首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mandibular condyle from 20-day-old rats was examined in the electron microscope with particular attention to intracellular secretory granules and extracellular matrix. Moreover, type II collagen was localized by an immunoperoxidase method. The condyle has been divided into five layers: (1) the most superficial, articular layer, (2) polymorphic cell layer, (3) flattened cell layer, (4) upper hypertrophic, and (5) lower hypertrophic cell layers. In the articular layer, the cells seldom divide, but in the polymorphic layer and upper part of the flattened cell layer, mitosis gives rise to new cells. In these layers, cells produce two types of secretory granules, usually in distinct stacks of the Golgi apparatus; type a, cylindrical granules, in which 300-nm-long threads are packed in bundles which appear "lucent" after formaldehyde fixation; and type b, spherical granules loaded with short, dotted filaments. The matrix is composed of thick banded "lucent" fibrils in a loose feltwork of short, dotted filaments. The cells arising from mitosis undergo endochondral differentiation, which begins in the lower part of the flattened cell layer and is completed in the upper hypertrophic cell layer; it is followed by gradual cell degeneration in the lower hypertrophic cell layer. The cells produce two main types of secretory granules: type b as above; and type c, ovoid granules containing 300-nm-long threads associated with short, dotted filaments. A possibly different secretory granule, type d, dense and cigar-shaped, is also produced. The matrix is composed of thin banded fibrils in a dense feltwork. In the matrix of the superficial layers, the "lucency" of the fibrils indicated that they were composed of collagen I, whereas the "lucency" of the cylindrical secretory granules suggested that they transported collagen I precursors to the matrix. Moreover, the use of ruthenium red indicated that the feltwork was composed of proteoglycan; the dotted filaments packed in spherical granules were similar to, and presumably the source of, the matrix feltwork. The superficial layers did not contain collagen II and were collectively referred to as perichondrium. In the deep layers, the ovoid secretory granules displayed collagen II antigenicity and were likely to transport precursors of this collagen to the matrix, where it appeared in the thin banded fibrils. That these granules also carried proteoglycan to the matrix was suggested by their content of short dotted filaments. Thus the deep layers contained collagen II and proteoglycan as in cartilage; they were collectively referred to as the hyaline cartilage region.  相似文献   

2.
The immunohistochemical localization of type II and type I collagens was examined in the articular cartilage of the femoral head of growing rats injected systemically with 5 mg kg−1 dexamethasone for 2 weeks every other day. The intensities of immunostaining for type II collagen, measured by microphotometry, was highest in the flattened cell layer and high in the hypertrophic cell layer, moderate in the proliferative cell and transitional cell layers and low in the superficial layer. After dexamethasone administration, the intensities decreased markedly in the flattened cell layer and slightly in the hypertrophic cell layer, although the decreases in other layers were negligible. The staining intensities for type I collagen were highest in the flattened cell layer, low in the superficial and transitional cell layers and very low in the proliferative and hypertrophic cell layers. After dexamethasone administration, the intensities increased markedly in the flattened cell layer and slightly in the superficial and proliferative cell layers, but did not change in the transitional and hypertrophic cell layers. Thus, dexamethasone administration caused a decrease in type II collagen and an increase in type I collagen in the matrix of the surface portion of articular cartilage. The composition of isoforms of collagen in the matrix changed after the steroid administration. The results strongly suggest that the shift in collagen composition from type II to type I predominance is a cause of the degeneration of the articular cartilage after glucocorticoid administration. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

