共查询到20条相似文献,搜索用时 15 毫秒
1.
A nonequilibrium, dynamic, global vegetation model, Hybrid v4.1, with a subdaily timestep, was driven by increasing CO2 and transient climate output from the UK Hadley Centre GCM (HadCM2) with simulated daily and interannual variability. Three IPCC emission scenarios were used: (i) IS92a, giving 790 ppm CO2 by 2100, (ii) CO2 stabilization at 750 ppm by 2225, and (iii) CO2 stabilization at 550 ppm by 2150. Land use and future N deposition were not included. In the IS92a scenario, boreal and tropical lands warmed 4.5 °C by 2100 with rainfall decreased in parts of the tropics, where temperatures increased over 6 °C in some years and vapour pressure deficits (VPD) doubled. Stabilization at 750 ppm CO2 delayed these changes by about 100 years while stabilization at 550 ppm limited the rise in global land surface temperature to 2.5 °C and lessened the appearance of relatively hot, dry areas in the tropics. Present‐day global predictions were 645 PgC in vegetation, 1190 PgC in soils, a mean carbon residence time of 40 years, NPP 47 PgC y?1 and NEP (the terrestrial sink) about 1 PgC y?1, distributed at both high and tropical latitudes. With IS92a emissions, the high latitude sink increased to the year 2100, as forest NPP accelerated and forest vegetation carbon stocks increased. The tropics became a source of CO2 as forest dieback occurred in relatively hot, dry areas in 2060–2080. High VPDs and temperatures reduced NPP in tropical forests, primarily by reducing stomatal conductance and increasing maintenance respiration. Global NEP peaked at 3–4 PgC y?1 in 2020–2050 and then decreased abruptly to near zero by 2100 as the tropical source offset the high‐latitude sink. The pattern of change in NEP was similar with CO2 stabilization at 750 ppm, but was delayed by about 100 years and with a less abrupt collapse in global NEP. CO2 stabilization at 550 ppm prevented sustained tropical forest dieback and enabled recovery to occur in favourable years, while maintaining a similar time course of global NEP as occurred with 750 ppm stabilization. By lessening dieback, stabilization increased the fraction of carbon emissions taken up by the land. Comparable studies and other evidence are discussed: climate‐induced tropical forest dieback is considered a plausible risk of following an unmitigated emissions scenario. 相似文献
2.
Cycling of soil carbon was measured synthetically and quantitatively throughout a year in two Japanese red pine forest stands
on mid- and foot-slopes at Mt. Takao, Hiroshima Prefecture, west Japan. There was no distinct difference of soil temperature
along the slopes, but the soil water content was higher on the foot-slope than on the midslope. The carbon flow (litterfall,
soil respiration, etc.) rates were larger on the foot-slope than on the mid-slope, but there was no significant difference
of the accumulation of soil carbon (A0 layer or human in mineral soil) between the areas. The results of the analysis of soil carbon cycling based on a compartment
model show that the relative decomposition rate of A0 layer and humaus in mineral soil increased 1.4–1.5 fold from the mid- to the foot-slopes, corresponding to the soil moisture
condition. The relative decomposition rate of A0 layer was, however, about one-third of that in a evergreen oak forest. This fact suggests that the great resistance of needle
litter to decomposition is one of the main limiting factors of the cycling of soil carbon and prevents the fertilization of
mineral soil in the pine forest, which was also proven by the simulation of dynamics of soil carbon cycling. 相似文献
3.
Linkages between phosphorus transformations and carbon decomposition in a forest soil 总被引:5,自引:1,他引:5
Noam Gressel John G. McColl Caroline M. Preston Roger H. Newman Robert F. Powers 《Biogeochemistry》1996,33(2):97-123
Phosphorus mineralization is chemically coupled with organic matter (OM) decomposition in surface horizons of a mixed-conifer forest soil from the Sierra Nevada, California, and is also affected by the disturbance caused by forest harvesting. Solution13C nuclear magnetic resonance (NMR) spectroscopy of NaOH extracts revealed a decrease of O-alkyl and alkyl-C fractions with increasing degree of decomposition and depth in the soil profile, while carbonyl and aromatic C increased. Solid-state13C-NMR analysis of whole soil samples showed similar trends, except that alkyl C increased with depth. Solution31P-NMR indicated that inorganic P (P1) increased with increasing depth, while organic-P (Po) fractions decreased. Close relationships between P mineralization and litter decomposition were suggested by correlations between P1 and C fractions (r = 0.82, 0.81, –0.87, and –0.76 for carbonyl, aromatic, alkyl and O-alkyl fractions, respectively). Correlations for diester-P and pyrophosphate with O-alkyl (r = 0.63 and 0.84) and inverse correlations with aromatics (r = –0.74 and –0.72) suggest that mineralization of these P fractions coincides with availability of C substrate. A correlation between monoester P and alkyl C (r = 0.63) suggests mineralization is linked to breakdown of structural components of the plant litter. NMR analyses, combined with Hedley-P fractionation, suggest that post-harvest buildup of labile P in decomposed litter increases the potential for leaching of P during the first post-harvest season, but also indicates reduced biological activity that transports P from litter to the mineral soil. Thus, P is temporarily stored in decomposed litter, preventing its fixation by mineral oxides. In the mineral horizons,31P-NMR provides evidence of decline in biologically-available P during the first post-harvest season. 相似文献
4.
