首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 895 毫秒
1.
C Ungermann  W Wickner 《The EMBO journal》1998,17(12):3269-3276
The vacuole v-t-SNARE complex is disassembled by Sec17p/alpha-SNAP and Sec18p/NSF prior to vacuole docking and fusion. We now report a functional characterization of the vacuolar SNARE Vam7p, a SNAP-25 homolog. Although Vam7p has no hydrophobic domains, it is tightly associated with the vacuolar membrane. Vam7p is a constituent of the vacuole SNARE complex and is released from this complex by the Sec17p/Sec18p/ATP-mediated priming of the vacuoles. Even in the absence of the vacuolar v-SNARE Nyv1p, a subcomplex which includes Vam7p and the t-SNARE Vam3p is preserved. Vam7p is necessary for the stability of the vacuolar SNARE complex, since vacuoles from mutants deleted in VAM7 do not have a Vam3p-Nyv1p complex. Furthermore, Vam7p alone, in the absence of Nyv1p and Vam3p, cannot mediate fusion with wild-type vacuoles, whereas vacuoles with only Nyv1p or Vam3p alone can fuse with wild-type vacuoles in the absence of the other two SNAREs. Thus, Vam7p is important for the stable assembly and efficient function of the vacuolar SNARE complex and maintenance of the vacuolar morphology. This functional characterization of Vam7p suggests a general role for SNAP-25 homologs, not only on the plasma membrane but along the secretory pathway.  相似文献   

2.
Jun Y  Xu H  Thorngren N  Wickner W 《The EMBO journal》2007,26(24):4935-4945
Intracellular membrane fusion requires SNARE proteins in a trans-complex, anchored to apposed membranes. Proteoliposome studies have suggested that SNAREs drive fusion by stressing the lipid bilayer via their transmembrane domains (TMDs), and that SNARE complexes require a TMD in each docked membrane to promote fusion. Yeast vacuole fusion is believed to require three Q-SNAREs from one vacuole and the R-SNARE Nyv1p from its fusion partner. In accord with this model, we find that fusion is abolished when the TMD of Nyv1p is replaced by lipid anchors, even though lipid-anchored Nyv1p assembles into trans-SNARE complexes. However, normal fusion is restored by the addition of both Sec18p and the soluble SNARE Vam7p. In restoring fusion, Sec18p promotes the disassembly of trans-SNARE complexes, and Vam7p enhances their assembly. Thus, either the TMD of this R-SNARE is not essential for fusion, and TMD-mediated membrane stress is not the only mode of trans-SNARE complex action, or these SNAREs have more flexibility than heretofore appreciated to form alternate functional complexes that violate the 3Q:1R rule.  相似文献   

3.
Ca2+ transients trigger many SNARE-dependent membrane fusion events. The homotypic fusion of yeast vacuoles occurs after a release of lumenal Ca2+. Here, we show that trans-SNARE interactions promote the release of Ca2+ from the vacuole lumen. Ypt7p-GTP, the Sec1p/Munc18-protein Vps33p, and Rho GTPases, all of which function during docking, are required for Ca2+ release. Inhibitors of SNARE function prevent Ca2+ release. Recombinant Vam7p, a soluble Q-SNARE, stimulates Ca2+ release. Vacuoles lacking either of two complementary SNAREs, Vam3p or Nyv1p, fail to release Ca2+ upon tethering. Mixing these two vacuole populations together allows Vam3p and Nyv1p to interact in trans and rescues Ca2+ release. Sec17/18p promote sustained Ca2+ release by recycling SNAREs (and perhaps other limiting factors), but are not required at the release step itself. We conclude that trans-SNARE assembly events during docking promote Ca2+ release from the vacuole lumen.  相似文献   