3.
CD44 is a multifunctional adhesion molecule that binds to hyaluronan (HA), type I collagen, and fibronectin. We investigated localization of CD44 and HA in mandibular condylar cartilage compared with the growth plate and the articular cartilage, to clarify the characteristics of chondrocytes. We also performed Western blotting using a lysate of mandibular condyle. In mandibular condyle, CD44-positive cells were seen in the surface region of the fibrous cell layer and in the proliferative cell layer. Western blotting revealed that the molecular weight of CD44 in condyle was 78 to 86 kD. Intense reactivity for HA was detected on the surface of the condyle and the lacunae of the hypertrophic cell layer. Moderate labeling was seen in cartilage matrix of the proliferative and maturative layer. Weak labeling was also seen in the fibrous cell layer. In growth plate and articular cartilage, HA was detected in all cell layers. However, chondrocytes of these cartilages did not exhibit reactivity for CD44. These results suggest that chondrocytes in the mandibular condylar cartilage differ in expression of CD44 from those in tibial growth plate and articular cartilage. Cell-matrix interaction between CD44 and HA may play an important role in the proliferation of chondrocytes in the mandibular condyle.  相似文献   

4.
During the process of endochondral bone formation, proliferating chondrocytes give rise to hypertrophic chondrocytes, which then deposit a mineralized matrix to form calcified cartilage. Chondrocyte hypertrophy and matrix mineralization are associated with expression of type X collagen and the induction of high levels of the bone/liver/kidney isozyme of alkaline phosphatase. To determine what role vitamin C plays in these processes, chondrocytes derived from the cephalic portion of 14-day chick embryo sternae were grown in the absence or presence of exogenous ascorbic acid. Control untreated cells displayed low levels of type X collagen and alkaline phosphatase activity throughout the culture period. However, cells grown in the presence of ascorbic acid produced increasing levels of alkaline phosphatase activity and type X collagen mRNA and protein. Both alkaline phosphatase activity and type X collagen mRNA levels began to increase within 24 h of ascorbate treatment; by 9 days, the levels of both alkaline phosphatase activity and type X collagen mRNA were 15-20-fold higher than in non-ascorbate-treated cells. Ascorbate treatment also increased calcium deposition in the cell layer and decreased the levels of types II and IX collagen mRNAs; these effects lagged significantly behind the elevation of alkaline phosphatase and type X collagen. Addition of beta-glycerophosphate to the medium increased calcium deposition in the presence of ascorbate but had no effect on levels of collagen mRNAs or alkaline phosphatase. The results suggest that vitamin C may play an important role in endochondral bone formation by modulating gene expression in hypertrophic chondrocytes.  相似文献   

5.
Type X collagen is a short chain, non-fibrilforming collagen synthesized primarily by hypertrophic chondrocytes in the growth plate of fetal cartilage. Previously, we have also identified type X collagen in the extracellular matrix of fibrillated, osteoarthritic but not in normal articular cartilage using biochemical and immunohistochemical techniques (von der Mark et al. 1992 a). Here we compare the expression of type X with types I and II collagen in normal and degenerate human articular cartilage by in situ hybridization. Signals for cytoplasmic α1(X) collagen mRNA were not detectable in sections of healthy adult articular cartilage, but few specimens of osteoarthritic articular cartilage showed moderate expression of type X collagen in deep zones, but not in the upper fibrillated zone where type X collagen was detected by immunofluorescence. This apparent discrepancy may be explained by the relatively short phases of type X collagen gene activity in osteoarthritis and the short mRNA half-life compared with the longer half-life of the type X collagen protein. At sites of newly formed osteophytic and repair cartilage, α1(X) mRNA was strongly expressed in hypertrophic cells, marking the areas of endochondral bone formation. As in hypertrophic chondrocytes in the proliferative zone of fetal cartilage, type X collagen expression was also associated with strong type II collagen expression.  相似文献   

