首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Virtually all eukaryotes have developed defense mechanisms to efficiently counter potential threats from prokaryotic microorganisms; an example is the conserved nuclear factor-kappaB (NF-κB) signaling system. However, bacterial pathogens and commensals have in turn evolved highly effective counter mechanisms to modulate this immune regulatory circuit. Modifications in ubiquitin, ubiquitin-like (Ubl) proteins such as neural precursor cell expressed, developmentally down-regulated 8 (NEDD8) and other post-translational modifications (PTMs) in the NF-κB system represent attractive targets for microbial manipulation. In this review, we describe recent advances in understanding the different strategies that bacteria have evolved to interfere with PTMs in NF-κB signal transmission.  相似文献   

2.
Posttranslational modifications of proteins by small polypeptides including ubiquitination, neddylation (related to ubiquitin (RUB) conjugation), and sumoylation are implicated in plant growth and development, and they regulate protein degradation, location, and interaction with other proteins. Ubiquitination mediates the selective degradation of proteins by the ubiquitin (Ub)/proteasome pathway. The ubiquitin-like protein RUB is conjugated to cullins, which are part of a ubiquitin E3 ligase complex that is involved in auxin hormonal signaling. Sumoylation, by contrast, is known for its involvement in guiding protein interactions related to abiotic and biotic stresses and in the regulation of flowering time. ATG8/ATG12-mediated autophagy influences degradation and recycling of cellular components. Other ubiquitin-like modifiers (ULPs) such as homology to Ub-1, ubiquitin-fold modifier 1, and membrane-anchored Ub-fold are also found in Arabidopsis. ULPs share similar three-dimensional structures and a conjugation system, including E1 activating enzymes, E2 conjugation enzymes, and E3 ligases, as well as proteases for deconjugation and recycling of the tags. However, each of the ULP posttranslational modifications possesses its own specific enzymes and modifies its specific targets selectively. This review discusses recent findings on ubiquitination and ubiquitin-like modifier processes and their roles in the posttranslational modification of proteins in Arabidopsis.  相似文献   

3.
4.
5.
Brooks CL  Gu W 《FEBS letters》2011,585(18):2803-2809
The ubiquitination pathway is a highly dynamic and coordinated process that regulates degradation as well as numerous processes of proteins within a cell. The p53 tumor suppressor and several factors in the pathway are regulated by ubiquitin as well as ubiquitin-like proteins. These modifications are critical for the function of p53 and control both the degradation of the protein as well as localization and activity. Importantly, more recent studies have identified deubiquitination enzymes that can specifically remove ubiquitin moieties from p53 or other factors in the pathway, and the reversible nature of this process adds yet another layer of regulatory control of p53. This review highlights the recent advances in our knowledge of ubiquitin and the p53 pathway.  相似文献   

6.
7.
The resident prokaryotic microflora of the mammalian intestine influences diverse homeostatic functions of the gut, including regulation of cellular growth and immune responses; however, it is unknown how commensal prokaryotic organisms mechanistically influence eukaryotic signaling networks. We have shown that bacterial coculture with intestinal epithelial cells modulates ubiquitin-mediated degradation of important signaling intermediates, including beta-catenin and the NF-kappaB inhibitor IkappaB-alpha. Ubiquitination of these proteins as well as others is catalyzed by the SCF(betaTrCP) ubiquitin ligase, which itself requires regulated modification of the cullin-1 subunit by the ubiquitin-like protein NEDD8. Here we show that epithelia contacted by enteric commensal bacteria in vitro and in vivo rapidly generate reactive oxygen species (ROS). Bacterially induced ROS causes oxidative inactivation of the catalytic cysteine residue of Ubc12, the NEDD8-conjugating enzyme, resulting in complete but transient loss of cullin-1 neddylation and consequent effects on NF-kappaB and beta-catenin signaling. Our results demonstrate that commensal bacteria directly modulate a critical control point of the ubiquitin-proteasome system, and suggest how enteric commensal bacterial flora influences the regulatory pathways of the mammalian intestinal epithelia.  相似文献   

