首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Hirano 《Journal of virology》1992,66(4):1891-1898
Interaction between the Edmonston or Nagahata strain of acute measles virus (MV) and the defective Biken strain of MV isolated from a patient with subacute sclerosing panencephalitis (SSPE) was examined by a cell fusion protocol. Biken-CV-1 cells nonproductively infected with Biken strain SSPE virus were fused with neomycin-resistant CV-1 cells. All the fused cells selected with the neomycin analog G418 expressed Biken viral proteins, as determined by an immunofluorescence assay. This procedure enabled the transfer of Biken viral genomes into cells previously infected with MV. In the fused cells coinfected by Biken strain SSPE virus and Edmonston or Nagahata strain MV, early MV gene expression was suppressed, as determined by immunoprecipitation with strain-specific antibodies. Maturation of Edmonston strain MV was also suppressed. When the coinfected fused cells were selected with G418, Biken viral proteins remained at a constant level for up to 7 weeks. Wild-type MV proteins gradually decreased to a barely detectable level after 4 weeks and became undetectable after 7 weeks. Immunofluorescence studies showed a steady decline in cells expressing wild-type MV proteins in the coinfected cultures. These results suggest that Biken strain SSPE virus dominantly interferes with the replication of wild-type MV. The possible mechanisms of dominant interference and the implication for evolution of a persistent MV infection are discussed.  相似文献   

2.
T C Wong  M Ayata  S Ueda    A Hirano 《Journal of virology》1991,65(5):2191-2199
We identified an acute measles virus (Nagahata strain) closely related to a defective virus (Biken strain) isolated from a patient with subacute sclerosing panencephalitis (SSPE). The proteins of Nagahata strain measles virus are antigenically and electrophoretically similar to the proteins of Edmonston strain measles virus. However, the nucleotide sequence of the Nagahata matrix (M) gene is significantly different from the M genes of all the acute measles virus strains studied to date. The Nagahata M gene is strikingly similar to the M gene of Biken strain SSPE virus isolated several years later in the same locale. Eighty percent of the nucleotide differences between the Nagahata and Biken M genes are uridine-to-cytosine transitions known as biased hypermutation, which has been postulated to be caused by a cellular RNA-modifying activity. These biased mutations account for all but one of the numerous missense genetic changes predicted to cause amino acid substitutions. As a result, the Biken virus M protein loses conformation-specific epitopes that are conserved in the M proteins of Nagahata and Edmonston strain acute measles viruses. These conformation-specific epitopes are also absent in the cryptic M proteins encoded by the hypermutated M genes of two other defective SSPE viruses (Niigata and Yamagata strains). Nagahata-like sequences are found in the M genes of at least five other SSPE viruses isolated from three continents. These data indicate that Biken strain SSPE virus is derived from a progenitor closely resembling Nagahata strain acute measles virus and that biased hypermutation is largely responsible for the structural defects in the Biken virus M protein.  相似文献   

3.
In measles virus (MV)-infected cells the matrix (M) protein plays a key role in virus assembly and budding processes at the plasma membrane because it mediates the contact between the viral surface glycoproteins and the nucleocapsids. By exchanging valine 101, a highly conserved residue among all paramyxoviral M proteins, we generated a recombinant MV (rMV) from cloned cDNA encoding for a M protein with an increased intracellular turnover. The mutant rMV was barely released from the infected cells. This assembly defect was not due to a defective M binding to other matrix- or nucleoproteins, but could rather be assigned to a reduced ability to associate with cellular membranes, and more importantly, to a defective accumulation at the plasma membrane which was accompanied by the deficient transport of nucleocapsids to the cell surface. Thus, we show for the first time that M stability and accumulation at intracellular membranes is a prerequisite for M and nucleocapsid co-transport to the plasma membrane and for subsequent virus assembly and budding processes.  相似文献   

4.
5.
6.
Subacute sclerosing panencephalitis (SSPE) is caused by variants of wild-type measles virus (MV). Such MV variants lack almost completely the ability to produce cell-free progeny virus. We recently isolated an MV variant that has only three amino acid mutations (L165P,L250P and Y282H) in the M protein compared with MV field isolates of the same genotype. In the present study, we analyzed the significance of these mutations with regard to the characteristics of the M protein and progeny virus production. We found that each of the three mutations rendered the M protein insoluble in 0.5% Triton X-100 and altered its subcellular localization, either when ectopically expressed alone using a plasmid-based expression system or when expressed in the context of viral replication. Moreover, each of the three mutations markedly, but not completely, impaired the ability of MV to produce cell-free progeny virus, with the degree of impairment being the same as for all three mutations together. These results suggest the possibility that the changes in the solubility and subcellular localization of the M protein determine the ability to produce cell-free progeny virus, at least to some extent, and play a role in the pathogenicity of variants causing SSPE.  相似文献   