6.
Mandibular condyles from 18- to 20-week-old human fetuses were examined in the light and electron microscope with particular attention to intratissue organization and extracellular matrix. In the human fetus the condyle has been divided into five layers: (1) the most superficial, articular layer, (2) chondroprogenitor cell layer, (3) condroblast cell layer, (4) nonmineralized hypertrophic cell layer, and (5) mineralized hypertrophic cell layer. The articular layer is rich in collagen fibers (mostly of the type I collagen), but the cells seldom divide. By contrast, in the chondroprogenitor cell layer and upper part of the chondroblastic cell layer mitosis gives rise to new cells. The matrix in the latter layer is composed of thick banded 'lucent' fibrils in a loose feltwork of granules representing cartilage proteoglycans. The daughter cells in the progenitor cell layer undergo differentiation which is apparently completed along the lower border of the mineralized hypertrophic cell layer--the ossification front. The matrix in the hypertrophic cell layer reveals distinct matrix vesicles that undergo mineralization and subsequently coalesce to form larger sheets of mineralized extracellular matrix. Mineralized cartilage serves as a backbone for new bone formation as marrow-derived osteoblasts and osteoclasts attach to remnants of mineralized cartilage, which enables the turning on of the remodeling cycles involved in new bone formation. It can be concluded that the process of endochondral ossification as has been reported in lower animals is recapitulated in the human fetus, thus the dynamics associated with condylar morphogenesis is maintained through phylogeny.  相似文献   

7.
The cells that express the genes for the fibrillar collagens, types I, II, III and V, during callus development in rabbit tibial fractures healing under stable and unstable mechanical conditions were localized. The fibroblast-like cells in the initial fibrous matrix express types I, III and V collagen mRNAs. Osteoblasts, and osteocytes in the newly formed membranous bone under the periosteum, express the mRNAs for types I, III and V collagens, but osteocytes in the mature trabeculae express none of these mRNAs. Cartilage formation starts at 7 days in calluses forming under unstable mechanical conditions. The differentiating chondrocytes express both types I and II collagen mRNAs, but later they cease expression of type I collagen mRNA. Both types I and II collagens were located in the cartilaginous areas. The hypertrophic chondrocytes express neither type I, nor type II, collagen mRNA. Osteocalcin protein was located in the bone and in some cartilaginous regions. At 21 days, irrespective of the mechanical conditions, the callus consists of a layer of bone; only a few osteoblasts lining the cavities now express type I collagen mRNA.We suggest that osteoprogenitor cells in the periosteal tissue can differentiate into either osteoblasts or chondrocytes and that some cells may exhibit an intermediate phenotype between osteoblasts and chondrocytes for a short period. The finding that hypertrophic chondrocytes do not express type I collagen mRNA suggests that they do not transdifferentiate into osteoblasts during endochondral ossification in fracture callus.  相似文献   

8.
Immunohistochemical studies of the chick columella have shown that the extracellular matrix of this ossicular cartilage template is composed largely of type II collagen. As development proceeds, synthesis of type X collagen, a hypertrophic cartilage-specific molecule, is initiated by endochondral chondrocytes within the zone of cartilage cell hypertrophy. Subsequently, these cells and their surrounding extracellular matrix are removed, resulting in marrow cavity formation. We have examined which of these processes are programmed within the columella chondrocytes themselves, and which require involvement of exogenous factors. Prehypertrophic columella from 12-day chick embryos were grown either in organ culture on Nuclepore filters or as explants on the chorioallantoic membrane of host embryos. Chondrocytes from the same source were grown in monolayer cell cultures. In both organ culture and cell culture, chondrocytes developed to the stage at which some of them entered the hypertrophic program and initiated the production of type X collagen as determined by immunofluorescence histochemistry with a monoclonal antibody specific for that collagen type. The organ cultures, however, did not progress to the next stage, in which detectable removal of the type X collagen-containing matrix occurs. When identical columella were grown on the chorioallantoic membrane of host chicks, the type X collagen-containing matrix which formed was rapidly removed, resulting in the formation of a marrow cavity. Thus, progression of endochondral chondrocytes to the deposition of type X collagen-containing matrix seems to be programmed within the cells themselves. Subsequent removal of this matrix requires the involvement of exogenous factors.  相似文献   

