首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal toxicity often includes the generation of reactive oxygen species (ROS) and subsequent oxidative stress, but whether metals have different effects on the major thiol antioxidant systems is unknown. Here, we examine the effects of arsenic, cadmium, cesium, copper, iron, mercury, nickel, and zinc on glutathione (GSH), cytoplasmic thioredoxin-1 (Trx1), and mitochondrial thioredoxin-2 (Trx2) redox states. GSH/GSSG redox states were determined by HPLC, and Trx1 and Trx2 redox states were determined by Redox Western blot methods. Copper, iron, and nickel showed significant oxidation of GSH but relatively little oxidation of either Trx1 or Trx2. Arsenic, cadmium, and mercury showed little oxidation of GSH but significantly oxidized both Trx1 and Trx2. The magnitude of effects of arsenic, cadmium, and mercury was greater for the mitochondrial Trx2 (>60 mV) compared to the cytoplasmic Trx1 (20 to 40 mV). Apoptosis signal-regulating kinase 1 (ASK1) may be activated by two different pathways, one dependent upon GSH and glutaredoxin and the other independent of GSH and dependent upon thioredoxin. ASK1 activation and cell death were observed with metals that oxidized thioredoxins but not with metals that oxidized GSH. These findings show that metals have differential oxidative effects on the major thiol antioxidant systems and that activation of apoptosis may be associated with metal ions that oxidize thioredoxin and activate ASK1. The differential oxidation of the major thiol antioxidant systems by metal ions suggest that the distinct thiol/disulfide redox couples represented by GSH/GSSG and the thioredoxins may convey different levels of control in apoptotic and toxic signaling pathways.  相似文献   

2.
3.
The redox poise of the mitochondrial glutathione pool is central in the response of mitochondria to oxidative damage and redox signaling, but the mechanisms are uncertain. One possibility is that the oxidation of glutathione (GSH) to glutathione disulfide (GSSG) and the consequent change in the GSH/GSSG ratio causes protein thiols to change their redox state, enabling protein function to respond reversibly to redox signals and oxidative damage. However, little is known about the interplay between the mitochondrial glutathione pool and protein thiols. Therefore we investigated how physiological GSH/GSSG ratios affected the redox state of mitochondrial membrane protein thiols. Exposure to oxidized GSH/GSSG ratios led to the reversible oxidation of reactive protein thiols by thiol-disulfide exchange, the extent of which was dependent on the GSH/GSSG ratio. There was an initial rapid phase of protein thiol oxidation, followed by gradual oxidation over 30 min. A large number of mitochondrial proteins contain reactive thiols and most of these formed intraprotein disulfides upon oxidation by GSSG; however, a small number formed persistent mixed disulfides with glutathione. Both protein disulfide formation and glutathionylation were catalyzed by the mitochondrial thiol transferase glutaredoxin 2 (Grx2), as were protein deglutathionylation and the reduction of protein disulfides by GSH. Complex I was the most prominent protein that was persistently glutathionylated by GSSG in the presence of Grx2. Maintenance of complex I with an oxidized GSH/GSSG ratio led to a dramatic loss of activity, suggesting that oxidation of the mitochondrial glutathione pool may contribute to the selective complex I inactivation seen in Parkinson's disease. Most significantly, Grx2 catalyzed reversible protein glutathionylation/deglutathionylation over a wide range of GSH/GSSG ratios, from the reduced levels accessible under redox signaling to oxidized ratios only found under severe oxidative stress. Our findings indicate that Grx2 plays a central role in the response of mitochondria to both redox signals and oxidative stress by facilitating the interplay between the mitochondrial glutathione pool and protein thiols.  相似文献   

