首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous reports have shown that Escherichia coli O157:H7 infection is strongly modified by intestinal microbes. In this paper, we examined whether bifidobacteria protect against E. coli O157:H7 infections using gnotobiotic mice di-associated with Bifidobacterium strains (6 species, 9 strains) and E. coli O157:H7. Seven days after oral administration of each Bifidobacterium strain, the mice were orally infected with E. coli O157:H7 and their mortality was examined. Bifidobacterium longum subsp. infantis 157F-4-1 (B. infantis 157F) and B. longum subsp. longum NCC2705 (B. longum NS) protected against the lethal infection, while mice associated with all other Bifidobacterium strains, including type strains of B. longum subsp. infantis and B. longum subsp. longum, died. There were no significant differences in the numbers of E. coli O157:H7 in the faeces among the Bifidobacterium-associated mouse groups. However, the Shiga toxin concentrations in the cecal contents and sera of the GB mice associated with B. infantis 157F and B. longum NS were significantly lower than those of the other groups. However, there were no significant differences in the volatile fatty acid concentrations and histopathological lesions between these two groups. These data suggest that some strains of B. longum subsp. longum/infantis can protect against the lethal infections of E. coli O157:H7 by preventing Shiga toxin production in the cecum and/or Shiga toxin transfer from the intestinal lumen to the bloodstream.  相似文献   

2.
Human milk contains approximately 200 complex oligosaccharides believed to stimulate the growth and establishment of a protective microbiota in the infant gut. The lack of scalable analytical techniques has hindered the measurement of bacterial metabolism of these and other complex prebiotic oligosaccharides. An in vitro, multi‐strain, assay capable of measuring kinetics of bacterial growth and detailed oligosaccharide consumption analysis by FTICR‐MS was developed and tested simultaneously on 12 bifidobacterial strains. For quantitative consumption, deuterated and reduced human milk oligosaccharide (HMO) standards were used. A custom software suite developed in house called Glycolyzer was used to process the large amounts of oligosaccharide mass spectra automatically with 13C corrections based on de‐isotoping protocols. High growth on HMOs was characteristic of Bifidobacterium longum biovar infantis strains, which consumed nearly all available substrates, while other bifidobacterial strains tested, B. longum bv. longum, B. adolescentis, B. breve and B. bifidum, showed low or only moderate growth ability. Total oligosaccharide consumption ranged from a high of 87% for B. infantis JCM 7009 to only 12% for B. adolescentis ATCC 15703. A detailed analysis of consumption glycoprofiles indicated strain‐specific capabilities towards differential metabolism of milk oligosaccharides. This method overcomes previous limitations in the quantitative, multi‐strain analysis of bacterial metabolism of HMOs and represents a novel approach towards understanding bacterial consumption of complex prebiotic oligosaccharides.  相似文献   