9.
Our morphological studies have demonstrated that the appearance of localized, paired zones of primary calcification on either side of the midline of the 19-d embryonic chick sternum is heralded by the development of paired, translucent zones 2 d previously. Histological studies demonstrated that the majority of chondrocytes within these translucent zones are hypertrophic, and that the zones are surrounded by a margin of flattened nonhypertrophic cells. The discrete localization of these paired areas of hypertrophic chondrocytes and subsequent endochondral bone development allows for the direct correlation of the histological and biochemical characteristics of the zones sequentially during development and makes it possible to precisely match the synthetic activity to the cellular morphology, thereby eliminating possible minor but critical variations in developmental staging that could otherwise arise. Our studies have demonstrated that there is a direct spatial and temporal correlation between the degree of cellular maturation and the synthesis of type X collagen, and that the sudden and profound initiation of type X collagen synthesis on days 16-17 of development occurs concurrently with the attainment of hypertrophic characteristics by the majority of cells within the translucent zone. Before acquisition of these hypertrophic characteristics, the cells of this precalcification zone synthesize only type II and the minor cartilage collagens. Chondrocytes isolated from these regions in more immature sternae (i.e., 11+ d embryos) were found to synthesize high levels of type X collagen within 4 d of culture within collagen gels even though hypertrophic development and type X collagen synthesis by cells within this region would not normally have been apparent in ovo for several more days. These data indicate that there is a direct correlation between the development of hypertrophic characteristics and the synthesis of type X collagen, and that the maturation of chondrocytes in precalcification zones may be regulated by matrix components and/or stimulated by culture within collagen gels.  相似文献   

10.
The distribution of type I and II collagen synthesis in the temporomandibular joint (TMJ) area of 1- to 28-day-old rats was studied after hybridization with probes to pro alpha1(I) and pro alpha1(II) collagen mRNA, and stain intensity through the various cartilaginous zones of the mandibular condyle and other areas of TMJ was assessed. The pro alpha(I) collagen mRNA was detected in the perichondrium/periosteum, in the fibrous and undifferentiated cell layers of the mandibular condyle, in the articular disc, and in all bone structures and muscles. The pro alpha1(II) collagen mRNA was found in the condylar cartilage and the articular fossa. Intensity in the condyle was highest in the chondroblastic layer and decreased towards the lower hypertrophic layer. In the condylar cartilage of the 21- to 28-day-old rats the chondroblastic cell zone was relatively narrow compared with the younger animals, whereas the reverse seems to be the case in the cartilage of the articular fossa. Changes in the pro alpha1(II) collagen mRNA were observed in the osseochondral junction area of the primary spongiosa, in that at the age of 5 days intense staining was found, whereas no staining was observed by 14 days. In the mineralizing zone, however, the majority of osteoblastic cells gave a positive signal with the pro alpha1(I) collagen probe. In conclusion, type II collagen synthesis of the mandibular condyle is restricted to its upper area. This differs from the long bone epiphyseal plate, where this type of collagen is produced virtually throughout the cartilage. Type II collagen synthesis of the fossal cartilage seems to increase as a function of age.  相似文献   

11.
This study establishes a cell culture model mimicking the terminal differentiation occurring in osteoarthritic chondrocytes. Normal articular chondrocytes obtained from human knees treated with 5-azacytidine (Aza-C) were harvested 3, 7 and 14 days after treatment. Phenotypic and genetic changes of articular chondrocytes were detected. The results show that mRNA expression of collagen type II, a marker for normal functional articular chondrocytes, was significantly decreased after Aza-C treatment in comparison to the control cultures, while those of collagen type X and ALP, markers for hypertrophic chondrocytes, were significantly increased. Cell size and apoptotic rate of articular chondrocytes showed significant increases compared to the control after 14 days of Aza-C treatment. Terminal differentiation is shown by this model of three-dimensional cultured human articular chondrocytes, which could apply to the studies of the cellular mechanisms of osteoarthritis.  相似文献   

