共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Bruna R. B. Gomes Marina Firmino Jardeson S. Jorge Maria L. O. Ferreira Thays M. Rodovalho Simone N. Weis 《Free radical research》2018,52(3):351-361
AbstractFever is a regulated increase in body temperature and a component of the acute-phase response, triggered mainly after the invasion of pathogens in the body. Reactive oxygen species (ROS) are generated during the physiological and pathological processes, and can act as both signalling molecules as well as promoters of oxidative stress. Male Wistar rats, pretreated with oral doses of acetaminophen, celecoxib, dipyrone, or ibuprofen 30?min before an intravenous lipopolysaccharide (LPS) or sterile saline injection, showed a reduced febrile response in all animals tested. The formation of ROS in the fresh blood, liver, brown adipose tissue (BAT), and hypothalamus of febrile and antipyretic-treated animals was assessed by electron paramagnetic resonance using the spin probe 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH). While the CM? concentrations remained unaltered in the blood samples examined 5?h after the induction of fever, we found increased CM? levels in the liver (in µM, saline: 290?±?42; LPS: 512?±?34), BAT (in µM, saline: 509?±?79, LPS: 855?±?79), and hypothalamus (in µM, saline: 292?±?35; LPS: 467?±?8) at the same time point. Importantly, none of the antipyretics were seen to alter the CM? accumulation profile. Data from this study suggest that there is an increased formation of ROS in the different tissues during fever, which may cause oxidative stress, and that the antipyretics tested do not interfere with ROS production. 相似文献
3.
Hydrogen Peroxide in Plants: a Versatile Molecule of the Reactive Oxygen Species Network 总被引:8,自引:0,他引:8
Plants often face the challenge of severe environmental conditions, which include various biotic and abiotic stresses that exert adverse effects on plant growth and development. During evolution, plants have evolved complex regulatory mechanisms to adapt to various environmental stressors. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species (ROS), which are subsequently converted to hydrogen peroxide (H2O2). Even under normal conditions, higher plants produce ROS during metabolic processes. Excess concentrations of ROS result in oxidative damage to or the apoptotic death of cells. Development of an antioxidant defense system in plants protects them against oxidative stress damage. These ROS and, more particularly, H2O2, play versatile roles in normal plant physiological processes and in resistance to stresses. Recently, H2O2 has been regarded as a signaling molecule and regulator of the expression of some genes in cells. This review describes various aspects of H2O2 function, generation and scavenging, gene regulation and cross-links with other physiological molecules during plant growth, development and resistance responses. 相似文献
4.
Nong Q Komatsu M Izumo K Indo HP Xu B Aoyama K Majima HJ Horiuchi M Morimoto K Takeuchi T 《Free radical research》2007,41(12):1326-1337
Microcystin-LR (MCLR) is a potent hepatotoxin. Oxidative stress is thought to be implicated in the cytotoxicity of MCLR, but the mechanisms by which MCLR produces reactive oxygen species (ROS) are still unclear. This study investigated the role and possible sources of ROS generation in MCLR-induced cytogenotoxicity in HepG2, a human hepatoma cell line. MCLR increased DNA strand breaks, 8-hydroxydeoxiguanosine formation, lipid peroxidation, as well as LDH release, all of which were inhibited by ROS scavengers. ROS scavengers partly suppressed MCLR-induced cytotoxicity determined by the MTT assay. MCLR induced the generation of ROS, as confirmed by confocal microscopy with 2-[6-(4'-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid, and upregulated the expression of CYP2E1 mRNA. In addition, CYP2E1 inhibitors chlormethiazole and diallyl sulphide inhibited both ROS generation and cytotoxicity induced by MCLR. The results suggest that ROS contribute to MCLR-induced cytogenotoxicity. CYP2E1 might be a potential source responsible for ROS generation by MCLR. 相似文献
5.
