首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
V(D)J recombination has been examined in several X-ray-sensitive and double-strand break repair-deficient Chinese hamster cell mutants. Signal joint formation was affected in four mutants (xrs 5, XR-1, V-3, and XR-V9B cells, representing complementation groups 1 through 4, respectively) defective in DNA double-strand break rejoining. Among these four, V-3 and XR-V9B were the most severely affected. Only in V-3 was coding joint formation also affected. Ataxia telangiectasia-like hamster cell mutants (V-E5 and V-G8), which are normal for double-strand break repair but are X ray sensitive, were normal for all aspects of the V(D)J recombination reaction, indicating that X-ray sensitivity is not the common denominator but that the deficiency in double-strand break repair appears to be. The abnormality at the signal joints consisted of an elevated incidence of nucleotide loss from each of the two signal ends. Interestingly, in complementation groups 1 (xrs 5) and 2 (XR-1), signal joint formation was within the normal range under some transfection conditions. This suggests that the affected gene products in these two complementation groups are not catalytic components. Instead, they may be either secondary or stochiometric components involved in the later stages of both the V(D)J recombination reaction and double-strand break repair. The fact that such factors can affect the precision of the signal joint has mechanistic implications for V(D)J recombination.  相似文献   

2.
Mammalian cells are protected from the effects of DNA double-strand breaks by end-joining repair. Cells lacking the Xrcc4 protein are hypersensitive to agents that induce DNA double-strand breaks, and are unable to complete V(D)J recombination. The residual repair of broken DNA ends in XRCC4-deficient cells requires short sequence homologies, thus possibly implicating Xrcc4 in end alignment. We show that Xrcc4 binds DNA, and prefers DNA with nicks or broken ends. Xrcc4 also binds to DNA ligase IV and enhances its joining activity. This stimulatory effect is shown to occur at the adenylation of the enzyme. DNA binding of Xrcc4 is correlated with its complementation of the V(D)J recombination defects in XRCC4-deficient cells, but is not required for stimulation of DNA ligase IV. Thus, the ability of Xrcc4 to bind to DNA suggests functions independent of DNA ligase IV.  相似文献   

3.
Deinococcus radiodurans R1 recovering from acute dose of gamma radiation shows a biphasic mechanism of DNA double-strand break repair. The possible involvement of microsequence homology-dependent, or non-homologous end joining type mechanisms during initial period followed by RecA-dependent homologous recombination pathways has been suggested for the reconstruction of complete genomes in this microbe. We have exploited the known roles of exonuclease I in DNA recombination to elucidate the nature of recombination involved in DNA double-strand break repair during post-irradiation recovery of D. radiodurans. Transgenic Deinococcus cells expressing exonuclease I functions of Escherichia coli showed significant reduction in gamma radiation radioresistance, while the resistance to far-UV and hydrogen peroxide remained unaffected. The overexpression of E. coli exonuclease I in Deinococcus inhibited DNA double-strand break repair. Such cells exhibited normal post-irradiation expression kinetics of RecA, PprA and single-stranded DNA-binding proteins but lacked the divalent cation manganese [(Mn(II)]-dependent protection from gamma radiation. The results strongly suggest that 3' (rho) 5' single-stranded DNA ends constitute an important component in recombination pathway involved in DNA double-strand break repair and that absence of sbcB from deinococcal genome may significantly aid its extreme radioresistance phenotype.  相似文献   

4.
DNA-dependent protein kinase (DNA-PK) plays an important role in DNA double-strand break (DSB) repair and V(D)J recombination. We have isolated a new X-ray-sensitive CHO cell line, XR-C1, which is impaired in DSB repair and which was assigned to complementation group 7, the group that is defective in the XRCC7 / SCID ( Prkdc ) gene encoding the catalytic subunit of DNA-PK (DNA-PKcs). Consistent with this complementation analysis, XR-C1 cells lackeddetectable DNA-PKcs protein, did not display DNA-PK catalytic activity and were complemented by the introduction of a single human chromosome 8 (providing the Prkdc gene). The impact of the XR-C1 mutation on V(D)J recombination was quite different from that found in most rodent cells defective in DNA-PKcs, which are preferentially blocked in coding joint formation, whereas XR-C1 cells were defective in forming both coding and signal joints. These results suggest that DNA-PKcs is required for both coding and signal joint formation during V(D)J recombination and that the XR-C1 mutant cell line may prove to be a useful tool in understanding this pathway.  相似文献   