12.
We have examined whether the production of hypertrophic cartilage matrix reflecting a late stage in the development of chondrocytes which participate in endochondral bone formation, is the result of cell lineage, environmental influence, or both. We have compared the ability of cultured limb mesenchyme and mesectoderm to synthesize type X collagen, a marker highly selective for hypertrophic cartilage. High density cultures of limb mesenchyme from stage 23 and 24 chick embryos contain many cells that react positively for type II collagen by immunohistochemistry, but only a few of these initiate type X collagen synthesis. When limb mesenchyme cells are cultured in or on hydrated collagen gels or in agarose (conditions previously shown to promote chondrogenesis in low density cultures), almost all initiate synthesis of both collagen types. Similarly, collagen gel cultures of limb mesenchyme from stage 17 embryos synthesize type II collagen and with some additional delay type X collagen. However, cytochalasin D treatment of subconfluent cultures on plastic substrates, another treatment known to promote chondrogenesis, induces the production of type II collagen, but not type X collagen. These results demonstrate that the appearance of type X collagen in limb cartilage is environmentally regulated. Mesectodermal cells from the maxillary process of stages 24 and 28 chick embryos were cultured in or on hydrated collagen gels. Such cells initiate synthesis of type II collagen, and eventually type X collagen. Some cells contain only type II collagen and some contain both types II and X collagen. On the other hand, cultures of mandibular processes from stage 29 embryos contain chondrocytes with both collagen types and a larger overall number of chondrogenic foci than the maxillary process cultures. Since the maxillary process does not produce cartilage in situ and the mandibular process forms Meckel's cartilage which does not hypertrophy in situ, environmental influences, probably inhibitory in nature, must regulate chondrogenesis in mesectodermal derivatives. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Articular cartilage is a permanent tissue whose cells do not normally take part in the endochondral ossification process. To determine whether articular chondrocytes possess the potential to express traits associated with this process such as cell hypertrophy and type X collagen, chondrocytes were isolated from adult chicken tibial articular cartilage and maintained in long-term suspension cultures. As a positive control in these experiments, we used parallel cultures of chondrocytes from the caudal portion of chick embryo sternum. Both articular and sternal chondrocytes readily proliferated and progressively increased in size with time in culture. Many had undergone hypertrophy by 4-5 weeks. Analysis of medium-released collagenous proteins revealed that both articular and sternal chondrocytes initiated type X collagen synthesis between 3 and 4 weeks of culture; synthesis of this macromolecule increased with further growth. Immunofluorescence analysis of 5-week-old cultures showed that about 15% of articular chondrocytes and 30% of sternal chondrocytes produced type X collagen; strikingly, there appeared to be no obvious relationship between type X collagen production and cell size. The results of this study show that articular chondrocytes from adult chicken tibia possess the ability to express traits associated with endochondral ossification when exposed to a permissive environment. They suggest also that the process of cell hypertrophy and initiation of type X collagen synthesis are independently regulated both in articular and sternal chondrocytes.  相似文献   

14.
Mandibular condyles of fetal mice 19 to 20 days in utero comprising clean cartilage and its perichondrium were cultured for up to 14 days, and their capacity to develop osteoid and to mineralize in vitro was examined. After 3 days in culture the cartilage of the mandibular condyle appeared to have lost its inherent structural characteristics, including its various cell layers: chondroprogenitor, chondroblastic, and hypertrophic cells. At that time interval no chondroblasts could be seen; instead, most of the cartilage consisted of hypertrophic chondrocytes. By that time, the surrounding perichondrium, which contains pluripotential mesenchymal stem cells, revealed the first signs of extracellular matrix enclosing type I collagen, bone alkaline phosphatase, osteonection, fibronectin, and bone sialoprotein as demonstrated by immunofluorescent techniques. Electron microscopic examinations of the newly formed matrix revealed foci of mineralization within and along collagen fibers as is normally observed during bone development. The composition of the latter mineral deposits resembled calcium pyrophosphate crystals. Following 14 days in culture larger portions of the condyle revealed signs of osseous matrix, yet the tissue reacted positively for type II collagen. Hence, the condylar cartilage, a genuine representative of secondary-type cartilage, elaborated in vitro a unique type of bone that would be most appropriately defined as chondroid bone. Biochemical assays indicated that the de novo formation of chondroid bone was correlated with changes in alkaline phosphatase activity and 45Ca incorporation. The findings of the present study imply that mesenchymal stem cells that ordinarily differentiate into cartilage possess the capacity to differentiate into osteogenic cells and form chondroid bone.  相似文献   