4.
Protein thiol modifications visualized in vivo   总被引:5,自引:2,他引:3       下载免费PDF全文
Thiol-disulfide interconversions play a crucial role in the chemistry of biological systems. They participate in the major systems that control the cellular redox potential and prevent oxidative damage. In addition, thiol-disulfide exchange reactions serve as molecular switches in a growing number of redox-regulated proteins. We developed a differential thiol-trapping technique combined with two-dimensional gel analysis, which in combination with genetic studies, allowed us to obtain a snapshot of the in vivo thiol status of cellular proteins. We determined the redox potential of protein thiols in vivo, identified and dissected the in vivo substrate proteins of the major cellular thiol-disulfide oxidoreductases, and discovered proteins that undergo thiol modifications during oxidative stress. Under normal growth conditions most cytosolic proteins had reduced cysteines, confirming existing dogmas. Among the few partly oxidized cytosolic proteins that we detected were proteins that are known to form disulfide bond intermediates transiently during their catalytic cycle (e.g., dihydrolipoyl transacetylase and lipoamide dehydrogenase). Most proteins with highly oxidized thiols were periplasmic proteins and were found to be in vivo substrates of the disulfide-bond-forming protein DsbA. We discovered a substantial number of redox-sensitive cytoplasmic proteins, whose thiol groups were significantly oxidized in strains lacking thioredoxin A. These included detoxifying enzymes as well as many metabolic enzymes with active-site cysteines that were not known to be substrates for thioredoxin. H2O2-induced oxidative stress resulted in the specific oxidation of thiols of proteins involved in detoxification of H2O2 and of enzymes of cofactor and amino acid biosynthesis pathways such as thiolperoxidase, GTP-cyclohydrolase I, and the cobalamin-independent methionine synthase MetE. Remarkably, a number of these proteins were previously or are now shown to be redox regulated.  相似文献   

5.
To understand and eventually predict the effects of changing redox conditions and oxidant levels on the physiology of an organism, it is essential to gain knowledge about its redoxome: the proteins whose activities are controlled by the oxidation status of their cysteine thiols. Here, we applied the quantitative redox proteomic method OxICAT to Saccharomyces cerevisiae and determined the in vivo thiol oxidation status of almost 300 different yeast proteins distributed among various cellular compartments. We found that a substantial number of cytosolic and mitochondrial proteins are partially oxidized during exponential growth. Our results suggest that prevailing redox conditions constantly control central cellular pathways by fine-tuning oxidation status and hence activity of these proteins. Treatment with sublethal H(2)O(2) concentrations caused a subset of 41 proteins to undergo substantial thiol modifications, thereby affecting a variety of different cellular pathways, many of which are directly or indirectly involved in increasing oxidative stress resistance. Classification of the identified protein thiols according to their steady-state oxidation levels and sensitivity to peroxide treatment revealed that redox sensitivity of protein thiols does not predict peroxide sensitivity. Our studies provide experimental evidence that the ability of protein thiols to react to changing peroxide levels is likely governed by both thermodynamic and kinetic parameters, making predicting thiol modifications challenging and de novo identification of peroxide sensitive protein thiols indispensable.  相似文献   

6.
7.
Oxidants can activate signaling pathways and modulate a variety of cellular activities. Their action at a molecular level involves the post-translational modification of protein thiols. We have developed a proteomic method to monitor the reduction and oxidation of protein thiols, and identify those thiol proteins most sensitive to oxidation. Cells were disrupted in the presence of N-ethylmaleimide to block the reduced thiol proteins and dithiothreitol was added to reduce the oxidized thiol proteins before labeling with 5-iodoacetamidofluorescein. Two-dimensional (2-D) electrophoresis was used to resolve the labeled samples. We applied the method to Jurkat T lymphocytes and examined the effect of diamide on the oxidized and reduced thiol protein profiles. A small percentage of protein thiols were already oxidized in untreated cells. Exposure of cells to 2 mM diamide for ten minutes led to a dramatic increase in thiol protein oxidation as seen in the oxidized thiol protein map. However, it was difficult to detect any change in the pattern of reduced thiol proteins. Separation of proteins by 2-D electrophoresis revealed approximately 200 thiol proteins that were oxidized by diamide treatment. This method will be valuable in elucidating redox signaling pathways.  相似文献   