3.
Human milk oligosaccharides (HMOs) are the third-largest solid component of milk. Their structural complexity renders them nondigestible to the host but liable to hydrolytic enzymes of the infant colonic microbiota. Bifidobacteria and, frequently, Bifidobacterium longum strains predominate the colonic microbiota of exclusively breast-fed infants. Among the three recognized subspecies of B. longum, B. longum subsp. infantis achieves high levels of cell growth on HMOs and is associated with early colonization of the infant gut. The B. longum subsp. infantis ATCC 15697 genome features five distinct gene clusters with the predicted capacity to bind, cleave, and import milk oligosaccharides. Comparative genomic hybridizations (CGHs) were used to associate genotypic biomarkers among 15 B. longum strains exhibiting various HMO utilization phenotypes and host associations. Multilocus sequence typing provided taxonomic subspecies designations and grouped the strains between B. longum subsp. infantis and B. longum subsp. longum. CGH analysis determined that HMO utilization gene regions are exclusively conserved across all B. longum subsp. infantis strains capable of growth on HMOs and have diverged in B. longum subsp. longum strains that cannot grow on HMOs. These regions contain fucosidases, sialidases, glycosyl hydrolases, ABC transporters, and family 1 solute binding proteins and are likely needed for efficient metabolism of HMOs. Urea metabolism genes and their activity were exclusively conserved in B. longum subsp. infantis. These results imply that the B. longum has at least two distinct subspecies: B. longum subsp. infantis, specialized to utilize milk carbon, and B. longum subsp. longum, specialized for plant-derived carbon metabolism.The newborn infant not only tolerates but requires colonization by commensal microbes for its own development and health (3). The relevance of the gut microbiome in health and disease is reflected by its influence in a number of important physiological processes, from physical maturation of the developing immune system (28) to the altered energy homeostasis associated with obesity (51, 52).Human milk provides all the nutrients needed to satisfy the neonate energy expenditure and a cadre of molecules with nonnutritional but biologically relevant functions (6). Neonatal health is likely dependent on the timely and complex interactions among bioactive components in human milk, the mucosal immune system, and specialized gut microbial communities (30). Human milk contains complex prebiotic oligosaccharides that stimulated the growth of select bifidobacteria (24, 25) and are believed to modulate mucosal immunity and protect the newborn against pathogens (23, 33, 41). These complex oligosaccharides, which are abundantly present in human milk (their structures are reviewed by Ninonuevo et al. [31] and LoCascio et al. [24]), arrive intact in the infant colon (5) and modulate the composition of neonatal gastrointestinal (GI) microbial communities.Bifidobacteria and, frequently, Bifidobacterium longum strains often predominate the colonic microbiota of exclusively breast-fed infants (10, 11). Among the three subspecies of B. longum, only B. longum subsp. infantis grows robustly on human milk oligosaccharides (HMOs) (24, 25). The availability of the complete genome sequences of B. longum subsp. infantis ATCC 15697 (40) and two other B. longum subsp. longum strains (22, 39) made possible the analysis of whole-genome diversity across the B. longum species. Analysis of the B. longum subsp. infantis ATCC 15697 genome has identified regions predicted to enable the metabolism of HMOs (40); however, their distribution across the B. longum spp. remains unknown. We predict that these regions are exclusively conserved in B. longum strains adapted to colonization of the infant gut microbiome and are therefore capable of robust growth on HMOs. In this work, whole-genome microarray comparisons (comparative genomic hybridizations [CGHs]) were used to associate genotypic biomarkers among 15 B. longum strains exhibiting various HMO utilization phenotypes and host associations.  相似文献   

4.
The use of N-acetylneuraminic acid, sialyl-lactose, and glyco-macropeptide by bifidobacteria and lactobacilli, and their growth-promoting effects on B. longum, B. breve, B. bifidum, and B. infantis were investigated. The data presented here suggest that fortification with N-acetylneuraminic acid-containing substances of infant formula may provide formula-fed infants with a function that human milk possesses.  相似文献   

5.
Interest in, and use of, bifidobacteria as a probiotic delivered in functional foods has increased dramatically in recent years. As a result of their anaerobic nature, oxidative stress can pose a major challenge to maintaining viability of bifidobacteria during functional food storage. To better understand the oxidative stress response in two industrially important bifidobacteria species, we examined the response of three strains of B. longum and three strains of B. animalis subsp. lactis to hydrogen peroxide (H2O2). Each strain was exposed to a range of H2O2 concentrations (0–10 mM) to evaluate and compare intrinsic resistance to H2O2. Next, strains were tested for the presence of an inducible oxidative stress response by exposure to a sublethal H2O2 concentration for 20 or 60 min followed by challenge at a lethal H2O2 concentration. Results showed B. longum subsp. infantis ATCC 15697 had the highest level of intrinsic H2O2 resistance of all strains tested and B. animalis subsp. lactis BL-04 had the highest resistance among B. lactis strains. Inducible H2O2 resistance was detected in four strains, B. longum NCC2705, B. longum D2957, B. lactis RH-1, and B. lactis BL-04. Other strains showed either no difference or increased sensitivity to H2O2 after induction treatments. These data indicate that intrinsic and inducible resistance to hydrogen peroxide is strain specific in B. longum and B. lactis and suggest that for some strains, sublethal H2O2 treatments might help increase cell resistance to oxidative damage during production and storage of probiotic-containing foods.  相似文献   