5.
DNA-dependent protein kinase (DNA-PK) is utilized in both DNA double-strand break repair (DSBR) and V(D)J recombination, but the mechanism by which this multiprotein complex participates in these proces­ses is unknown. To evaluate the importance of DNA-PK-mediated protein phosphorylation in DSBR and V(D)J recombination, we assessed the effects of the phosphatidyl inositol 3-kinase inhibitor wortmannin on the repair of ionizing radiation-induced DNA double-strand breaks and V(D)J recombination in the V(D)J recombinase inducible B cell line HDR37. Wortmannin radiosensitized HDR37, but had no affect on V(D)J recombination despite a marked reduction in DNA-PK activity. On the other hand, studies with mammalian expression vectors for wild-type human DNA-PK catalytic subunit (DNA-PKcs) and a kinase domain mutant demonstrated that only the kinase active form of DNA-PKcs can reconstitute DSBR and V(D)J recombination in a DNA-PKcs-deficient cell line (Sf19), implying that DNA-PKcs kinase activity is essential for both DSBR and V(D)J recombination. These apparently contradictory results were reconciled by analyses of cell lines varying in their expression of recombinant wild-type human DNA-PKcs. These studies establish that minimal DNA-PKcs protein levels are sufficient to support V(D)J recombination, but insufficient to confer resistance to ionizing radiation.  相似文献   

6.
The lymphoid cell-specific proteins RAG1 and RAG2 initiate V(D)J recombination by cleaving DNA adjacent to recombination signals, generating blunt signal ends and covalently sealed, hairpin coding ends. A critical next step in the reaction is opening of the hairpins, but the factor(s) responsible has not been identified and had been thought to be a ubiquitous component(s) of the DNA repair machinery. Here we demonstrate that RAG1 and RAG2 possess an intrinsic single-stranded nuclease activity capable of nicking hairpin coding ends at or near the hairpin tip. In Mn2+, a synthetic hairpin is nicked 5 nucleotides (nt) 5' of the hairpin tip, with more distant sites of nicking suppressed by HMG2. In Mg2+, hairpins generated by V(D)J cleavage are nicked whereas synthetic hairpins are not. Cleavage-generated hairpins are nicked at the tip and predominantly 1 to 2 nt 5' of the tip. RAG1 and RAG2 may therefore be responsible for initiating the processing of coding ends and for the generation of P nucleotides during V(D)J recombination.  相似文献   

7.
We describe experiments designed to measure the efficiency of intermolecular recombination between mutant herpesvirus thymidine kinase (tk) genes introduced into mouse L cells. Recombinants were scored as stable transformants containing a functional tk gene. The two recombination substrates used were ptkB8, a pBR322-based plasmid containing a mutant tk gene, with a BamHI linker in an SphI restriction site that is centrally located within the gene, and mp10tk delta 3' delta 5', an mp10 vector with a tk gene deleted at both the 3' and 5' ends. The only homology shared by the two DNAs is 885 base pairs within the tk gene. To determine whether the double-strand break repair model that has been used to explain recombination in yeast cells (J. W. Szostak, T. L. Orr-Weaver, R. J. Rothstein, and F. W. Stahl, Cell 33:25-35, 1983) can account for recombination during the introduction of these DNAs into mammalian cells, we transformed cells with BamHI-linearized ptkB8 and supercoiled mp10tk delta 3' delta 5' replicative-form DNA. These two DNAs should recombine efficiently according to that model and should generate gene conversion products. In this reaction, the supercoiled DNA acts as the donor of information to repair the cleaved tk gene. Our results indicated that the efficiency of this reaction was very low (less than 10 transformants were obtained per 0.1 microgram of each DNA used in the reaction per 10(6) cells). In contrast, if BamHI-cleaved ptkB8 DNA was cotransformed into cells along with a circular DNA molecule containing a tk gene deleted only at its 3' end or only at its 5' end (mp10tk delta 3' or mp10tk delta 5'), then the efficiency of recombination could be more than 4 orders of magnitude higher than it was with circular mp10tk delta 3' delta 5' DNA. Recombination frequencies were highest when the tk delta 3' or tk delta 5' DNA used was cleaved at the tk deletion junction. Southern analyses of DNA from TK+ transformants generated with BamHI-cleaved ptkB8 and BamHI-cleaved mp10tk delta 3' DNAs indicated that recombination was almost always associated with the reassortment of markers flanking the reconstructed tk DNA. Together, these results are more consistent with the nonconservative single-strand annealing model for recombination that we proposed several years ago (F.-L. Lin, K. Sperle, and N. Sternberg, Mol. Cell. Biol. 4:1020-1034, 1984) than they are with the double-strand break repair model.  相似文献   