15.
Previously, we showed that expression of a dominant-negative form of the transforming growth factor beta (TGF-beta) type II receptor in skeletal tissue resulted in increased hypertrophic differentiation in growth plate and articular chondrocytes, suggesting a role for TGF-beta in limiting terminal differentiation in vivo. Parathyroid hormone-related peptide (PTHrP) has also been demonstrated to regulate chondrocyte differentiation in vivo. Mice with targeted deletion of the PTHrP gene demonstrate increased endochondral bone formation, and misexpression of PTHrP in cartilage results in delayed bone formation due to slowed conversion of proliferative chondrocytes into hypertrophic chondrocytes. Since the development of skeletal elements requires the coordination of signals from several sources, this report tests the hypothesis that TGF-beta and PTHrP act in a common signal cascade to regulate endochondral bone formation. Mouse embryonic metatarsal bone rudiments grown in organ culture were used to demonstrate that TGF-beta inhibits several stages of endochondral bone formation, including chondrocyte proliferation, hypertrophic differentiation, and matrix mineralization. Treatment with TGF-beta1 also stimulated the expression of PTHrP mRNA. PTHrP added to cultures inhibited hypertrophic differentiation and matrix mineralization but did not affect cell proliferation. Furthermore, terminal differentiation was not inhibited by TGF-beta in metatarsal rudiments from PTHrP-null embryos; however, growth and matrix mineralization were still inhibited. The data support the model that TGF-beta acts upstream of PTHrP to regulate the rate of hypertrophic differentiation and suggest that TGF-beta has both PTHrP-dependent and PTHrP-independent effects on endochondral bone formation.  相似文献   

16.
Summary Study of the deep articular cartilage and adjacent calcified cartilage has been limited by the lack of an in vitro culture system which mimics this region of the cartilage. In this paper we describe a method to generate mineralized cartilagenous tissue in culture using chondrocytes obtained from the deep zone of bovine articular cartilage. The cells were plated on Millipore CMR filters. The chondrocytes in culture accumulated extracellular matrix and formed cartilagenous tissue which calcified when β-glycerophosphate was added to the culture medium. The cartilagenous tissue generated in vitro contains both type II and type X collagens, large sulfated proteoglycans, and alkaline phosphatase activity. Ultrastructurally, matrix vesicles were seen in the extracellular matrix. Selected area electron diffraction confirmed that the calcification was composed of hydroxyapatite crystals. The chondrocytes, as characterized thus far, appear to maintain their phenotype under these culture conditions which suggests that these cultures could be used as a model to examine the metabolism of cells from the deep zone of cartilage and mineralization of cartilagenous tissue in culture.  相似文献   