4.
Soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) proteins catalyze membrane fusion events in the secretory and endolysosomal systems, and all SNARE-mediated fusion processes require cofactors of the Sec1/Munc18 (SM) family. Vps33 is an SM protein and subunit of the Vps-C complexes HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering), which are central regulators of endocytic traffic. Here we present biochemical studies of interactions between Saccharomyces cerevisiae vacuolar SNAREs and the HOPS holocomplex or Vps33 alone. HOPS binds the N-terminal Habc domain of the Qa-family SNARE Vam3, but Vps33 is not required for this interaction. Instead, Vps33 binds the SNARE domains of Vam3, Vam7, and Nyv1. Vps33 directly binds vacuolar quaternary SNARE complexes, and the affinity of Vps33 for SNARE complexes is greater than for individual SNAREs. Through targeted mutational analyses, we identify missense mutations of Vps33 that produce a novel set of defects, including cargo missorting and the loss of Vps33-HOPS association. Together these data suggest a working model for membrane docking: HOPS associates with N-terminal domains of Vam3 and Vam7 through Vps33-independent interactions, which are followed by binding of Vps33, the HOPS SM protein, to SNARE domains and finally to the quaternary SNARE complex. Our results also strengthen the hypothesis that SNARE complex binding is a core attribute of SM protein function.  相似文献   

5.
Vacuole SNAREs, including the t-SNAREs Vam3p and Vam7p and the v-SNARE Nyv1p, are found in a multisubunit "cis" complex on isolated organelles. We now identify the v-SNAREs Vti1p and Ykt6p by mass spectrometry as additional components of the immunoisolated vacuolar SNARE complex. Immunodepletion of detergent extracts with anti-Vti1p removes all the Ykt6p that is in a complex with Vam3p, immunodepletion with anti-Ykt6p removes all the Vti1p that is complexed with Vam3p, and immunodepletion with anti-Nyv1p removes all the Ykt6p in complex with other SNAREs, demonstrating that they are all together in the same cis multi-SNARE complex. After priming, which disassembles the cis-SNARE complex, antibodies to any of the five SNARE proteins still inhibit the fusion assay until the docking stage is completed, suggesting that each SNARE plays a role in docking. Furthermore, vti1 temperature-sensitive alleles cause a synthetic fusion-defective phenotype in our reaction. Our data show that vacuole-vacuole fusion requires a cis-SNARE complex of five SNAREs, the t-SNAREs Vam3p and Vam7p and the v-SNAREs Nyv1p, Vti1p, and Ykt6p.  相似文献   

6.
The homotypic fusion of yeast vacuoles requires Sec18p (NSF)-driven priming to allow vacuole docking, but the mechanism that links priming and docking is unknown. We find that a large multisubunit protein called the Vam2/6p complex is bound to cis-paired SNAP receptors (SNAREs) on isolated vacuoles. This association of the Vam2/6p complex with the cis-SNARE complex is disrupted during priming. The Vam2/6p complex then binds to Ypt7p, a guanosine triphosphate binding protein of the Rab family, to initiate productive contact between vacuoles. Thus, cis-SNARE complexes can contain Rab/Ypt effectors, and these effectors can be mobilized by NSF/Sec18p-driven priming, allowing their direct association with a Rab/Ypt protein to activate docking.  相似文献   

7.
Homotypic fusion of yeast vacuoles requires a regulated sequence of events. During priming, Sec18p disassembles cis-SNARE complexes. The HOPS complex, which is initially associated with the cis-SNARE complex, then mediates tethering. Finally, SNAREs assemble into trans-complexes before the membranes fuse. The t-SNARE of the vacuole, Vam3p, plays a central role in the coordination of these processes. We deleted the N-terminal region of Vam3p to analyze the role of this domain in membrane fusion. The truncated protein (Vam3 Delta N) is sorted normally to the vacuole and is functional, because the vacuolar morphology is unaltered in this strain. However, in vitro vacuole fusion is strongly reduced due to the following reasons: Assembly, as well as disassembly of the cis-SNARE complex is more efficient on Vam3 Delta N vacuoles; however, the HOPS complex is not associated well with the Vam3 Delta N cis-complex. Thus, primed SNAREs from Vam3 Delta N vacuoles cannot participate efficiently in the reaction because trans-SNARE pairing is substantially reduced. We conclude that the N-terminus of Vam3p is required for coordination of priming and docking during homotypic vacuole fusion.  相似文献   