8.
V(D)J recombination is a site-specific gene rearrangement process that contributes to the diversity of antigen receptor repertoires. Two lymphoid-specific proteins, RAG1 and RAG2, initiate this process at two recombination signal sequences. Due to the recent development of an in vitro assay for V(D)J cleavage, the mechanism of cleavage has been elucidated clearly. The RAG complex recognizes a recombination signal sequence, makes a nick at the border between signal and coding sequence, and carries out a transesterification reaction, resulting in the production of a hairpin structure at the coding sequence and DNA double-strand breaks at the signal ends. RAG1 possesses the active site of the V(D)J recombinase although RAG2 is essential for signal binding and cleavage. After DNA cleavage by the RAG complex, the broken DNA ends are rejoined by the coordinated action of DNA double-strand break repair proteins as well as the RAG complex. The junctional variability resulting from imprecise joining of the coding sequences contributes additional diversity to the antigen receptors.  相似文献   

9.
V(D)J recombination of immunoglobulin loci is dependent on the immune cell-specific Rag1 and Rag2 proteins as well as a number of ubiquitously expressed cellular DNA repair proteins that catalyze non-homologous end-joining of DNA double-strand breaks. The evolutionarily conserved Rad50/Mre11/Nibrin protein complex has a role in DNA double-strand break-repair, suggesting that these proteins, too, may participate in V(D)J recombination. Recent findings demonstrating that Rad50 function is defective in cells from patients afflicted with Fanconi anemia provide a possible mechanistic explanation for previous findings that lymphoblasts derived from these patients exhibit subtle defects in V(D)J recombination of extrachromosomal plasmid molecules. Here, we describe a series of findings that provide convincing evidence for a role of the Rad50 protein complex in V(D)J recombination. We found that the fidelity of V(D)J signal joint recombination in fibroblasts from patients afflicted with Fanconi anemia was reduced by nearly tenfold, compared to that observed in fibroblasts from normal donors. Second, we observed that antibody-mediated inhibition of the Rad50, Mre11, or Nibrin proteins reduced the fidelity of signal joint recombination significantly in wild-type cells. The latter finding was somewhat unexpected, because signal joint rejoining in cells from patients with Nijmegen breakage syndrome, which results from mutations in the Nibrin gene, occurs with normal fidelity. However, introduction of anti-Nibrin antibodies into these cells reduced the fidelity of signal joint recombination dramatically. These data reveal for the first time a role for the Rad50 complex in V(D)J recombination, and demonstrate that the protein product of the disease-causing allele responsible for Nijmegen breakage syndrome encodes a protein with residual DNA double-strand break repair activity.  相似文献   

10.
scid cells efficiently integrate hairpin and linear DNA substrates.   总被引:3,自引:2,他引:1       下载免费PDF全文
The scid mouse mutation affects V(D)J rearrangement and double-strand break repair. scid V(D)J rearrangement is characterized by defective coding joint formation which prevents the development of mature B and T cells. Hairpin DNA has been implicated in the formation of V(D)J coding joints. We found scid cells to be proficient in hairpin processing in the context of DNA integration. In addition, we found that the scid defect did not impair integration of linear DNA via nonhomologous recombination. Therefore, hairpin processing and integration of DNA into the genome are distinct from hypersensitivity to ionizing radiation and the defect in V(D)J recombination.  相似文献   

11.
Lee SH  Kim CH 《Molecules and cells》2002,13(2):159-166
DNA-dependent protein kinase (DNA-PK) is a nuclear serine/threonine protein kinase that is activated upon DNA damage generated by ionizing radiation or UV-irradiation. It is a three-protein complex consisting of a 470-kDa catalytic subunit (DNA-PKcs) and the regulatory DNA binding subunits, Ku heterodimer (Ku70 and Ku80). Mouse and human cells deficient in DNA-PKcs are hypersensitive to ionizing radiation and defective in V(D)J recombination, suggesting a role for the kinase in double-strand break repair and recombination. The Ku heterodimer binds to double-strand DNA breaks produced by either DNA damage or recombination, protects DNA ends from degradation, orients DNA ends for re-ligation, and recruits its catalytic subunit and additional factors necessary for successful end-joining. DNA-PK is also involved in an early stage of damage-induced cell cycle arrest, however, it remains unclear how the enzyme senses DNA damage and transmits signals to downstream gene(s) and proteins.  相似文献   