Qingqing Nong Masaharu Komatsu Kimiko Izumo Hiroko P. Indo Baohui Xu Kohji Aoyama 《Free radical research》2013,47(12):1326-1337
Microcystin-LR (MCLR) is a potent hepatotoxin. Oxidative stress is thought to be implicated in the cytotoxicity of MCLR, but the mechanisms by which MCLR produces reactive oxygen species (ROS) are still unclear. This study investigated the role and possible sources of ROS generation in MCLR-induced cytogenotoxicity in HepG2, a human hepatoma cell line. MCLR increased DNA strand breaks, 8-hydroxydeoxiguanosine formation, lipid peroxidation, as well as LDH release, all of which were inhibited by ROS scavengers. ROS scavengers partly suppressed MCLR-induced cytotoxicity determined by the MTT assay. MCLR induced the generation of ROS, as confirmed by confocal microscopy with 2-[6-(4′-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid, and upregulated the expression of CYP2E1 mRNA. In addition, CYP2E1 inhibitors chlormethiazole and diallyl sulphide inhibited both ROS generation and cytotoxicity induced by MCLR. The results suggest that ROS contribute to MCLR-induced cytogenotoxicity. CYP2E1 might be a potential source responsible for ROS generation by MCLR. 相似文献
6.
Rup Kumar Kar 《Plant signaling & behavior》2011,6(11):1741-1745
Terrestrial plants most often encounter drought stress because of erratic rainfall which has become compounded due to present climatic changes.Responses of plants to water stress may be assigned as either injurious change or tolerance index. One of the primary and cardinal changes in response to drought stress is the generation of reactive oxygen species (ROS), which is being considered as the cause of cellular damage. However, recently a signaling role of such ROS in triggering the ROS scavenging system that may confer protection or tolerance against stress is emerging. Such scavenging system consists of antioxidant enzymes like SOD, catalase and peroxidases, and antioxidant compounds like ascorbate, reduced glutathione; a balance between ROS generation and scavenging ultimately determines the oxidative load. As revealed in case of defence against pathogen, signaling via ROS is initiated by NADPH oxidase-catalyzed superoxide generation in the apoplastic space (cell wall) followed by conversion to hydrogen peroxide by the activity of cell wall-localized SOD. Wall peroxidase may also play role in ROS generation for signaling. Hydrogen peroxide may use Ca2+ and MAPK pathway as downstream signaling cascade. Plant hormones associated with stress responses like ABA and ethylene play their role possibly via a cross talk with ROS towards stress tolerance, thus projecting a dual role of ROS under drought stress. 相似文献
7.
AIM: To investigate the effect of neutralization of reactive oxygen species (ROS-neutralized conditions) on the enumeration of chlorine-injured Escherichia coli and Enterococcus faecalis using selective and nonselective media. METHODS: Pure cultures of E. coli NCTC8912 and Ent. faecalis NCTC775 were injured using dilute sodium hypochlorite, at free chlorine levels of 0.6 and 0.9 microg ml(-1), respectively, and then enumerated at 37 degrees C by surface plate counts on nonselective nutrient (N) agar and on several selective media, either under (i) standard aerobic conditions; (ii) aerobic conditions using growth medium, supplemented with 0.05%-w/v sodium pyruvate, to neutralize peroxides; or (iii) conditions designed to neutralize ROS, using a combination of 0.05%-w/v sodium pyruvate in the growth medium, together with incubation in an anaerobic jar. RESULTS: The counts obtained on the nonselective medium were lowest under aerobic conditions in unsupplemented medium, higher in pyruvate-supplemented (peroxide-neutralized) medium and highest for ROS-neutralized conditions. Counts for the selective media were often lower than those for nonselective N (nutrient) agar, with enhancement under peroxide-neutralized conditions and a further increase in counts under ROS-neutralized conditions. Broadly similar observations were made for three other strains of each organism. CONCLUSIONS: Chlorine-injured E. coli and Ent. faecalis become sensitive to ROS, giving higher counts under ROS-neutralized enumeration conditions than under conventional aerobic conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: The enhancement in counts observed under ROS-neutralized conditions indicate that the addition of pyruvate to the growth medium may not fully counteract the effects of sublethal injury under aerobic conditions, which is a novel observation. Thus, ROS-neutralized conditions may be required for optimal enumeration of faecal indicator bacteria. Furthermore, the lower counts, obtained using selective media indicate that the sensitivity of chlorine-injured bacteria to selective agents is not necessarily reversed under ROS-neutralized conditions. 相似文献
8.