7.
Measles virus protein synthesis has been analyzed in acutely and persistently infected cells. To assess the role of measles in subacute sclerosing panencephalitis (SSPE), measles viral proteins synthesized in vivo or in vitro were tested for reactivity with serum from a guinea pig(s) immunized with measles virus and sera from patients with SSPE. Guinea pig antimeasles virus serum immunoprecipitates the viral polypeptides of 78,000 molecular weight (glycosylated [G]), 70,000 molecular weight (phosphorylated [P]), 60,000 molecular weight (nucleocapsid [N]), and 35,000 molecular weight (matrix [M]) from cells acutely infected with measles virus as well as from chronically infected cells, but in the latter case, immunoprecipitated M protein has a reduced electrophoretic migration. Sera of SSPE patients immunoprecipitated all but the G protein in acutely infected cells and only the P and N proteins from chronically infected cells. In immunoprecipitates of viral polypeptides synthesized in a reticulocyte cell-free translation system, in response to mRNA from acutely or persistently infected cells, the 78,000-molecular-weight form of the G protein was not detected among the cell-free products of either mRNA. Guinea pig antimeasles virus serum immunoprecipitated P, N, and M polypeptides from the products of either form of mRNA, whereas SSPE serum immunoprecipitated the P and N polypeptides but not the M polypeptide. The differences in immunoreactivity of the antimeasles virus antiserum and the SSPE serum are discussed in terms of possible modifications of measles virus proteins in SSPE.  相似文献   

8.
Immune precipitation was used to study the humoral immune response of patients with subacute sclerosing panencephalitis (SSPE). Patients with SSPE have a progressive infection of the CNS by measles or a measles variant despite high serum antibody levels to measles virus as measured by standard serologic techniques. However, when the antibody response to individual measles virus proteins was measured, we found a striking reduction in the ability of sera from patients with SSPE to precipitate the matrix (M) protein as compared to the precipitation of the M protein by sera from normal adults who had natural measles infection in childhood, or by convalescent sera obtained 3 to 5 weeks after a naturally occurring measles infection. The decreased antibody response to the M protein in sera from patients with SSPE occurred despite a vigorous antibody response to the other viral proteins, suggesting a selective defect in the production of antibody to a single viral protein. The reduced anti-M antibody in sera from patients with SSPE was demonstrated whether immune precipitation was performed with wild-type measles virus or SSPE virus proteins. These results suggest that in SSPE only small amounts of the M protein are produced. This result may help explain how measles virus persists in the central nervous system of patients with SSPE.  相似文献   

9.
Immunogold electron microscopy and analysis were used to determine the organization of the major structural proteins of vesicular stomatitis virus (VSV) during virus assembly. We determined that matrix protein (M protein) partitions into plasma membrane microdomains in VSV-infected cells as well as in transfected cells expressing M protein. The sizes of the M-protein-containing microdomains outside the virus budding sites (50 to 100 nm) were smaller than those at sites of virus budding (approximately 560 nm). Glycoprotein (G protein) and M protein microdomains were not colocalized in the plasma membrane outside the virus budding sites, nor was M protein colocalized with microdomains containing the host protein CD4, which efficiently forms pseudotypes with VSV envelopes. These results suggest that separate membrane microdomains containing either viral or host proteins cluster or merge to form virus budding sites. We also determined whether G protein or M protein was colocalized with VSV nucleocapsid protein (N protein) outside the budding sites. Viral nucleocapsids were observed to cluster in regions of the cytoplasm close to the plasma membrane. Membrane-associated N protein was colocalized with G protein in regions of plasma membrane of approximately 600 nm. In contrast to the case for G protein, M protein was not colocalized with these areas of nucleocapsid accumulation. These results suggest a new model of virus assembly in which an interaction of VSV nucleocapsids with G-protein-containing microdomains is a precursor to the formation of viral budding sites.  相似文献   