8.
SNARE proteins form bundles of four alpha-helical SNARE domains with conserved polar amino acids, 3Q and 1R, at the "0-layer" of the bundle. Previous studies have confirmed the importance of 3Q.1R for fusion but have not shown whether it regulates SNARE complex assembly or the downstream functions of assembled SNAREs. Yeast vacuole fusion requires regulatory lipids (ergosterol, phosphoinositides, and diacylglycerol), the Rab Ypt7p, the Rab-effector complex HOPS, and 4 SNAREs: the Q-SNAREs Vti1p, Vam3p, and Vam7p and the R-SNARE Nyv1p. We now report that alterations in the 0-layer Gln or Arg residues of Vam7p or Nyv1p, respectively, strongly inhibit fusion. Vacuoles with wild-type Nyv1p show exquisite discrimination for the wild-type Vam7p over Vam7(Q283R), yet Vam7(Q283R) is preferred by vacuoles with Nyv1(R191Q). Rotation of the position of the arginine in the 0-layer increases the K(m) for Vam7p but does not affect the maximal rate of fusion. Vam7(Q283R) forms stable 2Q.2R complexes that do not promote fusion. However, fusion is restored by the lipophilic amphiphile chlorpromazine or by the phospholipase C inhibitor U73122, perturbants of the lipid phase of the membrane. Thus, SNARE function as regulated by the 0-layer is intimately coupled to the lipids, which must rearrange for fusion.  相似文献   

9.
Homotypic vacuole fusion occurs in ordered stages of priming, docking, and fusion. Priming, which prepares vacuoles for productive association, requires Sec17p (the yeast homolog of alpha-SNAP), Sec18p (the yeast NSF, an ATP-driven chaperone), and ATP. Sec17p is initially an integral part of the cis-SNARE complex together with vacuolar SNARE proteins and Sec18p (NSF). Previous studies have shown that Sec17p is rapidly released from the vacuole membrane during priming as the cis-SNARE complex is disassembled, but the order and causal relationship of these subreactions has not been known. We now report that the addition of excess recombinant his(6)-Sec17p to primed vacuoles can block subsequent docking. This inhibition is reversible by Sec18p, but the reaction cannot proceed to the tethering and trans-SNARE pairing steps of docking while the Sec17p block is in place. Once docking has occurred, excess Sec17p does not inhibit membrane fusion per se. Incubation of cells with thermosensitive Sec17-1p at nonpermissive temperature causes SNARE complex disassembly. These data suggest that Sec17p can stabilize vacuolar cis-SNARE complexes and that the release of Sec17p by Sec18p and ATP allows disassembly of this complex and activates its components for docking.  相似文献   

10.
Vacuole homotypic fusion requires a group of regulatory lipids that includes diacylglycerol, a fusogenic lipid that is produced through multiple metabolic pathways including the dephosphorylation of phosphatidic acid (PA). Here we examined the relationship between membrane fusion and PA phosphatase activity. Pah1p is the single yeast homologue of the Lipin family of PA phosphatases. Deletion of PAH1 was sufficient to cause marked vacuole fragmentation and abolish vacuole fusion. The function of Pah1p solely depended on its phosphatase activity as complementation studies showed that wild type Pah1p restored fusion, whereas the phosphatase dead mutant Pah1p(D398E) had no effect. We discovered that the lack of PA phosphatase activity blocked fusion by inhibiting the binding of SNAREs to Sec18p, an N-ethylmaleimide-sensitive factor homologue responsible for priming inactive cis-SNARE complexes. In addition, pah1Δ vacuoles were devoid of the late endosome/vacuolar Rab Ypt7p, the phosphatidylinositol 3-kinase Vps34p, and Vps39p, a subunit of the HOPS (homotypic fusion and vacuole protein sorting) tethering complex, all of which are required for vacuole fusion. The lack of Vps34p resulted in the absence of phosphatidylinositol 3-phosphate, a lipid required for SNARE activity and vacuole fusion. These findings demonstrate that Pah1p and PA phosphatase activity are critical for vacuole homeostasis and fusion.  相似文献   