6.
7.
Fifty-one Bifidobacterium strains were isolated from the feces of healthy adults (30–40 years old) and seniors (older than 70 years of age). B. adolescentis, B. breve, B. infantis, and B. longum were isolated from the healthy adults and B. adolescentis and B. longum from elderly subjects. The tested bacteria bound, in vitro, to intestinal mucus in a strain dependent manner. The strains isolated from healthy adults, and especially B. adolescentis, bound better to intestinal mucus than those isolated from seniors. These results indicate that the mucosal adhesive properties of the human Bifidobacterium flora were reduced with the aging of the host. This shift to a Bifidobacterium flora with reduced adhesive abilities may explain the decrease in bifidobacteria levels in the intestinal microflora of aging people. Received: 7 February 2001 / Accepted: 3 April 2001  相似文献   

8.
The taxonomic positions of the subspecies of Bifidobacterium longum (B. longum subsp. longum, subsp. infantis, and subsp. suis) have been controversial. A current proposal is that the former two species “B. infantis” and “B. suis” be unified with B. longum and all three reclassified as three subspecies. To test this proposal, ribosomal protein profiling as observed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was applied to the classification of 17 strains of B. longum, including three subspecies. Among 41 different kinds of ribosomal proteins selected as biomarkers whose masses were calculated from their amino acid sequences, 31-41 ribosomal proteins were observed in sample strains with the same masses as the references. The high matching rate indicates high conservation of ribosomal proteins within the sample strains, and therefore strongly supports the unification of the former species. However, the masses of some ribosomal proteins varied within species. The phylogenetic tree constructed from the profiles of ribosomal proteins matched the references, showing a clear cluster of the subsp. longum and the subsp. infantis strains. This result supports the proposal to reclassify B. longum into subsp. longum and subsp. infantis. The subsp. suis strains formed an individual sub-cluster within the infantis cluster. However, their ribosomal proteins have both characters of longum and infantis types. This result suggests that the taxonomic position of the subsp. suis should be reconsidered.  相似文献   

9.
Lactoferrin is an iron-binding glycoprotein found in the milk of most mammals for which various biological functions have been reported, such as antimicrobial activity and bifidogenic activity. In this study, we compared the bifidogenic activity of bovine lactoferrin (bLF) and pepsin hydrolysate of bLF (bLFH), isolated bifidogenic peptide from bLFH, and investigated the bifidogenic spectra of bLF, bLFH, and its active peptide against 42 bifidobacterial strains comprising nine species. Against Bifidobacterium breve ATCC 15700T, minimal effective concentrations of bLF and bLFH were 300 and 10 μg/ml. Against Bifidobacterium longum subsp. infantis ATCC 15697T, the minimal effective concentration of bLFH was 30 μg/ml, and bLF did not show bifidogenic activity within 300 μg/ml. As an active peptide, a heterodimer of A1-W16 and L43-A48 linked by a disulfide bond was isolated. Previously, this peptide was identified as having antibacterial activity. An amino acid mixture with the same composition as this peptide showed no bifidogenic activity. The strains of each species whose growth was highly promoted (>150%) by this peptide at 3.75 μM were as follows: B. breve (7 out of 7 strains [7/7]), B. longum subsp. infantis (5/5), Bifidobacterium bifidum (2/5), B. longum subsp. longum (1/3), Bifidobacterium adolescentis (3/6), Bifidobacterium catenulatum (1/4), Bifidobacterium pseudocatenulatum (0/4), Bifidobacterium dentium (0/5), and Bifidobacterium angulatum (0/3). Growth of none of the strains was highly promoted by bLF at 3.75 μM. We demonstrated that bLFH showed stronger bifidogenic activity than natural bLF, especially against infant-representative species, B. breve and B. longum subsp. infantis; furthermore, we isolated its active peptide. This is the first report about a bifidogenic peptide derived from bLF.  相似文献   