10.
The assembly of nucleocapsids is an essential step in the replicative cycle of vesicular stomatitis virus (VSV). In this study, we have examined the early events of vesicular stomatitis virus nucleocapsid assembly in BHK-21 cells. Nuclease-resistant intracellular nucleocapsids were isolated at various stages of assembly and analyzed for RNA and protein contents. The smallest ribonucleoprotein complex formed during nucleocapsid assembly contains the 5'-terminal 65 nucleotides of nascent viral RNA complexed with the viral proteins N and NS. Elongation of the assembling nucleocapsids proceeds unidirectionally towards the 3' terminus by the sequential addition of viral proteins which incrementally protect short stretches of the growing RNA chain. Pulse-chase studies show that the assembling nucleocapsids can be chased into full-length nucleocapsids which are incorporated into mature virions. Our results also suggest an involvement of the cytoskeletal framework during nucleocapsid assembly.  相似文献   

11.
We demonstrated recently that a fraction of the matrix (M) protein of vesicular stomatitis virus (VSV) binds tightly to cellular membranes in vivo when expressed in the absence of other VSV proteins. This membrane-associated M protein was functional in binding purified VSV nucleocapsids in vitro. Here we show that the membrane-associated M protein is largely associated with a membrane fraction having the density of plasma membranes, indicating membrane specificity in the binding. In addition, we analyzed truncated forms of M protein to identify regions responsible for membrane association and nucleocapsid binding. Truncated M protein lacking the amino-terminal basic domain still associated with cellular membranes, although not as tightly as wild-type M protein, and could not bind nucleocapsids. In contrast, deletion of the carboxy-terminal 14 amino acids did not disrupt stable membrane association or nucleocapsid interaction. These results suggest that the amino terminus of M protein either interacts directly with membranes and nucleocapsids or stabilizes a conformation that is required for M protein to mediate both of these interactions.  相似文献   

12.
In patients with subacute sclerosing panencephalitis (SSPE), which is associated with persistent measles virus (MV) infection in the brain, little infectious virus can be recovered despite the presence of viral RNA and protein. Based on studies of brain tissue from SSPE patients and our work with MV-infected NSE-CD46(+) mice, which express the measles receptor CD46 on neurons, several lines of evidence suggest that the mechanism of viral spread in the central nervous system differs from that in nonneuronal cells. To examine this alternate mechanism of viral spread, as well as the basis for the loss of normal transmission mechanisms, infection and spread of MV Edmonston was evaluated in primary CD46(+) neurons from transgenic mice and differentiated human NT2 neurons. As expected, unlike that between fibroblasts, viral spread between neurons occurred in the absence of syncytium formation and with minimal extracellular virus. Electron microscopy analysis showed that viral budding did not occur from the neuronal surface, although nucleocapsids were present in the cytoplasm and aligned at the cell membrane. We observed many examples of nucleocapsids present in the neuronal processes and aligned at presynaptic neuronal membranes. Cocultures of CD46(+) and CD46(-) neurons showed that cell contact but not CD46 expression is required for MV spread between neurons. Collectively, these results suggest that the neuronal environment prevents the normal mechanisms of MV spread between neurons at the level of viral assembly but allows an alternate, CD46-independent mechanism of viral transmission, possibly through the synapse.  相似文献   

13.
Stereo images of vesicular stomatitis virus assembly.   总被引:14,自引:12,他引:2       下载免费PDF全文
Viral assembly was studied by viewing platinum replicas of cytoplasmic and outer plasma membrane surfaces of baby hamster kidney cells infected with vesicular stomatitis virus. Replicas of the cytoplasmic surface of the basilar plasma membrane revealed nucleocapsids forming bullet-shaped tight helical coils. The apex of each viral nose cone was anchored to the membrane and was free of uncoiled nucleocapsid, whereas tortuous nucleocapsid was attached to the base of tightly coiled structures. Using immunoelectron microscopy, we identified the nucleocapsid (N) viral protein as a component of both the tight-coil and tortuous nucleocapsids, whereas the matrix (M) protein was found only on tortuous nucleocapsids. The M protein was not found on the membrane. Using immunoreagents specific for the viral glycoprotein (G protein), we found that the amount of G protein per virion varied. The G protein was consistently localized at the apex of viral buds, whereas the density of G protein on the shaft was equivalent to that in the surrounding membrane. These observations suggest that G-protein interaction with the nucleocapsid via its cytoplasmic domain may be necessary for the initiation of viral assembly. Once contact is established, nucleocapsid coiling proceeds with nose cone formation followed by formation of the helical cylinder. M protein may function to induce a nucleocapsid conformation favorable for coiling or may cross-link adjacent turns in the tight coil or both.  相似文献   

