesized little or no chondroitin sulfate proteoglycan. Pulse-chase labeling revealed that the appearance of smooth muscle cell proteoglycans into the medium over a 36-h period equaled the disappearance of labeled proteoglycans from the cell layer, independent of TGF-beta. Inhibitors of RNA synthesis blocked TGF-beta-stimulated proteoglycan synthesis in the smooth muscle cells. The incorporation of [35S]methionine into chondroitin sulfate proteoglycan core proteins was stimulated by TGF-beta. Taken together, the results presented indicate that TGF-beta stimulates chondroitin sulfate proteoglycan synthesis in human adult arterial smooth muscle cells by promoting the core protein synthesis. Supported in part by grants from the Public Health Service, U.S. Department of Health and Human Services, Washington, DC (CA 37589 and HL 33842), RJR Nabisco, Inc., and Chang Gung Biomedical Research Foundation (CMRP 291).  相似文献   

12.
The effect of vanadate on proteoglycan synthesis by cultured rabbit costal chondrocytes was examined. Rabbit chondrocytes were seeded at low densities and grown to confluency in medium supplemented with 10% fetal bovine serum, and then the serum concentration was reduced to 0.3%. At the low serum concentration, chondrocytes adopted a fibroblastic morphology. Addition of 4 microM vanadate to the culture medium induced a morphologic differentiation of the fibroblastic cells to spherical chondrocytes, and increased by two- to threefold incorporation of [35S]sulfate and [3H]glucosamine into large, chondroitin sulfate proteoglycans. The stimulation of incorporation of labeled precursors reflected real increases in proteoglycan synthesis, in that chemical analyses showed increases in the accumulation of macromolecules containing hexuronic acid and hexosamine in vanadate-maintained cultures. However, vanadate had only a marginal effect on [35S]sulfate incorporation into small proteoglycans and [3H]glucosamine incorporation into hyaluronic acid and chondroitinase AC-resistant material. These results provide evidence that vanadate selectively stimulates the synthesis of proteoglycans characteristically found in cartilage by rabbit costal chondrocyte cultures.  相似文献   

13.
Proteoglycans from three cloned, granulated lymphocyte cell lines with natural killer (NK) function (NKB61A2, HY-3, H-1) and one mast cell line (PT-18) were labeled with [35S]sulfate. [35S]proteoglycans were extracted in 1 M NaCl with protease inhibitors to preserve their native structure and were separated from unincorporated [35S]sulfate by Sephadex G-25 chromatography. [35S]proteoglycans from all four cell lines were chromatographed over Sepharose 4B and were found to have a similar range of m.w. The [35S]glycosaminoglycans from each cell line were then separated from parent proteoglycans by treatment with 0.5 M NaOH. The [35S]glycosaminoglycans from the three lymphocyte cell lines exhibited a similar m.w. as assessed by Sepharose 4B gel filtration, whereas the [35S]glycosaminoglycans from the mast cell line chromatographed as a smaller m.w. molecule. [35S )glycosaminoglycan charge characteristics were evaluated with DEAE C1-6B ion exchange chromatography. The consistency of the elution patterns was determined by using [35S]glycosaminoglycans obtained from radiolabelings of each cell line separated by 6 mo in culture. Each NK lymphocyte cell line reproducibly produced two distinct [35S]glycosaminoglycan chains that eluted in two regions well before the commercial heparin marker. The proportions of each chain were dependent upon the specific cell line. The mast cell line produced a single [35S]glycosaminoglycan chain, which eluted overlapping the internal commercial heparin marker, consistent with its higher charge characteristics. [35S]glycosaminoglycans from all cell lines were identified as chondroitin sulfates with the use of specific polysaccharidases. The NK lymphocyte glycosaminoglycans contained chondroitin 4-sulfate disaccharides. The mast cell glycosaminoglycans contained oversulfated disaccharides and chondroitin 4-sulfate disaccharides. Thus, each granulated NK lymphocyte cell line produced chondroitin sulfate glycosaminoglycans that were characteristic of that cell line and of different composition and less charge than those produced by cultured mast cells. These findings demonstrate that glycosaminoglycan profiles are useful biochemical markers in the characterization of diverse granulated cell lines including NK lymphocytes and mast cells.  相似文献   