10.
Arabinoxylan oligosaccharides (AXOS) are a promising class of prebiotics that have the potential to stimulate the growth of bifidobacteria and the production of butyrate in the human colon, known as the bifidogenic and butyrogenic effects, respectively. Although these dual effects of AXOS are considered beneficial for human health, their underlying mechanisms are still far from being understood. Therefore, this study investigated the metabolic interactions between Bifidobacterium longum subsp. longum NCC2705 (B. longum NCC2705), an acetate producer and arabinose substituent degrader of AXOS, and Eubacterium rectale ATCC 33656, an acetate-converting butyrate producer. Both strains belong to prevalent species of the human colon microbiota. The strains were grown on AXOS during mono- and coculture fermentations, and their growth, AXOS consumption, metabolite production, and expression of key genes were monitored. The results showed that the growth of both strains and gene expression in both strains were affected by cocultivation and that these effects could be linked to changes in carbohydrate consumption and concomitant metabolite production. The consumption of the arabinose substituents of AXOS by B. longum NCC2705 with the concomitant production of acetate allowed E. rectale ATCC 33656 to produce butyrate (by means of a butyryl coenzyme A [CoA]:acetate CoA-transferase), explaining the butyrogenic effect of AXOS. Eubacterium rectale ATCC 33656 released xylose from the AXOS substrate, which favored the B. longum NCC2705 production of acetate, explaining the bifidogenic effect of AXOS. Hence, those interactions represent mutual cross-feeding mechanisms that favor the coexistence of bifidobacterial strains and butyrate producers in the same ecological niche. In conclusion, this study provides new insights into the bifidogenic and butyrogenic effects of AXOS.  相似文献   

11.
Summary: Since the discovery in 1899 of bifidobacteria as numerically dominant microbes in the feces of breast-fed infants, there have been numerous studies addressing their role in modulating gut microflora as well as their other potential health benefits. Because of this, they are frequently incorporated into foods as probiotic cultures. An understanding of their full interactions with intestinal microbes and the host is needed to scientifically validate any health benefits they may afford. Recently, the genome sequences of nine strains representing four species of Bifidobacterium became available. A comparative genome analysis of these genomes reveals a likely efficient capacity to adapt to their habitats, with B. longum subsp. infantis exhibiting more genomic potential to utilize human milk oligosaccharides, consistent with its habitat in the infant gut. Conversely, B. longum subsp. longum exhibits a higher genomic potential for utilization of plant-derived complex carbohydrates and polyols, consistent with its habitat in an adult gut. An intriguing observation is the loss of much of this genome potential when strains are adapted to pure culture environments, as highlighted by the genomes of B. animalis subsp. lactis strains, which exhibit the least potential for a gut habitat and are believed to have evolved from the B. animalis species during adaptation to dairy fermentation environments.  相似文献   

12.
Summary Bifidobacterium adolescentis ATCC 15703, B. longum ATCC 15707, and B. thermophilum ATCC 25525 were examined for the ability to grow with fructo-oligosaccharides (FOS) as carbohydrate sources. The three species produced cell-associated -fructosidases (inulinases) capable of hydrolysing FOS. Maximum activity was obtained with short-chain FOS with degrees of polymerization (DP) of between three and five (neosugars). The B. thermophilum inulinase was induced by inulin, a long-chain FOS with DP=35, while the enzymes from the other two strains were constitutive. Production of inulinase by all three strains was regulated by catabolite repression. Inulinase activity of the three Bifidobacterium spp. was similar when grown with 0.5% inulin as the carbohydrate source; however, B. thermophilum grew much more rapidly. All three strains utilized crude Jerusalem artichoke flour (JAF) as a carbohydrate source, suggesting that JAF might have commercial application as a food or feed additive to stimulate bifidobacteria in the gut.Contribution no. 802 from the Food Research Centre  相似文献   