14.
Infectious and inflammatory diseases of the CNS are often characterized by a robust B-cell response that manifests as increased intrathecal immunoglobulin G (IgG) synthesis and the presence of oligoclonal bands. We previously used laser capture microdissection and single-cell PCR to analyze the IgG variable regions of plasma cells from the brain of a patient with subacute sclerosing panencephalitis (SSPE). Five of eight human IgG1 recombinant antibodies (rAbs) derived from SSPE brain plasma cell clones recognized the measles virus (MV) nucleocapsid protein, confirming that the antibody response in SSPE targets primarily the agent causing disease. In this study, as part of our work on antigen identification, we used four rAbs to probe a random phage-displayed peptide library to determine if epitopes within the MV nucleocapsid protein could be identified with SSPE brain rAbs. All four of the SSPE rAbs enriched phage-displayed peptide sequences that reacted specifically to their panning rAb by enzyme-linked immunosorbent assay. BLASTP searches of the NCBI protein database revealed clear homologies in three peptides and different amino acid stretches within the 65 C-terminal amino acids of the MV nucleocapsid protein. The specificities of SSPE rAbs to these regions of the MV nucleocapsid protein were confirmed by binding to synthetic peptides or to short cDNA expression products. These results indicate the feasibility of using peptide screening for antigen discovery in central nervous system inflammatory diseases of unknown etiology, such as multiple sclerosis, neurosarcoidosis, or Behcet's syndrome.  相似文献   

15.
In vitro reassembly of vesicular stomatitis virus skeletons.   总被引:19,自引:11,他引:8       下载免费PDF全文
  相似文献   

16.
The presence of increased IgG in the brains of humans with infectious and inflammatory CNS diseases of unknown etiology such as multiple sclerosis may be a clue to the cause of disease. For example, the intrathecally synthesized oligoclonal bands in diseases such as subacute sclerosing panencephalitis (SSPE) or cryptococcal meningitis have been shown to represent Ab directed against the causative agents, measles virus (MV), or Cryptococcus neoformans, respectively. Using SSPE as a model system, we developed a strategy to identify the antigenic targets of the intrathecal disease-relevant IgG in chronic human inflammatory and demyelinating diseases of the CNS. Libraries of cDNA Ags were displayed on the surface of T7Select bacteriophage and biopanned on IgG extracted from the brain of an SSPE patient, or on a monospecific recombinant Fab identified from SSPE brain. After three or six rounds of biopanning on either Ab, positive phage-displayed Ags reacting with IgG were enriched to 35-77% of all panned clones. Sequence analysis of the positive clones identified fragments of the nucleocapsid protein of MV, the cause of SSPE. The sensitivity of the system was determined by diluting the positive clones from this SSPE phage-displayed library at a ratio of 10(-6) into another phage-displayed library that did not contain any detectable MV Ags; after six rounds of panning, the positive clones comprised 34% of all phage and were also shown to be MV nucleocapsid specific. This strategy will be useful to identify potentially rare Ags in diseases of unknown cause.  相似文献   

17.
Subacute sclerosing panencephalitis (SSPE) is a fatal degenerative disease caused by persistent measles virus (MV) infection in the central nervous system (CNS). From the genetic study of MV isolates obtained from SSPE patients, it is thought that defects of the matrix (M) protein play a crucial role in MV pathogenicity in the CNS. In this study, we report several notable mutations in the extracellular domain of the MV fusion (F) protein, including those found in multiple SSPE strains. The F proteins with these mutations induced syncytium formation in cells lacking SLAM and nectin 4 (receptors used by wild-type MV), including human neuronal cell lines, when expressed together with the attachment protein hemagglutinin. Moreover, recombinant viruses with these mutations exhibited neurovirulence in suckling hamsters, unlike the parental wild-type MV, and the mortality correlated with their fusion activity. In contrast, the recombinant MV lacking the M protein did not induce syncytia in cells lacking SLAM and nectin 4, although it formed larger syncytia in cells with either of the receptors. Since human neuronal cells are mainly SLAM and nectin 4 negative, fusion-enhancing mutations in the extracellular domain of the F protein may greatly contribute to MV spread via cell-to-cell fusion in the CNS, regardless of defects of the M protein.  相似文献   