9.
The heart responds to an increased demand arising due to physiological stimuli or pathological insults by hypertrophy of myocytes. Reactive oxygen species (ROS) have recently been identified as the molecular intermediates in the translation of mechanical stimuli to cellular response. Different signal transduction pathways have been implicated with cardiac hypertrophy, prominent among them being, mitogen-activated protein kinase (MAPK), protein kinase C (PKC) and calcineurin. It remains unclear whether the ROS induced hypertrophy is mediated through one or more of these pathways. This study was taken up with the objective to affirm the role of ROS in the induction of cardiomyocyte hypertrophy and examine the contribution of specific pathways in the mediation of the hypertrophic response. The cellular response to enzyme-generated reactive oxygen species was examined in cultured cells from newborn rat heart. Pathway specific inhibitors were used to identify the role of each pathway in the mediation of cellular hypertrophy. Cellular hypertrophy in response to hypoxanthine-xanthine oxidase was prevented by inhibition of any one of the pathways; leading to the inference that oxidative stress induced hypertrophy is mediated by coordinative regulation of the three major pathways. 相似文献
10.
Paola Venditti Tanea T. Reed Victor M. Victor Sergio Di Meo 《Free radical research》2019,53(3):248-268
In addition to insulin, glycemic control involves thyroid hormones. However, an excess of thyroid hormone can disturb the blood glucose equilibrium, leading to alterations of carbohydrate metabolism and, eventually, diabetes. Indeed, experimental and clinical hyperthyroidism is often accompanied by abnormal glucose tolerance. A common characteristic of hyperthyroidism and type 2 diabetes is the altered mitochondrial efficiency caused by the enhanced production of reactive oxygen and nitrogen species. It is known that an excess of thyroid hormone leads to increased oxidant production and mitochondrial oxidative damage. It can be hypothesised that these species represent the link between hyperthyroidism and development of insulin resistance and diabetes, even though direct evidence of this relationship is lacking. In this review, we examine the literature concerning the effects of insulin and thyroid hormones on glucose metabolism and discuss alterations of glucose metabolism in hyperthyroid conditions and the cellular and molecular mechanisms that may underline them. 相似文献
11.
The mitochondria play essential roles in both intracellular calcium and reactive oxygen species signaling.As a newly discovered universal and fundamental mitochondrial phenomenon,superoxide flashes reflect transient bursts of superoxide production in the matrix of single mitochondria.Whether and how the superoxide flash activity is regulated by mitochondrial calcium remain largely unknown.Here we demonstrate that elevating mitochondrial calcium either by the calcium ionophore ionomycin or by increasing the bathing calcium in permeabilized HeLa cells increases superoxide flash incidence,and inhibition of the mitochondrial calcium uniporter activity abolishes the flash response.Quantitatively,the superoxide flash incidence is correlated to the steady-state mitochondrial calcium elevation with 1.7-fold increase per 1.0?F/F0 of Rhod-2 signal.In contrast,large mitochondrial calcium transients(e.g.,peak△F/F0~2.8,duration~2 min)in the absence of steady-state elevations failed to alter the flash activity.These results indicate that physiological levels of sustained,but not transient,mitochondrial calcium elevation acts as a potent regulator of superoxide flashes,but its mechanism of action likely involves a multi-step,slow-onset process. 相似文献
12.
Oxidative stress as a mechanism of teratogenesis 总被引:1,自引:0,他引:1
Hansen JM 《Birth defects research. Part C, Embryo today : reviews》2006,78(4):293-307
Emerging evidence shows that redox-sensitive signal transduction pathways are critical for developmental processes, including proliferation, differentiation, and apoptosis. As a consequence, teratogens that induce oxidative stress (OS) may induce teratogenesis via the misregulation of these same pathways. Many of these pathways are regulated by cellular thiol redox couples, namely glutathione/glutathione disulfide, thioredoxinred/thioredoinox, and cysteine/cystine. This review outlines oxidative stress as a mechanism of teratogenesis through the disruption of thiol-mediated redox signaling. Due to the ability of many known and suspected teratogens to induce oxidative stress and the many signaling pathways that have redox-sensitive components, further research is warranted to fully understand these mechanisms. 相似文献
13.
