首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
In this study we constructed a bootstrapped distance tree of 500 small subunit ribosomal RNA sequences from organisms belonging to the so-called crown of eukaryote evolution. Taking into account the substitution rate of the individual nucleotides of the rRNA sequence alignment, our results suggest that (1) animals, true fungi, and choanoflagellates share a common origin: The branch joining these taxa is highly supported by bootstrap analysis (bootstrap support [BS] > 90%), (2) stramenopiles and alveolates are sister groups (BS = 75%), (3) within the alveolates, dinoflagellates and apicomplexans share a common ancestor BS > 95%), while in turn they both share a common origin with the ciliates (BS > 80%), and (4) within the stramenopiles, heterokont algae, hyphochytriomycetes, and oomycetes form a monophyletic grouping well supported by bootstrap analysis (BS > 85%), preceded by the well-supported successive divergence of labyrinthulomycetes and bicosoecids. On the other hand, many evolutionary relationships between crown taxa are still obscure on the basis of 18S rRNA. The branching order between the animal-fungal-choanoflagellates clade and the chlorobionts, the alveolates and stramenopiles, red algae, and several smaller groups of organisms remains largely unresolved. When among-site rate variation is not considered, the inferred tree topologies are inferior to those where the substitution rate spectrum for the 18S rRNA is taken into account. This is primarily indicated by the erroneous branching of fast-evolving sequences. Moreover, when different substitution rates among sites are not considered, the animals no longer appear as a monophyletic grouping in most distance trees. Received: 11 June 1997 / Accepted: 21 July 1997  相似文献   

2.
As methods of molecular phylogeny have become more explicit and more biologically realistic following the pioneering work of Thomas Jukes, they have had to relax their initial assumption that rates of evolution were equal at all sites. Distance matrix and likelihood methods of inferring phylogenies make this assumption; parsimony, when valid, is less limited by it. Nucleotide sequences, including RNA sequences, can show substantial rate variation; protein sequences show rates that vary much more widely. Assuming a prior distribution of rates such as a gamma distribution or lognormal distribution has deservedly been popular, but for likelihood methods it leads to computational difficulties. These can be resolved using hidden Markov model (HMM) methods which approximate the distribution by one with a modest number of discrete rates. Generalized Laguerre quadrature can be used to improve the selection of rates and their probabilities so as to more nearly approach the desired gamma distribution. A model based on population genetics is presented predicting how the rates of evolution might vary from locus to locus. Challenges for the future include allowing rates at a given site to vary along the tree, as in the ``covarion' model, and allowing them to have correlations that reflect three-dimensional structure, rather than position in the coding sequence. Markov chain Monte Carlo likelihood methods may be the only practical way to carry out computations for these models. Received: 8 February 2001 / Accepted: 20 May 2001  相似文献   

3.
The degree to which an amino acid site is free to vary is strongly dependent on its structural and functional importance. An amino acid that plays an essential role is unlikely to change over evolutionary time. Hence, the evolutionary rate at an amino acid site is indicative of how conserved this site is and, in turn, allows evaluation of its importance in maintaining the structure/function of the protein. When using probabilistic methods for site-specific rate inference, few alternatives are possible. In this study we use simulations to compare the maximum-likelihood and Bayesian paradigms. We study the dependence of inference accuracy on such parameters as number of sequences, branch lengths, the shape of the rate distribution, and sequence length. We also study the possibility of simultaneously estimating branch lengths and site-specific rates. Our results show that a Bayesian approach is superior to maximum-likelihood under a wide range of conditions, indicating that the prior that is incorporated into the Bayesian computation significantly improves performance. We show that when branch lengths are unknown, it is better first to estimate branch lengths and then to estimate site-specific rates. This procedure was found to be superior to estimating both the branch lengths and site-specific rates simultaneously. Finally, we illustrate the difference between maximum-likelihood and Bayesian methods when analyzing site-conservation for the apoptosis regulator protein Bcl-x(L).  相似文献   

4.
The increasing number of taxa and loci in molecular phylogenetic studies of basal euteleosts has brought stability in a controversial area. A key emerging aspect to these studies is a sister Esociformes (pike) and Salmoniformes (salmon) relationship. We evaluate mitochondrial genome support for a sister Esociformes and Salmoniformes hypothesis by surveying many potential outgroups for these taxa, employing multiple phylogenetic approaches, and utilizing a thorough sampling scheme. Secondly, we conduct a simultaneous divergence time estimation and phylogenetic inference in a Bayesian framework with fossil calibrations focusing on relationships within Esociformes + Salmoniformes. Our dataset supports a sister relationship between Esociformes and Salmoniformes; however the nearest relatives of Esociformes + Salmoniformes are inconsistent among analyses. Within the order Esociformes, we advocate for a single family, Esocidae. Subfamily relationships within Salmonidae are poorly supported as Salmoninae sister to Thymallinae + Coregoninae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号