17.
Cell-based cartilage resurfacing requires ex vivo expansion of autologous articular chondrocytes. Defined culture conditions minimize expansion-dependent phenotypic alterations but maintenance of the cells' differentiation potential must be carefully assessed. Transforming growth factor β-1 (TGF β-1) positively regulates the expression of several cartilage proteins, but its therapeutic application in damaged cartilage is controversial. Thus we evaluated the phenotypic outcomes of cultured human articular chondrocytes exposed to TGF β-1 during monolayer expansion in a serum-free medium. After five doublings cells were transferred to micromass cultures to assess their chondrogenic differentiation, or replated in osteogenic medium. Immunocytostainings of micromasses of TGF-expanded cells showed loss of aggrecan and type II collagen. Positivity was evidenced for RAGE, IHH, type X collagen and for apoptotic cells, paralleling a reduction of BCL-2 levels, suggesting hypertrophic differentiation. TGF β-1-exposed cells also evidenced increased mRNA levels for bone sialoprotein, osteopontin, matrix metalloproteinase-13, TIMP-3, VEGF and SMAD7, enhanced alkaline phosphatase activity and pyrophosphate availability. Conversely, SMAD3 mRNA and protein contents were reduced. After osteogenic induction, only TGF-expanded cells strongly mineralized and impaired p38 kinase activity, a contributor of chondrocytes' differentiation. To evaluate possible endochondral ossification progression, we seeded the chondrocytes on hydroxyapatite scaffolds, subsequently implanted in an in vivo ectopic setting, but cells failed to reach overt ossification; nonetheless, constructs seeded with TGF-exposed cells displayed blood vessels of the host vascular supply with enlarged diameters, suggestive of vascular remodeling, as in bone growth. Thus TGF-exposure during articular chondrocytes expansion induces a phenotype switch to hypertrophy, an undesirable effect for cells possibly intended for tissue-engineered cartilage repair.  相似文献   

18.
A neocartilage construct readily amenable to microscopy and biomechanical studies is described. Porcine articular cartilage was digested with a mixture of dispase and collagenase for chondrons or pronase and collagenase for chondrocytes. Chondrons or chondrocytes plated in 96-well plates were fixed and immunolabeled in situ for fluorescence microscopy at days 4 and 11. Collagen types I and II, aggrecan, and MMP-13 expression was assayed by semiquantitative RT-PCR. Cell numbers were analyzed by MTT assay. Chondrons and chondrocytes produced neocartilage that could be handled with minimal tearing on day 3 and none on day 11. Some cell division occurred between days 4 and 7. In both cultures, chondrocytes were surrounded by a thin rim of type VI collagen and osteopontin. Type II collagen, keratan sulfate, and tenascin were abundant throughout. At day 3, cells were rounded but by day 11 flattened cells were visible in the substratum. Continued synthesis of aggrecan and type II collagen mRNA indicated maintenance of the chondrocyte phenotype. The neocartilage was easy to immunolabel in situ without the need for sectioning, and individual cells were readily observed by microscopy. The versatility of these constructs makes them ideal for microscopy and for biomechanical studies.  相似文献   

19.
20.
Epiphyses of the proximal tibiae of 7-week-old normal and homozygous recessive brachymorphic mice (bm/bm) were immunostained using a monoclonal antibody to basic fibroblast growth factor to determine its expression in growth plate cartilage, osteoblasts on the surfaces of the primary spongiosa and articular cartilage. In the normal growth plate, the immunoreactive factor was present in chondrocytes of the proliferating and upper hypertrophic zones but absent from lower hypertrophic chondrocytes. Immunostaining was present only in the territorial extracellular matrix immediately adjacent to the chondrocytes of the proliferating and upper hypertrophic zones. Osteoblasts of the primary spongiosa stained heavily in normal mice. Strong staining was observed in intermediate zone articular chondrocytes. Cells in the superficial layer of articular cartilage were unstained. The extracellular matrix of the articular cartilage was completely free of immunostaining. In contrast, the reduced size of bm/bm growth plates was accompanied by significantly reduced staining intensity in proliferating and upper hypertrophic chondrocytes, and staining was absent from the territorial extracellular matrix of all zones of the bm/bm growth plate. Osteoblasts of the primary spongiosa of bm/bm mice stained less than those of normal mice. Articular cartilage chondrocytes in the intermediate zone stained with less intensity in bm/bm mice, and the cells of the superficial layer were unstained. The extracellular matrix of bm/bm articular cartilage was completely free of staining. Brachymorphic epiphyseal growth plate and articular chondrocytes, and osteoblasts in the primary spongiosa, express reduced amounts of immunoreactive fibroblast growth factor-2. This phenotypical characteristic may be associated with abnormal endochondral ossification and development of bone in brachymorphic mice  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号