Role of reactive oxygen species (ROS) in apoptosis induction 总被引:28,自引:0,他引:28
Simon HU Haj-Yehia A Levi-Schaffer F 《Apoptosis : an international journal on programmed cell death》2000,5(5):415-418
Reactive oxygen species (ROS) and mitochondria play an important role in apoptosis induction under both physiologic and pathologic conditions. Interestingly, mitochondria are both source and target of ROS. Cytochrome c release from mitochondria, that triggers caspase activation, appears to be largely mediated by direct or indirect ROS action. On the other hand, ROS have also anti-apoptotic effects. This review focuses on the role of ROS in the regulation of apoptosis, especially in inflammatory cells. 相似文献
14.
M Ogrunc R Di Micco M Liontos L Bombardelli M Mione M Fumagalli V G Gorgoulis F d'Adda di Fagagna 《Cell death and differentiation》2014,21(6):998-1012
Oncogene-induced reactive oxygen species (ROS) have been proposed to be signaling molecules that mediate proliferative cues. However, ROS may also cause DNA damage and proliferative arrest. How these apparently opposite roles can be reconciled, especially in the context of oncogene-induced cellular senescence, which is associated both with aberrant mitogenic signaling and DNA damage response (DDR)-mediated arrest, is unclear. Here, we show that ROS are indeed mitogenic signaling molecules that fuel oncogene-driven aberrant cell proliferation. However, by their very same ability to mediate cell hyperproliferation, ROS eventually cause DDR activation. We also show that oncogenic Ras-induced ROS are produced in a Rac1 and NADPH oxidase (Nox4)-dependent manner. In addition, we show that Ras-induced ROS can be detected and modulated in a living transparent animal: the zebrafish. Finally, in cancer we show that Nox4 is increased in both human tumors and a mouse model of pancreatic cancer and specific Nox4 small-molecule inhibitors act synergistically with existing chemotherapic agents. 相似文献
15.
Bagher Farhood Masoud Najafi Eniseh Salehi Nasser Hashemi Goradel Maryam Shabani Nashtaei Neda Khanlarkhani Keywan Mortezaee 《Journal of cellular biochemistry》2019,120(1):71-76
Oxidative stress acts as a double-edged sword by being both a promoter and a suppressor of cancer. Moderate oxidative stress is beneficial for cancer cell proliferative and invasiveness features, while overexposure of the cells to oxidative insults could induce cancer cell apoptosis and reduce hypoxia along with modulating the immune system for regression of tumor. Cancer cells and cancer stem cells have highly efficient redox systems that make them resistant to oxidative insults. The redox disruptive approach is an area of current research and key for oxidative targeted cancer therapies. This disruption is applicable by using either oxidative or anti-oxidative overloading strategies, specifically on cancer cells without influencing normal cells or tissues around tumor. The activity of tumor suppressor cells within tumor microenvironment is needed to be maintained in patients receiving such approaches. 相似文献
16.
17.
The cell cycle related apoptotic susceptibility to arsenic trioxide is associated with the level of reactive oxygen species 总被引:17,自引:1,他引:17
Double staining flow cytometry was performed using 7-amino actinomycin D and 6-carboxy-2‘,7‘-dichlorodihydrofluorescein diacetate, to detect the level fluctuation of reactive oxygen species (ROS) during the cell cycle of normal NB4 cells. Our results showed that NB4 cells possessed higher level of ROS in G2/M phase than in G1 and S phases. Double staining flow cytometry, with TdT mediated dUTP nick end labeling (Tunel) and propidium iodide(PI), indicated that As2O3 (2μM) could induce apoptosis in NB4 cells prevailingly from G2/M phase, and this efficacy was enhanced upon co-administration of 2, 3-dimethoxy-1, 4-naphthoquinone (DMNQ) (2.5μM) which could produce the endogenous ROS. These results suggested that different ROS level in different cell cycle phases of NB4 cells might determin the selective induction of G2/M apoptosis and the cells‘ susceptibility to apoptosis by As2O3. 相似文献
18.