8.
Ubiquitin and ubiquitin-like proteins are known to be covalently conjugated to a variety of cellular substrates via a three-step enzymatic pathway. These modifications lead to the degradation of substrates or change its functional status. The ubiquitin-activating enzyme (E1) plays a key role in the first step of ubiquitination pathway to activate ubiquitin or ubiquitin-like proteins. Ubiquitin-activating enzyme E1-domain containing 1 (UBE1DC1) had been proved to activate an ubiquitin-like protein, ubiquitin-fold modifier 1 (Ufm1), by forming a high-energy thioester bond. In this report, UBE1DC1 is proved to activate another ubiquitin-like protein, SUMO2, besides Ufm1, both in vitro and in vivo by immunological analysis. It indicated that UBE1DC1 could activate two different ubiquitin-like proteins, SUMO2 and Ufm1, which have no significant similarity with each other. Subcellular localization in AD293 cells revealed that UBE1DC1 was especially distributed in the cytoplasm; whereas UBE1DC1 was mainly distributed in the nucleus when was cotransfected with SUMO2. It presumed that UBE1DC1 greatly activated SUMO2 in the nucleus or transferred activated-SUMO2 to nucleus after it conjugated SUMO2 in the cytoplasm.  相似文献   

9.
Protein post-translational modifications (PTMs) are central to the host innate immune regulations. Dynamically, PTMs fine-tune the spatial and temporary responses of immune- and non-immune-cells, in accordance with extracellular and intracellular stresses. Ubiquitin and ubiquitin-like proteins (Ubls) are emerging as the important multi-functional signals, controlling the activation, stability, affinity and location of many signaling proteins. Recent investigations, at the molecular-cellular-animal models, have shed new light on the versatility of the ubiquitin, SUMO and ISG15, for shaping the strength and duration of the innate immune responses. This review summarizes our current knowledge on the functions and regulatory mechanisms of the ubiquitin and Ubls in the innate immunity, the first line of host defense against microbial infection.  相似文献   

10.
11.
Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modifications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the ''ubiquitin code''. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiquitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation.  相似文献   

12.
13.
Activity, abundance and localization of eukaryotic proteins can be regulated through covalent attachment of ubiquitin and ubiquitin-like moieties. Ubiquitination is important in various aspects of immunity. Pathogens utilize host ubiquitination for the suppression of immune signalling and reprogramming host processes to promote microbial life. They deliver so-called effector molecules into host cells, which functionally or structurally resemble components of the host ubiquitination machinery utilizing this enzymatic process or they secrete molecules to inhibit ubiquitin-mediated degradation. Since prokaryotic pathogens lack a classical ubiquitination system, effector mimicry of components of the ubiquitin machinery could be achieved through gene flow. Horizontal gene transfer allows pathogenic bacteria to access ubiquitination enzymes from a potential host, while lateral gene transfer recruits components from another pathogen providing spread within the microbial community. Additionally, convergent evolution can shape bacterial proteins to acquire ubiquitination functions.  相似文献   

14.
The ubiquitin superfamily is a rich repository of small, conserved, functionally unique, and important proteins. Its member proteins fold simply and similarly, with kinetic and thermodynamic ease (Sorenson, J. M.; Head-Gordon, T. Toward minimalist models of larger proteins: A ubiquitin-like protein. Proteins 2002, 46, 368-379). They have been implicated in numerous cancers, neurodegenerations, inflammations, and various disorders affecting signal transduction or protein half-life. These proteins serve the cell generally as portable recognition tags with distinct intracellular roles; indeed, tagging with small protein modifiers has become a new hallmark of post-translational modifications and other signal transduction phenomenon (Finley, D. J. Signal transduction. An alternative to destruction. Nature 2001, 412, 283, 285-286). Because many ubiquitin-like proteins bear similarities in sequence, structure, and function, we gathered protein sequences containing the ubiquitin domain from public databases and created a highly granular and defined protein catabolism database to catalog, summarize, reference, and relate them to their targets and specific ligases (to be described elsewhere). In this paper, we reveal a compilation of proteins possessing the ubiquitin domain. This comprises the first and most important part of our database content. We searched available organismal proteomes for sequence-related members of the ubiquitin superfamily and here present over 200 proteins possessing this domain. These proteins were organized phylogenetically and functionally, thereby defining several new families. To our knowledge, this is the most complete assemblage of ubiquitin domains to date.  相似文献   

15.
The diversity of ubiquitin modifications is immense. A protein can be monoubiquitylated, multi-monoubiquitylated, and polyubiquitylated with chains varying in size and shape. Ubiquitin itself can be adorned with other ubiquitin-like proteins and smaller functional groups. Considering different combinations of post-translational modifications can give rise to distinct biological outcomes, characterizing ubiquitylated proteoforms of a given protein is paramount. In this Opinion, we review recent advances in detecting and quantifying various ubiquitin proteoforms using mass spectrometry.  相似文献   