8.
Many studies have examined the effects of thiol compounds upon cells in culture (e.g., upon signal transduction and regulation of gene expression), but few have considered how thiols can interact with cell culture media. A wide range of thiols (cysteine, GSH, N-acetylcysteine, gamma-glutamylcysteine, cysteinylglycine, cysteamine, homocysteine) were found to interact with three commonly used cell culture media (RPMI, MEM, DMEM) to generate hydrogen peroxide with complex concentration-dependencies. Thiols added to these media rapidly disappeared, although less H(2)O(2) was generated on a molar basis than the amount of thiol lost. Studies on cellular effects of thiols, especially those on redox regulation of gene expression or protein function, need to take into account that thiols are rapidly lost, and that their oxidation generates H(2)O(2), which can have multiple concentration-dependent effects on cell metabolism.  相似文献   

9.
Peroxiredoxin 2 (Prx2) is a thiol protein that functions as an antioxidant, regulator of cellular peroxide concentrations, and sensor of redox signals. Its redox cycle is widely accepted to involve oxidation by a peroxide and reduction by thioredoxin/thioredoxin reductase. Interactions of Prx2 with other thiols are not well characterized. Here we show that the active site Cys residues of Prx2 form stable mixed disulfides with glutathione (GSH). Glutathionylation was reversed by glutaredoxin 1 (Grx1), and GSH plus Grx1 was able to support the peroxidase activity of Prx2. Prx2 became glutathionylated when its disulfide was incubated with GSH and when the reduced protein was treated with H2O2 and GSH. The latter reaction occurred via the sulfenic acid, which reacted sufficiently rapidly (k = 500 m−1 s−1) for physiological concentrations of GSH to inhibit Prx disulfide formation and protect against hyperoxidation to the sulfinic acid. Glutathionylated Prx2 was detected in erythrocytes from Grx1 knock-out mice after peroxide challenge. We conclude that Prx2 glutathionylation is a favorable reaction that can occur in cells under oxidative stress and may have a role in redox signaling. GSH/Grx1 provide an alternative mechanism to thioredoxin and thioredoxin reductase for Prx2 recycling.  相似文献   

10.
11.
The tripeptide glutathione (GSH) and its oxidized form glutathione disulfide (GSSG) constitute a key redox couple in cells. In particular, they partner protein thiols in reversible thiol–disulfide exchange reactions that act as switches in cell signaling and redox homeostasis. Disruption of these processes may impair cellular redox signal transduction and induce redox misbalances that are linked directly to aging processes and to a range of pathological conditions including cancer, cardiovascular diseases and neurological disorders. Glutaredoxins are a class of GSH-dependent oxidoreductase enzymes that specifically catalyze reversible thiol–disulfide exchange reactions between protein thiols and the abundant thiol pool GSSG/GSH. They protect protein thiols from irreversible oxidation, regulate their activities under a variety of cellular conditions and are key players in cell signaling and redox homeostasis. On the other hand, they may also function as metal-binding proteins with a possible role in the cellular homeostasis and metabolism of essential metals copper and iron. However, the molecular basis and underlying mechanisms of glutaredoxin action remain elusive in many situations. This review focuses specifically on these aspects in the context of recent developments that illuminate some of these uncertainties.  相似文献   