13.
Human milk (HM) contains as the third most abundant component around 200 different structures of human milk oligosaccharides (HMOs). HMOs are the first and irreplaceable prebiotics for infants, supporting bifidobacteria as the most important bacterial group in an infant intestine. The aim of our study was to test the growth of bifidobacteria in HM and on HMOs. Bifidobacteria were isolated from two groups of infants. The first one (eight strains) were isolated from infants who had bifidobacteria in their feces but, after a short period of time (4 to 24 days), bifidobacteria were no longer detected in their feces (disappeared bifidobacteria [DB]). The second group of bifidobacteria (eight strains) originated from infants with continual presence of bifidobacteria in their feces (persistent bifidobacteria [PB]). There were significant differences (p?Bifidobacterium bifidum and B. breve species were able to utilize HMOs, while B. adolescentis and B. longum subsp. longum species did not. The ability to grow in HM and to utilize HMOs seem to be important properties of bifidobacteria which are able to colonize infant intestinal tract.  相似文献   

14.
Cocultures of strains from two Bifidobacterium and two Bacteroides species were performed with exopolysaccharides (EPS) previously purified from bifidobacteria, with inulin, or with glucose as the carbon source. Bifidobacterium longum NB667 and Bifidobacterium breve IPLA20004 grew in glucose but showed poor or no growth in complex carbohydrates (inulin, EPS E44, and EPS R1), whereas Bacteroides grew well in the four carbon sources tested. In the presence of glucose, the growth of Bacteroides thetaiotaomicron DSM-2079 was inhibited by B. breve, whereas it remained unaffected in the presence of B. longum. Ba. fragilis DSM-2151 contributed to a greater survival of B. longum, promoting changes in the synthesis of short-chain fatty acids (SCFA) and organic acids in coculture with respect to monocultures. In complex carbohydrates, cocultures of bifidobacterium strains with Ba. thetaiotaomicron did not modify the behavior of Bacteroides nor improve the poor growth of bifidobacteria. The metabolic activity of Ba. fragilis in coculture with bifidobacteria was not affected by EPS, but greater survival of bifidobacteria at late stages of incubation occurred in cocultures than in monocultures, leading to a higher production of acetic acid than in monocultures. Therefore, cocultures of Bifidobacterium and Bacteroides can behave differently against fermentable carbohydrates as a function of the specific characteristics of the strains from each species. These results stress the importance of considering specific species and strain interactions and not simply higher taxonomic divisions in the relationship among intestinal microbial populations and their different responses to probiotics and prebiotics.  相似文献   

15.
Lactoferrin, a major whey protein of human milk, is considered as growth promoter for bifidobacteria, the predominant microorganisms of human intestine. In the present study, in vitro growth promotion and cell binding ability of bovine lactoferrin to several strains of Bifidobacterium longum have been demonstrated. A dose-dependent as well as strain-dependent growth promotion effect by lactoferrin was observed. Cell binding ability of lactoferrin was inspected under an inverted confocal laser scanning microscope by incubation bacterial cells with biotinylated bovine lactoferrin and FITC-conjugated avidin. Fluorescence staining showed bovine lactoferrin binding to all tested strains. A lactoferrin-binding protein with a molecular weight of approximately 67 kDa was also detected in the extracted membrane and cytosolic fraction of each B. longum strain by far-Western blot technique using biotinylated lactoferrin and horseradish peroxidase-conjugated streptavidin. Based on these results, we suggest that existence of lactoferrin-binding protein could be a common characteristic in bifidobacteria. It can also be hypothesized that lactoferrin-binding protein in bifidobacteria is not only involved in growth stimulation mechanism but also could play different roles.  相似文献   

16.
Twenty-five bifidobacteria were isolated from feces of calves. Isolates were identified, and their functional properties and antimicrobial activity were determined. From 10 strains with suitable properties rifampicin-resistant mutants (RRBs) were prepared and mixture of RRBs was administered to 2-d-old calves. These strains were identified by sequencing as Bifidobacterium animalis ssp. animalis (6 strains), B. thermophilum (2 strains), B. choerinum (1 strain) and B. longum ssp. suis (1 strain). The control group was without probiotic treatment. Survival ability of administered bifidobacteria was monitored in fecal samples by cultivation on modified TPY agar supplemented with mupirocin, acetic acid, and rifampicin. Administered bifidobacteria survived in gastrointestinal tract of calves for at least 60 d. Other bacteria were also determined after cultivation using fluorescence in situ hybridization (FISH). Bifidobacteria and lactobacilli dominated in fecal microflora. Significantly lower amounts of E. coli and higher amounts of bifidobacteria and total anaerobes were found in the treated group relative to the control group.  相似文献   