16.
Feltham R  Khan N  Silke J 《IUBMB life》2012,64(5):411-418
The Inhibitor of apoptosis (IAP) proteins are key negative regulators of cell death, whose amplification has been correlated with tumor progression. Due to the presence of a RING domain, IAP proteins are classed as ubiquitin ligases and regulate cell survival by orchestrating a variety of ubiquitin modifications. Ubiquitin protein modification is fundamental in cell signaling and different ubiquitin modifications may label proteins for destruction, relocalization or provide a recruitment platform for ubiquitin binding proteins. Ubiquitin performs a myriad of different functions because it can be conjugated to a large range of target proteins through numerous different types of ubiquitin linkages. Despite the fact that ubiquitin is extremely versatile, the E3s such as the IAPs provide an important level of control due to their specificity for certain substrates. Several recent reviews have discussed the role of IAPs in regulating immune signaling so we have therefore focused our review on the interplay between IAPs and ubiquitin and discussed the importance of this relationship for the regulation of themselves, specific substrates and various cell death and survival signaling pathways.  相似文献   

17.
Ubiquitin and ubiquitin-like proteins as multifunctional signals   总被引:1,自引:0,他引:1  
Protein ubiquitylation is a recognized signal for protein degradation. However, it is increasingly realized that ubiquitin conjugation to proteins can be used for many other purposes. Furthermore, there are many ubiquitin-like proteins that control the activities of proteins. The central structural element of these post-translational modifications is the ubiquitin superfold. A common ancestor based on this superfold has evolved to give various proteins that are involved in diverse activities in the cell.  相似文献   

18.
Protein modifications by ubiquitin and small ubiquitin-like modifier (SUMO) play key roles in cellular signaling pathways. SUMO-targeted ubiquitin ligases (STUbLs) directly couple these modifications by selectively recognizing SUMOylated target proteins through SUMO-interacting motifs (SIMs), promoting their K48-linked ubiquitylation and degradation. Only a single mammalian STUbL, RNF4, has been identified. We show that human RNF111/Arkadia is a new STUbL, which used three adjacent SIMs for specific recognition of poly-SUMO2/3 chains, and used Ubc13–Mms2 as a cognate E2 enzyme to promote nonproteolytic, K63-linked ubiquitylation of SUMOylated target proteins. We demonstrate that RNF111 promoted ubiquitylation of SUMOylated XPC (xeroderma pigmentosum C) protein, a central DNA damage recognition factor in nucleotide excision repair (NER) extensively regulated by ultraviolet (UV)-induced SUMOylation and ubiquitylation. Moreover, we show that RNF111 facilitated NER by regulating the recruitment of XPC to UV-damaged DNA. Our findings establish RNF111 as a new STUbL that directly links nonproteolytic ubiquitylation and SUMOylation in the DNA damage response.  相似文献   

19.
Covalent post-translational modification of proteins by ubiquitin and ubiquitin-like factors has emerged as a general mechanism to regulate myriad intra-cellular processes. The addition and removal of ubiquitin or ubiquitin-like proteins from factors has recently been demonstrated as a key mechanism to modulate DNA damage response (DDR) pathways. It is thus, timely to evaluate the potential for ubiquitin pathway enzymes as DDR drug targets for therapeutic intervention. The synthetic lethal approach provides exciting opportunities for the development of targeted therapies to treat cancer: most tumours have lost critical DDR pathways, and thus rely more heavily on the remaining pathways, while normal tissues are still equipped with all DDR pathways. Here, we review key deubiquitylating enzymes (DUBs) involved in DDR pathways, and describe how targeting DUBs may lead to selective therapies to treat cancer patients.  相似文献   

20.
Regulation of protein functions can be achieved by posttranslational protein modifications. One of the most studied modifications has been conjugation to ubiquitin, which mainly targets substrate proteins for degradation by the 26 S proteasome. Recently, SUMO/sentrin, a ubiquitin-like protein has been characterized. This evolutionary conserved protein is conjugated to specific proteins in a way similar, but not identical, to ubiquitin and seems also to be involved in the regulation of protein localization or function. An increasing number of SUMO/sentrin substrates are currently described. We focus here on three major substrates of modification by SUMO: RanGAP1, PML, and IkappaBalpha proteins. These different examples illustrate how SUMO conjugation may be involved in the control of the level of critical proteins within the cell or in the modulation of subcellular localization and nucleocytoplasmic trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号