12.
The behavior of glucose-6-phosphate dehydrogenase (G6PD)-deficient red cell membrane proteins upon treatment with diamide, the thiol-oxidizing agent (Kosower, N.S. et al. (1969) Biochem. Biophys. Res. Commun. 37, 593–596), was studied with the aid of monobromobimane, a fluorescent labeling agent (Kosower, N.S., Kosower, E.M., Newton, G.L. and Ranney, H.M. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 3382–3386) convenient for following membrane thiol group status. In diamide-treated G6PD-deficient red cells (and in glucose deprived normal cells), glutathione (GSH) is oxidized to glutathione disulfide (GSSG). When cellular GSH is absent, membrane protein thiols are oxidized with the formation of intrachain and interchain disulfides. Differences in sensitivity to oxidation are found among membrane thiols. In diamidetreated normal red cells, GSH is regenerated in the presence of glucose and membrane disulfides reduced. In G6PD-deficient cells, GSSG is not reduced, and the oxidative damage (disulfide formation) in the membrane not repaired. Reduction of membrane disulfides does occur after the addition of GSH to these membranes. A direct link between the thiol status of the cell membrane and cellular GSH is thereby established. GSH serves as a reductant of membrane protein disulfides, in addition to averting membrane thiol oxidation.  相似文献   

13.

Background

There has been much interest in targeting intracellular redox pathways as a therapeutic approach for cancer. Given recent data to suggest that the redox status of extracellular protein thiol groups (i.e. exofacial thiols) effects cell behavior, we hypothesized that redox active anti-cancer agents would modulate exofacial protein thiols.

Methodology/Principal Findings

To test this hypothesis, we used the sesquiterpene lactone parthenolide, a known anti-cancer agent. Using flow cytometry, and western blotting to label free thiols with Alexa Fluor 633 C5 maleimide dye and N-(biotinoyl)-N-(iodoacetyl) ethylendiamine (BIAM), respectively, we show that parthenolide decreases the level of free exofacial thiols on Granta mantle lymphoma cells. In addition, we used immuno-precipitation techniques to identify the central redox regulator thioredoxin, as one of the surface protein thiol targets modified by parthenolide. To examine the functional role of parthenolide induced surface protein thiol modification, we pretreated Granta cells with cell impermeable glutathione (GSH), prior to exposure to parthenolide, and showed that GSH pretreatment; (a) inhibited the interaction of parthenolide with exofacial thiols; (b) inhibited parthenolide mediated activation of JNK and inhibition of NFκB, two well established mechanisms of parthenolide activity and; (c) blocked the cytotoxic activity of parthenolide. That GSH had no effect on the parthenolide induced generation of intracellular reactive oxygen species supports the fact that GSH had no effect on intracellular redox. Together these data support the likelihood that GSH inhibits the effect of parthenolide on JNK, NFκB and cell death through its direct inhibition of parthenolide''s modulation of exofacial thiols.

Conclusions/Significance

Based on these data, we postulate that one component of parthenolide''s anti-lymphoma activity derives from its ability to modify the redox state of critical exofacial thiols. Further, we propose that cancer cell exofacial thiols may be important and novel targets for therapy.  相似文献   

14.
We have observed that hydrogen peroxide (H2O2), the dismutated product of superoxide, is a coronary metabolic dilator and couples myocardial oxygen consumption to coronary blood flow. Because the chemical activity of H2O2 favors its role as an oxidant, and thiol groups are susceptible to oxidation, we hypothesized that coronary metabolic dilation occurs via a redox mechanism involving thiol oxidation. To test this hypothesis, we studied the mechanisms of dilation of isolated coronary arterioles to metabolites released by metabolically active (paced at 400 min) isolated cardiac myocytes and directly compared these responses with authentic H2O2. Studies were performed under control conditions and using interventions designed to reduce oxidized thiols [0.1 microM dithiothreitol (DTT) and 10 mM N-acetyl-L-cysteine (NAC)]. Aliquots of the conditioned buffer from paced myocytes produced vasodilation of isolated arterioles (peak response, 71% +/- 6% of maximal dilation), whereas H2O2 produced complete dilation (92% +/- 7%). Dilation to either the conditioned buffer or to H2O2 was significantly reduced by the administration of either NAC or DTT. The location of the thiols oxidized by the conditioned buffer or of H2O2 was determined by the administration of the fluorochromes monochlorobimane (20 microM) or monobromotrimethylammoniobimane (20 microM), which covalently label the reduced total or extracellular-reduced thiols, respectively. H2O2 or the conditioned buffer predominantly oxidized intracellular thiols since the fluorescent signal from monochlorobimane was reduced more than that of monobromotrimethylammoniobimane. To determine whether one of the intracellular targets of thiol oxidation that leads to dilation is the redox-sensitive kinase p38 mitogen-activated protein (MAP) kinase, we evaluated dilation following the administration of the p38 inhibitor SB-203580 (10 microM). The inhibition of p38 attenuated dilation to either H2O2 or to the conditioned buffer from stimulated myocytes by a similar degree, but SB-203580 did not attenuate dilation to nitroprusside. Western blot analysis for the activated form of p38 (phospho-p38) in the isolated aortae revealed robust activation of this enzyme by H2O2. Taken together, our results show that an active component of cardiac metabolic dilation, like that of H2O2, produces dilation by the oxidation of thiols, which are predominantly intracellular and dependent activation on the p38 MAP kinase. Thus coronary metabolic dilation appears to be mediated by redox-dependent signals.  相似文献   