14.
Biosynthesis of chondroitin sulfate. Chain termination   总被引:4,自引:0,他引:4  
Incubation of chick embryo epiphyseal microsomal preparations with either UDP-[14C]GlcUA or UDP-[14C]-GalNAc plus exogenous chondroitin 6-sulfate resulted in the incorporation of either a single [14C]GlcUA or a [14C]GalNAc onto the nonreducing ends of the exogenous glycosaminoglycan. Degradation by chondroitinase ABC yielded the terminal products [14C]Di-OS, [14C]Di-6S, and [14C]GalNAc. Incubations of the microsomal preparations with either UDP-[14C]GlcUA or UDP-GalN[3H]Ac without exogenous chondroitin 6-sulfate resulted in the addition of a single sugar onto the nonreducing end of endogenous chondroitin sulfate. Degradation by chondroitinase ABC yielded the terminal products [14C]Di-OS, [14C]Di-6S, and GalN[3H]Ac in a molar ratio of approximately 1:1:3.5. Incubations of the microsomal preparations with both UDP-[14C]-GlcUA and UDP-GalN[3H]Ac together resulted in formation of [14C,3H]chondroitin chains added to the endogenous chondroitin sulfate. Degradation by chondroitinase ABC resulted in products with a molar ratio of [14C,3H]Di-OS to GalN[3H]Ac varying from approximately 1:1.5 to 1:3. The results of these experiments indicate that chondroitin 6-sulfate terminates at its nonreducing end in a mixture of GlcUA and GalNAc (some sulfated). GalNAc is somewhat more frequent as the terminal sugar and adds more readily to endogenous acceptors.  相似文献   

15.
16.
The proteoglycans synthesized by fibroblasts derived from human donors of ages ranging from 12 years to 68 years have been studied. In addition, the in vitro proliferation rates of the various cell strains were studied and demonstrated that increasing donor age correlated with a decrease in proliferative activity. The incorporation of [35S]-sulfate into proteoglycans decreased with increasing donor age with cells from the oldest donor demonstrating a 50% reduction compared with cells from the youngest donor. Analysis on Sepharose CL-4B of isolated [35S]-labeled proteoglycans for molecular size distribution revealed few differences between the cell-layer-associated proteoglycans of all cell strains studied. However, analysis of the medium-associated [35S]-labeled proteoglycans demonstrated an increase in the amount of small molecular size proteoglycans with increasing age. More specific analysis of the glycosaminoglycan composition revealed an increase in heparan sulfate from 52% to 73% in the cell-layer-associated proteoglycans of cells from the youngest and oldest donors, respectively. Accompanying this increase was a relative decrease in dermatan and chondroitin sulfate content from 24% to 13% and 25% to 16%, respectively, with increasing donor age. Additionally, the degree of N-sulfation of cell layer heparan sulfate increased with age. Heparan sulfate levels increased in the medium as well with increasing age, with a concomitant decrease in chondroitin sulfate. The quantity of medium-derived dermatan sulfate remained relatively evenly distributed throughout the various ages studied. The various differences noted are considered to reflect the general metabolic changes associated with aging. In particular the increase in heparan sulfate content with age is considered to be related to the decreased proliferative activity of the fibroblasts with increasing age.  相似文献   

17.
Chlorate: a reversible inhibitor of proteoglycan sulfation   总被引:8,自引:0,他引:8  
Bovine aorta endothelial cells were cultured in medium containing [3H]glucosamine, [35S]sulfate, and various concentrations of chlorate. Cell growth was not affected by 10 mM chlorate, while 30 mM chlorate had a slight inhibitory effect. Chlorate concentrations greater than 10 mM resulted in significant undersulfation of chondroitin. With 30 mM chlorate, sulfation of chondroitin was reduced to 10% and heparan to 35% of controls, but [3H]glucosamine incorporation on a per cell basis did not appear to be inhibited. Removal of chlorate from the culture medium of cells resulted in the rapid resumption of sulfation.  相似文献   