18.
Immunoperoxidase Stain of Measles Antigen in Tissue Culture   总被引:6,自引:2,他引:4       下载免费PDF全文
A specific electron microscopy staining technique for measles antigen has been developed by using Vero cells infected with a subacute sclerosing panencephalitis (SSPE) measles virus strain and fixed in glutaraldehyde or formaldehyde. Peroxidase-labeled antibody was prepared according to the method of Avrameas (4). Sera from SSPE patients with high measles antibody titer as well as normal human sera with and without measles antibody were used. With both fixatives, specific labeling was obtained on the surface of infected cells, on the budding site, and on complete viral particles. The cell membrane staining sometimes had a patchy distribution in that the reaction was most intense on the surface projections in front of each nucleocapsid. This suggests modification of the cell membrane in association with the nucleocapsids. In contrast, no label was detected on the membranes of the cells during the latent period from penetration through maturation of the virus. In formaldehyde-fixed cultures, cytoplasmic inclusions were stained, and this label was located on the "fuzzy" material around the nucleocapsids. The smooth type of nucleocapsids, mainly seen in the nucleus, were never labeled. These findings suggest that the antigenic nature of the "fuzzy" nucleocapsids in the cytoplasm may be different from that of the "smooth" nucleocapsids. The immunoperoxidase method gives good resolution of viral antigenic sites at high magnifications under electron microscopy and may be of value in studies on the immunopathogenesis of SSPE and other chronic viral infections.  相似文献   

19.
Human prostate cells chronically infected with the Mantooth strain of subacute sclerosing panencephalitis (SSPE) virus multiply normally, fuse only occasionally to form giant cells, and yet have twisted intracytoplasmic nucleocapsids. These cells are able to support replication of vesicular stomatitis virus, although they release only small amounts of SSPE virus. To determine why carrier cells do not produce virus, they were examined with techniques for surface replication, freeze-fracturing, and immunoperoxidase labeling with SSPE antibody. The surface of carrier cells, like that of productive cells, is characterized by ridges crowned with viral antigens and devoid of the intramembrane particles revealed by freeze-fracture techniques. Since surface ridges form where nucleocapsids attach to the membrane, the shape and length of ridges are indicative of the shape and length of the underlying nucleocapsid. Whereas ridges on productive cells are serpentine in shape, those on carrier cells are typically straight or hairpin shaped, and the hairpin ridges are twice as long as serpentine ridges on productive cells. Furthermore, the spacing between ridges on carrier cells is never as small as that in productive infections, so that continuous sheets of viral membrane are never formed. The majority of carrier cells lack the round viral buds observed in productive cells but have, instead, many elongated processes attached to the cell surface. Each of these processes contains one or two hairpin ridges overlying hairpin-shaped nucleocapsids. These "hairpin buds" are restricted to a single region of the carrier cell surface, whereas viral buds are distributed over the entire surface of productive cells. Thus, there are several structural defects in carrier cells that depend on the specific interaction of a certain viral strain with a certain cell type. These defects prevent the deployment of viral antigen in some regions of the cell surface, the formation of nucleocapsids of normal length, the coiling of attached nucleocapsids, and the consolidation of sheets of viral membrane into spherical buds with the nucleocapsids coiled inside. These defects may account for the failure of carrier cells to shed infectious virus.  相似文献   

20.
The elevation of culture temperatures of C6 cells that were persistently infected with the Lec strain of the subacute sclerosing panencephalitis (SSPE) virus (C6/SSPE) resulted in immediate selective inhibition of membrane (M) protein synthesis. This phenomenon was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total cytoplasmic lysates and immunoprecipitation with monoclonal antibody against the M protein in short-time labeling experiments. The synthesis of various viral mRNAs in the presence of actinomycin D decreased gradually at similar rates after a shift to 39 degrees C. No specific disappearance of the mRNA coding for the M protein was observed when viral RNAs isolated from the infected cells were compared before and after a shift up by Northern blot analysis. Results of pulse-chase experiments did not show any significant difference in M protein stability between 35 and 39 degrees C. This rapid block of M protein synthesis was observed not only in Vero cells that were lytically infected with plaque-purified clones from the Lec strain, clones isolated from C6/SSPE cells and the standard Edmonston strain of measles virus but also in CV1, MA160, and HeLa cells that were lytically infected with the Edmonston strain. Poly(A)+ RNAs that were extracted from C6/SSPE cells before and after a shift to 39 degrees C produced detectable phospho, nucleocapsid, and M proteins in cell-free translation systems at 32 degrees C. Even higher incubation temperatures did not demonstrate the selective depression of M protein synthesis described above in vitro. All these data indicate that M protein synthesis of measles virus is selectively suppressed at elevated temperatures because of an inability of the translation apparatus to interact with the M protein-encoded mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号