15.
The fraction of cell thiol proteins in the oxidized disulfide form were quantified during mitogen-induced HaCaT keratinocyte growth initiation. Oxidized thioredoxin increased from 11 +/- 1.2% in resting cells to 80 and 61% 2 min after addition of bradykinin or EGF. Thioredoxin oxidation was transient returning toward normal values by 20 min. The disulfide forms of other cellular proteins rose in parallel with thioredoxin oxidation. The oxidation of thioredoxin depended on a rise in cytosolic calcium. It was prevented by preloading cells with BAPTA, a Ca(2+) chelator and induced by addition of Ca(2+)-ionophore A23187 or of thapsigargin. In cell extracts, thioredoxin reductase was inhibited by micromolar calcium. The rise in cytosolic Ca(2+) led to a concomitant burst of H(2)O(2) formation. The oxidizing intracellular milieu suggests that redox regulation actively participates in the growth initiation cascade. The role of peroxiredoxins and ASK 1 cascade activation are discussed in this context.  相似文献   

16.
Two kinetically and thermodynamically distinct thiol/disulfide redox changes are observed during the reversible thioredoxin fb-catalyzed reduction and oxidation of spinach chloroplast fructose-1,6-bisphosphatase by dithiothreitol. The two processes, which occur at different rates and with different equilibrium constants, can be observed independently in either the reduction (activation) or oxidation (inactivation) direction by assaying the enzyme activity at different magnesium and fructose-1,6-bisphosphate concentrations. The two processes, in both the reduction and oxidation directions, are kinetically zero-order in dithiothreitol concentration and first-order in thioredoxin fb concentration. The rate-limiting step in both directions is the reaction of fructose-1,6-bisphosphatase with thioredoxin. The more kinetically and thermodynamically favored reduction of fructose-1,6-bisphosphatase lowers the apparent Km for fructose-1,6-bisphosphate while the less favorable process lowers the Km for magnesium. Both of the thiol/disulfide redox changes reach equilibrium in redox buffers consisting of different ratios of reduced to oxidized dithiothreitol (Ered + DTTox in equilibrium Eox + DTTred). The equilibrium constants (Kox) are 0.12 +/- 0.02 and 0.39 +/- 0.08 for the fast and slow reduction processes at pH 8.0. The equilibrium constants for oxidation of the enzyme by glutathione disulfide (Ered + GSSG in equilibrium Eox + 2 GSH) can be estimated to be approximately 2400 and 7800 M, respectively. Thermodynamically the fructose-1,6-bisphosphatase/thioredoxin fb system is extremely sensitive to oxidation, comparable to disulfide bond formation in extracellular proteins.  相似文献   