17.
Although probiotic-containing nutrient formulas for infants and toddlers have become very popular, some adverse effects related to translocation of probiotic strains have been reported. We assessed the safety of probiotic bifidobacteria that have been used in clinical investigations and proven to have beneficial effects, by analyzing mucin degradation activity and translocation ability. Mucin degradation activities of three probiotic bifidobacteria strains; Bifidobacterium longum BB536, Bifidobacterium breve M-16V and Bifidobacterium infantis M-63, were evaluated by three in vitro tests comprising growth in liquid medium, SDS-PAGE analysis of degraded mucin residues, and degradation assay in Petri dish. All test strains and control type strains failed to grow in the liquid medium containing mucin as the only carbon source, although good growth was obtained from fecal sample. In the SDS-PAGE analyses of mucin residues and observation of mucinolytic zone in agar plate, the three test strains also showed no mucin degradation activity as the type strains, although fecal sample yielded positive results. In another study, a high dose of B. longum BB536 was administered orally to conventional mice to examine the translocation ability. No translocation into blood, liver, spleen, kidney and mesenteric lymph nodes was observed and no disturbance of epithelial cells and mucosal layer in the ileum, cecum and colon was detected, indicating that the test strain had no translocation ability and induced no damage to intestinal surface. These results resolve the concern about bacterial translocation when using bifidobacteria strains as probiotics, which have been tested in various clinical trials, supporting the continuous use of these probiotic strains without anxiety.  相似文献   

18.
Bifidobacterium longum is considered to play an important role in health maintenance of the human gastrointestinal tract. Probiotic properties of bifidobacterial isolates are strictly strain-dependent and reliable methods for the identification and discrimination of this species at both subspecies and strain levels are thus required. Differentiation between B. longum ssp. longum and B. longum ssp. infantis is difficult due to high genomic similarities. In this study, four molecular-biological methods (species- and subspecies-specific PCRs, random amplified polymorphic DNA (RAPD) method using 5 primers, repetitive sequence-based (rep)-PCR with BOXA1R and (GTG)5 primers and amplified ribosomal DNA restriction analysis (ARDRA)) and biochemical analysis, were compared for the classification of 30 B. longum strains (28 isolates and 2 collection strains) on subspecies level. Strains originally isolated from the faeces of breast-fed healthy infants (25) and healthy adults (3) showed a high degree of genetic homogeneity by PCR with subspecies-specific primers and rep-PCR. When analysed by RAPD, the strains formed many separate clusters without any potential for subspecies discrimination. These methods together with arabionose/melezitose fermentation analysis clearly differentiated only the collection strains into B. longum ssp. longum and B. longum ssp. infantis at the subspecies level. On the other hand, ARDRA analysis differentiated the strains into the B. longum/infantis subspecies using the cleavage analysis of genus-specific amplicon with just one enzyme, Sau3AI. According to our results the majority of the strains belong to the B. longum ssp. infantis (75%). Therefore we suggest ARDRA using Sau3AI restriction enzyme as the first method of choice for distinguishing between B. longum ssp. longum and B. longum ssp. infantis.  相似文献   

19.
Metabolism of chicory fructooligosaccharides by bifidobacteria   总被引:6,自引:0,他引:6  
Two types of chicory fructooligosaccharides (Fibruline Instant and Fibrulose F97) were metabolised by Bifidobacterium longum, B. infantis and B. angulatum. Chromatographic analysis of the medium after 120 h revealed a consumption of all the fructose oligomers present in the commercial chicory fructooligosaccharide mixtures for all the strains. Maximum measurable degree of polymerisation of the substrates before fermentation was 41. The higher biomass production was reached with B. infantis (1.4 and 1.7 g dry wt l–1) for its cultivation on medium complemented, respectively, with Fibruline Instant and Fibrulose F97 as substrate. These results give the opportunity to use chicory fructooligosaccharides as a prebiotic.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号