18.
Sheep pituitary cells prelabelled with radioactive [35S] sulfate (35SO4(2-)) were incubated with different concentrations of LH-RH and the release of LH (lutropin) into the medium was monitored in terms of immunoprecipitable [35S] sulfated LH radioactivity and estimation of LH in the same sample by radioimmunoassay. A dose dependent response was obtained with a maximum of a 16 fold increase in immunoprecipitable 35SO4(2-) -labelled LH radioactivity in the medium which was confirmed by radioimmunoassay. Similar results were also obtained for Buserelin, a well known superactive analogue of LH-RH. However, the half maximal response for Buserelin was obtained at 3-5 nM in comparison to 80.5 nM for LH-RH. After the maximal response to LH-RH as well as Buserelin, a further increase in the concentrations caused a decrease in the release of immunoprecipitable [35S]-sulfate labelled LH into the medium. Differential labelling of stored and newly synthesized LH with radioactive [35S] sulfate and [3H]-labelled leucine revealed that there was a dose dependent increase in the [35S] sulfate labelled LH into the medium whereas the release of [3H]-leucine labelled newly synthesized LH did not show a parallel increase either at different concentrations of LH-RH or at different time intervals. The above observations strongly suggest the possibility of sulfation of LH being the potential signal indicating the storage of LH in sheep pituitary cells. Another important observation in our study was that the dose dependent response of LH-RH in the form of release of [35S]-sulfate labelled LH, which was monitored by immunoprecipitation with specific LH antiserum, can be used in an in vitro bioassay for LH-RH. We believe that a new cheap and sensitive in vitro bioassay could be developed on the basis of this observation.  相似文献   

19.
Human and bovine bone matrices were extracted with salt solutions of different composition and the extracts tested for stimulation of incorporation of radioactivity from [3H]glucosamine and [35S]SO4 into the hyaluronic acid and chondroitin sulfate of the cell pellet, the cell surface and the medium fractions of human synovial cells in culture. Stimulatory activity was extracted with a solution of 0.3 M EDTA in 2.5 M NaCl from bovine but not human bone. Subsequent extraction of the residues with 4 M guanidinium hydrochloride yielded activity from both matrices. A major stimulation of incorporation of radioactivity was observed in the cell surface fractions. Human synovial cells constitute a more sensitive assay system for the stimulatory activity than rabbit synovial cells.  相似文献   

20.
Glycoconjugates have been analyzed from a family of closely related mouse cells: a parent clone and three daughter subclones, two of which expressed the simian virus 40 (SV40) T-antigen. The experimental procedure involved the simultaneous comparison by DEAE-cellulose chromatography of papain-digested macromolecules from the parent, labeled with [3H]glucosamine, and one of the daughter subclones, labeled with [14C]-glucosamine. Three cultures compartments (the medium, the cell surface trypsinate, and the cells) from the paired cell lines were combined at the earliest time during the harvesting of the cells. Heparan sulfate on the surface of cells and secreted into the medium from T-antigen-positive subclones was eluted at lower salt concentrations from the anion exchange column than that from the parent clone. In the viable trypsinized cells a marked reduction of heparan sulfate was detected in the T-antigen-positive subclones. These changes were highly reproducible, were observed during both logarithmic and stationary phase of growth, and neither change was observed in the T-antigen-negative sister subclone. The elution point of heparan sulfate from Sepharose 6B was unaltered. Ratios of 35S to 3H for heparan sulfate obtained from cells doubly labeled with [35S]sulfate and [3H]glucosamine were lower in the T-antigen-positive subclones. Similar changes for the 35S to 3H ratio of chondroitin sulfate were associated with only small alterations in elution from anion exchange columns. Kinetic experiments suggested a reduced rate of incorporation of [35S]sulfate with no change in turnover rate. A substantial portion of the labeled heparan sulfate was associated with the cell surface; in contrast most of the hyaluronic acid and a large proportion of the chondroitin sulfate was apparently secreted. Quantitative changes in hyaluronic acid labeling did not correlate with expression of T-antigen. Glycosaminoglycans left on the dish after detaching cells with ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid were nearly completely released by subsequent trypsinization. Cell detachment by trypsinization left an insignificant amount of labeled glycosaminoglycan on the dish surface. The alterations in heparan sulfate metabolism correlated with the expression of T-antigen and with the cells' ability to grow to high densities in monolayer culture, but not with growth in suspension in viscous medium. Tumorigenicity of the subclones was essentially the same as that of the parent clone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号