12.
In mammalian cells, all subunits of the DNA-dependent protein kinase (DNA-PK) have been implicated in the repair of DNA double-strand breaks and in V(D)J recombination. In the yeast Saccharomyces cerevisiae, we have examined the phenotype conferred by a deletion of HDF1, the putative homologue of the 70-kD subunit of the DNA-end binding Ku complex of DNA-PK. The yeast gene does not play a role in radiation-induced cell cycle checkpoint arrest in G(1) and G(2) or in hydroxyurea-induced checkpoint arrest in S. In cells competent for homologous recombination, we could not detect any sensitivity to ionizing radiation or to methyl methanesulfonate (MMS) conferred by a hdf1 deletion and indeed, the repair of DNA double-strand breaks was not impaired. However, if homologous recombination was disabled (rad52 mutant background), inactivation of HDF1 results in additional sensitization toward ionizing radiation and MMS. These results give further support to the notion that, in contrast to higher eukaryotic cells, homologous recombination is the favored pathway of double-strand break repair in yeast whereas other competing mechanisms such as the suggested pathway of DNA-PK-dependent direct break rejoining are only of minor importance.  相似文献   

13.
Interaction of human Ku70 with TRF2   总被引:19,自引:0,他引:19  
Song K  Jung D  Jung Y  Lee SG  Lee I 《FEBS letters》2000,481(1):81-85
Ku, a heterodimer of 70- and 80-kDa subunits, plays a general role in the metabolism of DNA ends in eukaryotic cells, including double-strand DNA break repair, V(D)J recombination, and maintenance of telomeres. We have utilized the yeast two-hybrid system to identify Ku70-interacting proteins other than Ku80. Two reactive clones were found to encode the dimerization domain of TRF2, a mammalian telomeric protein that binds to duplex TTAGGG repeats at chromosome ends. This interaction was confirmed using bacterial fusion proteins and co-immunoprecipitations from eukaryotic cells overexpressing TRF2. The transfected TFR2 colocalized with Ku70.  相似文献   

14.
The repair of chromosomal double-strand breaks (DSBs) is essential to normal cell growth, and homologous recombination is a universal process for DSB repair. We explored DSB repair mechanisms in the yeast Saccharomyces cerevisiae using single-strand oligonucleotides with homology to both sides of a DSB. Oligonucleotide-directed repair occurred exclusively via Rad52- and Rad59-mediated single-strand annealing (SSA). Even the SSA domain of human Rad52 provided partial complementation for a null rad52 mutation. The repair did not involve Rad51-driven strand invasion, and moreover the suppression of strand invasion increased repair with oligonucleotides. A DSB was shown to activate targeting by oligonucleotides homologous to only one side of the break at large distances (at least 20 kb) from the break in a strand-biased manner, suggesting extensive 5' to 3' resection, followed by the restoration of resected DNA to the double-strand state. We conclude that long resected chromosomal DSB ends are repaired by a single-strand DNA oligonucleotide through two rounds of annealing. The repair by single-strand DNA can be conservative and may allow for accurate restoration of chromosomal DNAs with closely spaced DSBs.  相似文献   

15.
The endless tale of non-homologous end-joining   总被引:1,自引:0,他引:1  
Weterings E  Chen DJ 《Cell research》2008,18(1):114-124
DNA double-strand breaks (DSBs) are introduced in cells by ionizing radiation and reactive oxygen species. In addition, they are commonly generated during V(D)J recombination, an essential aspect of the developing immune system. Failure to effectively repair these DSBs can result in chromosome breakage, cell death, onset of cancer, and defects in the immune system of higher vertebrates. Fortunately, all mammalian cells possess two enzymatic pathways that mediate the repair of DSBs: homologous recombination and non-homologous end-joining (NHEJ). The NHEJ process utilizes enzymes that capture both ends of the broken DNA molecule, bring them together in a synaptic DNA-protein complex, and finally repair the DNA break. In this review, all the known enzymes that play a role in the NHEJ process are discussed and a working model for the co-operation of these enzymes during DSB repair is presented.  相似文献   

16.
Lymphocyte antigen receptor genes are assembled through the process of V(D)J recombination, during which pairwise DNA cleavage of gene segments results in the formation of four DNA ends that are resolved into a coding joint and a signal joint. The joining of these DNA ends occurs in G1-phase lymphocytes and is mediated by the non-homologous end-joining (NHEJ) pathway of DNA double-strand break (DSB) repair. The ataxia telangiectasia mutated (ATM) and the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), two related kinases, both function in the repair of DNA breaks generated during antigen receptor gene assembly. Although these proteins have unique functions during coding joint formation, their activities in signal joint formation, if any, have been less clear. However, two recent studies demonstrated that ATM and DNA-PKcs have overlapping activities important for signal joint formation. Here, we discuss the unique and shared activities of the ATM and DNA-PKcs kinases during V(D)J recombination, a process that is essential for lymphocyte development and the diversification of antigen receptors.Key words: ATM, V(D)J recombination, DNA-PKcs, Lymphocyte, DNA repair, RAG  相似文献   