Mitochondrial metabolism of reactive oxygen species 总被引:22,自引:0,他引:22
Oxidative stress is considered a major contributor to etiology of both normal senescence and severe pathologies with serious public health implications. Mitochondria generate reactive oxygen species (ROS) that are thought to augment intracellular oxidative stress. Mitochondria possess at least nine known sites that are capable of generating superoxide anion, a progenitor ROS. Mitochondria also possess numerous ROS defense systems that are much less studied. Studies of the last three decades shed light on many important mechanistic details of mitochondrial ROS production, but the bigger picture remains obscure. This review summarizes the current knowledge about major components involved in mitochondrial ROS metabolism and factors that regulate ROS generation and removal. An integrative, systemic approach is applied to analysis of mitochondrial ROS metabolism, which is now dissected into mitochondrial ROS production, mitochondrial ROS removal, and mitochondrial ROS emission. It is suggested that mitochondria augment intracellular oxidative stress due primarily to failure of their ROS removal systems, whereas the role of mitochondrial ROS emission is yet to be determined and a net increase in mitochondrial ROS production in situ remains to be demonstrated.Translated from Biokhimiya, Vol. 70, No. 2, 2005, pp. 246–264.Original Russian Text Copyright © 2005 by Andreyev, Kushnareva, Starkov.This revised version was published online in April 2005 with corrections to the post codes. 相似文献
19.
Interferon-gamma induces reactive oxygen species and endoplasmic reticulum stress at the hepatic apoptosis 总被引:8,自引:0,他引:8
Interferon-gamma (IFN-gamma) induces cell-cycle arrest and p53-independent apoptosis in primary cultured hepatocytes. However, the detailed mechanism, including regulating molecules, is still unclear. In this study, we found that IFN-gamma induced generation of reactive oxygen species (ROS) in primary hepatocytes and that pyrrolidinedithiocarbamate (PDTC), an anti-oxidant reagent, completely suppressed IFN-gamma-induced hepatic apoptosis. PDTC blocked apoptosis downstream from IRF-1 and upstream from caspase activation, suggesting that the generation of ROS occurred between these stages. However, IFN-gamma also induced the generation of ROS in IRF-1-deficient hepatocytes, cells insensitive to IFN-gamma-induced apoptosis. Moreover, a general cyclooxygenase (COX) inhibitor, indomethacin (but not the cyclooxygenase 2-specific inhibitor, NS-398) also inhibited the apoptosis without blocking the generation of ROS. Both PDTC and indomethacin also blocked IFN-gamma-induced release of cytochrome c from mitochondria. These results suggest that ROS are not the only or sufficient mediators of IFN-gamma-induced hepatic apoptosis. In contrast, we also found that IFN-gamma induced endoplasmic reticulum (ER) stress proteins, CHOP/GADD153 and caspase 12, in wild-type primary hepatocytes, but induced only caspase 12 and not CHOP/GADD153 protein in IRF-1-deficient hepatocytes. These results suggest that IFN-gamma induces ER stress in primary hepatocytes. Both the ROS and ER stress induced by IFN-gamma may be complementary mediators that induce apoptosis in primary hepatocytes. 相似文献
20.
Previous studies have shown that the breast cancer suppressor BRCA1 stimulates antioxidant gene expression and protects cells against oxidative stress. To further examine this important function, we tested whether BRCA1 could modulate intracellular levels of reactive oxygen species (ROS). Wild-type BRCA1 (but not a cancer-associated mutant) significantly reduced ROS levels, determined by DCF fluorescence assays by flow cytometry and confocal microscopy. The BRCA1 and REF1 pathways for reduction of ROS levels appear to exhibit cross-talk. BRCA1 also reduced the levels of protein nitration and H2O2-induced oxidative damage to DNA. Thus, BRCA1 may protect cellular macromolecules by reducing intracellular ROS levels. 相似文献