11.
Membrane fusion within the endomembrane system follows a defined order of events: membrane tethering, mediated by Rabs and tethers, assembly of soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) complexes, and lipid bilayer mixing. Here we present evidence that the vacuolar HOPS tethering complex controls fusion through specific interactions with the vacuolar SNARE complex (consisting of Vam3, Vam7, Vti1, and Nyv1) and the N-terminal domains of Vam7 and Vam3. We show that homotypic fusion and protein sorting (HOPS) binds Vam7 via its subunits Vps16 and Vps18. In addition, we observed that Vps16, Vps18, and the Sec1/Munc18 protein Vps33, which is also part of the HOPS complex, bind to the Q-SNARE complex. In agreement with this observation, HOPS-stimulated fusion was inhibited if HOPS was preincubated with the minimal Q-SNARE complex. Importantly, artificial targeting of Vam7 without its PX domain to membranes rescued vacuole morphology in vivo, but resulted in a cytokinesis defect if the N-terminal domain of Vam3 was also removed. Our data thus support a model of HOPS-controlled membrane fusion by recognizing different elements of the SNARE complex.  相似文献   

12.
SNARE functions during membrane docking and fusion are regulated by Sec1/Munc18 (SM) chaperones and Rab/Ypt GTPase effectors. These functions for yeast vacuole fusion are combined in the six-subunit HOPS complex. HOPS facilitates Ypt7p nucleotide exchange, is a Ypt7p effector, and contains an SM protein. We have dissected the associations and requirements for HOPS, Ypt7p, and Sec17/18p during SNARE complex assembly. Vacuole SNARE complexes bind either Sec17p or the HOPS complex, but not both. Sec17p and its co-chaperone Sec18p disassemble SNARE complexes. Ypt7p regulates the reassembly of unpaired SNAREs with each other and with HOPS, forming HOPS.SNARE complexes prior to fusion. After HOPS.SNARE assembly, lipid rearrangements are still required for vacuole content mixing. Thus, Sec17p and HOPS have mutually exclusive interactions with vacuole SNAREs to mediate disruption of SNARE complexes or their assembly for docking and fusion. Sec17p may displace HOPS from SNAREs to permit subsequent rounds of fusion.  相似文献   

13.
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins are key components of the fusion machinery in vesicular transport and in homotypic membrane fusion. We previously found that ADP-ribosylation factor GTPase activating proteins (ArfGAPs) promoted a conformational change on SNAREs that allowed recruitment of the small GTPase Arf1p in stoichiometric amounts. Here, we show that the ArfGAP Gcs1p accelerates vesicle (v)-target membrane (t)-SNARE complex formation in vitro, indicating that ArfGAPs may act as folding chaperones. These SNARE complexes were resolved in the presence of ATP by the yeast homologues of alpha-soluble N-ethylmaleimide-sensitive factor attachment protein and N-ethylmaleimide-sensitive factor, Sec17p and Sec18p, respectively. In addition, Sec18p and Sec17p also recognized the "activated" SNAREs even when they were not engaged in v-t-SNARE complexes. Here again, the induction of a conformational change by ArfGAPs was essential. Surprisingly, recruitment of Sec18p to SNAREs did not require Sec17p or ATP hydrolysis. Moreover, Sec18p displaced prebound Arf1p from SNAREs, indicating that Sec18p may have more than one function: first, to ensure that all vesicle coat proteins are removed from the SNAREs before the engagement in a trans-SNARE complex; and second, to resolve cis-SNARE complexes after fusion has occurred.  相似文献   