17.
All organisms possess mechanisms to repair double strand breaks (dsbs) generated in their DNA by damaging agents. Site-specific dsbs are also introduced during V(D)J recombination. Four complementation groups of radiosensitive rodent mutants are defective in the repair of dsbs, and are unable to carry out V(D)J recombination effectively. The immune defect in Severe Combined Immunodeficient (scid) mice also results from an inability to undergo effective V(D)J recombination, and scid cell lines display a repair defect and belong to one of these complementation groups. These findings indicate a mechanistic overlap between the processes of DNA repair and V(D)J recombination. Recently, two of the genes defined by these complementation groups have been identified and shown to encode components of DNA-dependent protein kinase (DNA-PK). We review here the three fields which have become linked by these findings, and discuss the involvement of DNA-PK in dsb rejoining and in V(D)J recombination.  相似文献   

18.
Deficiency in Artemis is associated with lack of V(D)J recombination, sensitivity to radiation and radiomimetic drugs, and failure to repair a subset of DNA double-strand breaks (DSBs). Artemis harbors an endonuclease activity that trims both 5'- and 3'-ends of DSBs. To examine whether endonucleolytic trimming of terminally blocked DSBs by Artemis is a biologically relevant function, Artemis-deficient fibroblasts were stably complemented with either wild-type Artemis or an endonuclease-deficient D165N mutant. Wild-type Artemis completely restored resistance to γ-rays, bleomycin and neocarzinostatin, and also restored DSB-repair proficiency in G0/G1 phase as measured by pulsed-field gel electrophoresis and repair focus resolution. In contrast, cells expressing the D165N mutant, even at very high levels, remained as chemo/radiosensitive and repair deficient as the parental cells, as evidenced by persistent γ-H2AX, 53BP1 and Mre11 foci that slowly increased in size and ultimately became juxtaposed with promyelocytic leukemia protein nuclear bodies. In normal fibroblasts, overexpression of wild-type Artemis increased radioresistance, while D165N overexpression conferred partial repair deficiency following high-dose radiation. Restoration of chemo/radioresistance by wild-type, but not D165N Artemis suggests that the lack of endonucleolytic trimming of DNA ends is the principal cause of sensitivity to double-strand cleaving agents in Artemis-deficient cells.  相似文献   

19.
Lieber MR  Yu K  Raghavan SC 《DNA Repair》2006,5(9-10):1234-1245
When a single double-strand break arises in the genome, nonhomologous DNA end joining (NHEJ) is a major pathway for its repair. When double-strand breaks arise at two nonhomologous sites in the genome, NHEJ also appears to be a major pathway by which the translocated ends are joined. The mechanism of NHEJ is briefly summarized, and alternative enzymes are also discussed. V(D)J recombination and class switch recombination are specialized processes designed to create double-strand DNA breaks at specific locations in the genomes of lymphoid cells. Sporadic Burkitt's lymphoma and myelomas can arise due to translocation of the c-myc gene into the Ig heavy chain locus during class switch recombination. In other lymphoid neoplasms, the RAG complex can create double-strand breaks that result in a translocation. Such RAG-generated breaks occur at very specific nucleotides that are directly adjacent to sequences that resemble canonical heptamer/nonamer sequences characteristic of normal V(D)J recombination. This occurs in some T cell leukemias and lymphomas. The RAG complex also appears capable of recognizing regions for their altered DNA structure rather than their primary sequence, and this may account for the action by RAGs at some chromosomal translocation sites, such as at the bcl-2 major breakpoint region in the follicular lymphomas that arise in B lymphocytes.  相似文献   

20.
Chromatin modifications/remodeling are important mechanisms by which cells regulate various functions through providing accessibility to chromatin DNA. Recent studies implicated INO80, a conserved chromatin-remodeling complex, in the process of DNA repair. However, the precise underlying mechanism by which this complex mediates repair in mammalian cells remains enigmatic. Here, we studied the effect of silencing of the Ino80 subunit of the complex on double-strand break repair in mammalian cells. Comet assay and homologous recombination repair reporter system analyses indicated that Ino80 is required for efficient double-strand break repair. Ino80 association with chromatin surrounding double-strand breaks suggested the direct involvement of INO80 in the repair process. Ino80 depletion impaired focal recruitment of 53BP1 but did not impede Rad51 focus formation, suggesting that Ino80 is required for the early steps of repair. Further analysis by using bromodeoxyuridine (BrdU)-labeled single-stranded DNA and replication protein A (RPA) immunofluorescent staining showed that INO80 mediates 5'-3' resection of double-strand break ends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号