17.
It has been proposed that certain cell-surface proteins undergo redox reactions, that is, transfer of hydrogens and electrons between closely spaced cysteine thiols that can lead to reduction, formation, or interchange of disulfide bonds. This concept was tested using a membrane-impermeable trivalent arsenical to identify closely spaced thiols in cell-surface proteins. We attached the trivalent arsenical, phenylarsenoxide, to the thiol of reduced glutathione to produce 4-(N-(S-glutathionylacetyl)amino)phenylarsenoxide (GSAO). GSAO bound tightly to synthetic, peptide, and protein dithiols like thioredoxin, but not to monothiols. To identify cell-surface proteins that contain closely spaced thiols, we attached a biotin moiety through a spacer arm to the primary amino group of the gamma-glutamyl residue of GSAO (GSAO-B). Incorporation of GSAO-B into proteins was assessed by measuring the biotin using streptavidin-peroxidase. Up to 12 distinct proteins were labeled with GSAO-B on the surface of endothelial and fibrosarcoma cells. The pattern of labeled proteins differed between the different cell types. Protein disulfide isomerase was one of the proteins on the endothelial and fibrosarcoma cell surface that incorporated GSAO-B. These findings demonstrate that the cell-surface environment can support the existence of closely spaced protein thiols and suggest that at least some of these thiols are redox active.  相似文献   

18.
Oxidative stress can result in the reversible oxidation of protein thiols. Because the activity of numerous proteins is sensitive to thiol oxidation, this has the potential to affect many cellular functions. We describe a highly sensitive, quantitative labeling technique that measures global and specific protein thiol oxidative state in skeletal muscle tissue. The technique involves labeling the reduced and oxidized protein thiols with different fluorescent dyes. The resulting sample is assayed using a 96-well plate fluorimeter, or individual protein bands are separated using SDS-PAGE. We show that artifactual oxidation during sample preparation and analysis has the potential to confound results, and techniques to prevent this are described. We tested the technique by analyzing the muscles of mdx and c57 mice and found that the muscles of mdx mice were significantly (p<0.05) more oxidized (13.1±1.5% oxidized thiols) than those of c57 mice (8.9±0.7% oxidized thiols). This technique provides an effective means to measure the extent to which oxidative stress affects the oxidation of protein thiols in biological tissues.  相似文献   

19.
A simple and specific method for analyzing thiols and disulfides on the basis of the reversibility of N-ethylmaleimide (NEM) alkylation of thiols is described. When the adduct of NEM and glutathione (GSH) was electrolyzed at neutral pH, all of the GSH was recovered. When the adduct was exposed to pH 11.0 for 15 min at 30 degrees C before electrolysis, GSH was not detected. The same behavior was observed after protein thiols reacted with NEM. This pH-dependent production of thiol from the adduct was used to assay GSH and oxidized glutathione in yeast cells, to assay sulfhydryl groups and disulfide bonds in authentic proteins, and to protect thiols from oxidation during enzymatic digestion of protein. This method is useful for assay of thiols and disulfides of both small and large molecules and can be used to identify labile thiols in biological samples that are oxidized during extraction procedures.  相似文献   

20.
Changes in the redox equilibrium of cells influence a host of cell functions. Alterations in the redox equilibrium are precipitated by changing either the glutathione/glutathione-disulfide ratio (GSH/GSSG) and/or the reduced/oxidized thioredoxin ratio. Redox-sensitive green fluorescent proteins (GFP) allow real time visualization of the oxidation state of the indicator. Ratios of fluorescence from excitation at 400 and 490 nm indicate the extent of oxidation and thus the redox potential while canceling out the amount of indicator and the absolute optical sensitivity. Because the indicator is genetically encoded, it can be targeted to specific proteins or organelles of interest and expressed in a wide variety of cells and organisms. We evaluated roGFP1 (GFP with mutations C48S, S147C, and Q204C) and roGFP2 (the same plus S65T) with physiologically or toxicologically relevant oxidants both in vitro and in living mammalian cells. Furthermore, we investigated the response of the redox probes under physiological redox changes during superoxide bursts in macrophage cells, hyperoxic and hypoxic conditions, and in responses to H(2)O(2)-stimulating agents, e.g. epidermal growth factor and lysophosphatidic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号