14.
Homotypic vacuole fusion in yeast requires Sec18p (N-ethylmaleimide–sensitive fusion protein [NSF]), Sec17p (soluble NSF attachment protein [α-SNAP]), and typical vesicle (v) and target membrane (t) SNAP receptors (SNAREs). We now report that vacuolar v- and t-SNAREs are mainly found with Sec17p as v–t-SNARE complexes in vivo and on purified vacuoles rather than only transiently forming such complexes during docking, and disrupting them upon fusion. In the priming reaction, Sec18p and ATP dissociate this v–t-SNARE complex, accompanied by the release of Sec17p. SNARE complex structure governs each functional aspect of priming, as the v-SNARE regulates the rate of Sec17p release and, in turn, Sec17p-dependent SNARE complex disassembly is required for independent function of the two SNAREs. Sec17p physically and functionally interacts largely with the t-SNARE. (a) Antibodies to the t-SNARE, but not the v-SNARE, block Sec17p release. (b) Sec17p is associated with the t-SNARE in the absence of v-SNARE, but is not bound to the v-SNARE without t-SNARE. (c) Vacuoles with t-SNARE but no v-SNARE still require Sec17p/Sec18p priming, whereas their fusion partners with v-SNARE but no t-SNARE do not. Sec18p thus acts, upon ATP hydrolysis, to disassemble the v–t-SNARE complex, prime the t-SNARE, and release the Sec17p to allow SNARE participation in docking and fusion. These studies suggest that the analogous ATP-dependent disassembly of the 20-S complex of NSF, α-SNAP, and v- and t-SNAREs, which has been studied in detergent extracts, corresponds to the priming of SNAREs for docking rather than to the fusion of docked membranes.  相似文献   

15.
Vam3p, a syntaxin-like SNARE protein involved in yeast vacuole fusion, is composed of a three-helical N-terminal domain, a canonical SNARE motif, and a C-terminal transmembrane region (TMR). Surprisingly, we find that the N-terminal domain of Vam3p is not essential for fusion, although analogous domains in other syntaxins are indispensible for fusion and/or protein-protein interactions. In contrast to the N-terminal domain, mutations in the SNARE motif of Vam3p or replacement of the SNARE motif of Vam3p with the SNARE motif from other syntaxins inhibited fusion. Furthermore, the precise distance between the SNARE motif and the TMR was critical for fusion. Insertion of only three residues after the SNARE motif significantly impaired fusion and insertion of 12 residues abolished fusion. As judged by co-immunoprecipitation experiments, the SNARE motif mutations and the insertions did not alter the association of Vam3p with Vam7p, Vti1p, Nyv1p, and Ykt6p, other vacuolar SNARE proteins implicated in fusion. In contrast, the SNARE motif substitutions interfered with the stable formation of Vam3p complexes with Nyv1p and Vti1p, although Vam3p complexes with Vam7p and Ykt6p were still present. Our data suggest that in contrast to previously characterized syntaxins, Vam3p contains only two domains essential for fusion, the SNARE motif and the TMR, and these domains have to be closely coupled to function in fusion.  相似文献   

16.
Vacuole fusion requires a coordinated cascade of priming, docking, and fusion. SNARE proteins have been implicated in the fusion itself, although their precise role in the cascade remains unclear. We now report that the vacuolar SNAP-23 homologue Vam7p is a mobile element of the SNARE complex, which moves from an initial association with the cis-SNARE complex via a soluble intermediate to the docking site. Soluble Vam7p is specifically recruited to vacuoles and can rescue a fusion reaction poisoned with antibodies to Vam7p. Both the recombinant Vam7p PX domain and a FYVE domain construct of human Hrs block the recruitment of Vam7p and vacuole fusion, demonstrating that phosphatidylinositol 3-phosphate is a primary receptor of Vam7p on vacuoles. We propose that the Vam7p cycle is linked to the availability of a lipid domain on yeast vacuoles, which is essential for coordinating the fusion reaction prior to and beyond docking.  相似文献   

17.
The fusion of yeast vacuolar membranes depends on the disassembly of cis–soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complexes and the subsequent reassembly of new SNARE complexes in trans. The disassembly of cis-SNARE complexes by Sec17/Sec18p releases the soluble SNARE Vam7p from vacuolar membranes. Consequently, Vam7p needs to be recruited to the membrane at future sites of fusion to allow the formation of trans-SNARE complexes. The multisubunit tethering homotypic fusion and vacuole protein sorting (HOPS) complex, which is essential for the fusion of vacuolar membranes, was previously shown to have direct affinity for Vam7p. The functional significance of this interaction, however, has been unclear. Using a fully reconstituted in vitro fusion reaction, we now show that HOPS facilitates membrane fusion by recruiting Vam7p for fusion. In the presence of HOPS, unlike with other tethering agents, very low levels of added Vam7p suffice to induce vigorous fusion. This is a specific recruitment of Vam7p rather than an indirect stimulation of SNARE complex formation through tethering, as HOPS does not facilitate fusion with a low amount of a soluble form of another vacuolar SNARE, Vti1p. Our findings establish yet another function among the multiple tasks that HOPS performs to catalyze the fusion of yeast vacuoles.  相似文献   

18.
In eukaryotic endomembrane systems, Qabc-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) on one membrane and R-SNARE on the opposing membrane assemble into a trans-QabcR-SNARE complex to drive membrane fusion. However, it remains ambiguous whether pairing of Qabc- and R-SNAREs mediates membrane fusion specificity. Here, we explored the fusion specificity of reconstituted proteoliposomes bearing purified SNAREs in yeast vacuoles and other organelles. We found that not only vacuolar R-SNARE Nyv1p but also the non-cognate R-SNAREs, endosomal Snc2p, and endoplasmic reticulum-Golgi Sec22p caused efficient fusion with vacuolar Qabc-SNAREs. In contrast, their fusion is blocked completely by replacing vacuolar Qc-SNARE Vam7p with the non-cognate endosomal Tlg1p and Syn8p, although these endosomal Qc-SNAREs fully retained the ability to form cis-SNARE complexes with vacuolar SNAREs in solution and on membranes. Thus, our current study establishes that an appropriate assembly of Qabc-SNAREs is crucial for regulating fusion specificity, whereas R-SNARE itself has little contribution to specificity.  相似文献   

19.
In yeast, the Class C Vps protein complex (C-Vps complex), composed of Vps11, Vps16, Vps18, and Vps33, functions in Golgi-to-vacuole protein transport. In this study, we characterized and purified this complex and identified its interaction with the syntaxin homolog Vam3. Vam3 pairs with the SNAP-25 homolog Vam7 and VAMP homolog Vti1 to form SNARE complexes during vesicle docking/fusion with the vacuole. The C-Vps complex does not bind to Vam3-Vti1-Vam7 paired SNARE complexes but instead binds to unpaired Vam3. Antibodies to a component of this complex inhibited in vitro vacuole-to-vacuole fusion. Furthermore, temperature-conditional mutations in the Class C VPS genes destabilized Vam3-Vti1-Vam7 pairing. Therefore, we propose that the C-Vps complex associates with unpaired (activated) Vam3 to mediate the assembly of trans-SNARE complexes during both vesicle docking/fusion and vacuole-to-vacuole fusion.  相似文献   

20.
Membrane fusion is induced by SNARE complexes that are anchored in both fusion partners. SNAREs zipper up from the N to C terminus bringing the two membranes into close apposition. Their transmembrane domains (TMDs) might be mere anchoring devices, deforming bilayers by mechanical force. Structural studies suggested that TMDs might also perturb lipid structure by undergoing conformational transitions or by zipping up into the bilayer. Here, we tested this latter hypothesis, which predicts that the activity of SNAREs should depend on the primary sequence of their TMDs. We replaced the TMDs of all vacuolar SNAREs (Nyv1, Vam3, and Vti1) by a lipid anchor, by a TMD from a protein unrelated to the membrane fusion machinery, or by artificial leucine-valine sequences. Individual exchange of the native SNARE TMDs against an unrelated transmembrane anchor or an artificial leucine-valine sequence yielded normal fusion activities. Fusion activity was also preserved upon pairwise exchange of the TMDs against unrelated peptides, which eliminates the possibility for specific TMD-TMD interactions. Thus, a specific primary sequence or zippering beyond the SNARE domains is not a prerequisite for fusion. Lipid-anchored Vti1 was fully active, and lipid-anchored Nyv1 permitted the reaction to proceed up to hemifusion, and lipid-anchored Vam3 interfered already before hemifusion. The unequal contribution of proteinaceous TMDs on Vam3 and Nyv1 suggests that Q- and R-SNAREs might make different contributions to the hemifusion intermediate and the opening of the fusion pore. Furthermore, our data support the view that SNARE TMDs serve as nonspecific membrane anchors in vacuole fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号