Belowground carbon cycling in a humid tropical forest decreases with fertilization 总被引:12,自引:0,他引:12
Only a small fraction of the carbon (C) allocated belowground by trees is retained by soils in long-lived, decay-resistant forms, yet because of the large magnitude of terrestrial primary productivity, even small changes in C allocation or retention can alter terrestrial C storage. The humid tropics exert a disproportionately large influence over terrestrial C storage, but C allocation and belowground retention in these ecosystems remain poorly quantified. Using mass balance and 13C isotope methods, we examined the effects of afforestation and fertilization, two land-use changes of large-scale importance, on belowground C cycling at a humid tropical site in Hawaii. Here we report that in unfertilized plots, 80% of the C allocated belowground by trees to roots and mycorrhizae was returned to the atmosphere within 1 year; 9% of the belowground C flux was retained in coarse roots and 11% was retained as new soil C. The gains in new soil C were offset entirely by losses of old soil C. Further, while fertilization early in stand development increased C storage in the litter layer and in coarse roots, it reduced by 22% the flux of C moving through roots and mycorrhizae into mineral soils. Because soil C formation rates related strongly to rhizosphere C flux, fertilization may reduce an already limited capacity of these forests to sequester decay-resistant soil C. 相似文献
5.
JOHN LICHTER SHARON A. BILLINGS SUSAN E. ZIEGLER DEEYA GAINDH REBECCA RYALS ADRIEN C. FINZI ROBERT B. JACKSON ELIZABETH A. STEMMLER WILLIAM H. SCHLESINGER 《Global Change Biology》2008,14(12):2910-2922
The impact of anthropogenic CO2 emissions on climate change may be mitigated in part by C sequestration in terrestrial ecosystems as rising atmospheric CO2 concentrations stimulate primary productivity and ecosystem C storage. Carbon will be sequestered in forest soils if organic matter inputs to soil profiles increase without a matching increase in decomposition or leaching losses from the soil profile, or if the rate of decomposition decreases because of increased production of resistant humic substances or greater physical protection of organic matter in soil aggregates. To examine the response of a forest ecosystem to elevated atmospheric CO2 concentrations, the Duke Forest Free‐Air CO2 Enrichment (FACE) experiment in North Carolina, USA, has maintained atmospheric CO2 concentrations 200 μL L?1 above ambient in an aggrading loblolly pine (Pinus taeda) plantation over a 9‐year period (1996–2005). During the first 6 years of the experiment, forest‐floor C and N pools increased linearly under both elevated and ambient CO2 conditions, with significantly greater accumulations under the elevated CO2 treatment. Between the sixth and ninth year, forest‐floor organic matter accumulation stabilized and C and N pools appeared to reach their respective steady states. An additional C sink of ~30 g C m?2 yr?1 was sequestered in the forest floor of the elevated CO2 treatment plots relative to the control plots maintained at ambient CO2 owing to increased litterfall and root turnover during the first 9 years of the study. Because we did not detect any significant elevated CO2 effects on the rate of decomposition or on the chemical composition of forest‐floor organic matter, this additional C sink was likely related to enhanced litterfall C inputs. We also failed to detect any statistically significant treatment effects on the C and N pools of surface and deep mineral soil horizons. However, a significant widening of the C : N ratio of soil organic matter (SOM) in the upper mineral soil under both elevated and ambient CO2 suggests that N is being transferred from soil to plants in this aggrading forest. A significant treatment × time interaction indicates that N is being transferred at a higher rate under elevated CO2 (P=0.037), suggesting that enhanced rates of SOM decomposition are increasing mineralization and uptake to provide the extra N required to support the observed increase in primary productivity under elevated CO2. 相似文献
6.
Kaneyuki Nakane 《Ecological Research》2001,16(4):671-685
A model of soil carbon cycling in forest ecosystems was applied to predict the soil carbon balance in nine forest ecosystems from the tropics to the boreal zone during the past three decades (1965–95). The parameters of carbon flows and initial conditions of carbon pools were decided based on data obtained in each forest stand. Assumptions for model calculation were: (i) primary production (i.e. litterfall and root turnover rates) increased with increasing CO2 concentrations in the atmosphere (10% per 40 p.p.m. CO2); and (ii) temperature increased by 0.6°C per 100 years, but precipitation changed little. The simulation employed a daily time step and used daily air temperature and precipitation observed near each forest stand over an average year during the last decade. The model calculations suggest that the accumulation of total soil carbon increased 8.5–10.4 tC (ton of carbon) ha–1 in broad-leaved forests from the tropics to the cool-temperate zone during the past three decades, but the amount of soil carbon (3.0–8.4 tC ha–1) increased much less in needle forests from the subtropical to boreal zones during the same period. There is a linear relationship between the increasing rate of soil carbon stock during the past three decades (1965–95) in forest stands concerned (RMS, % per 30 years) and annual mean temperature of their soils (T0,°C), as: RMS = 0.34T0 + 4.1. Based on the data of carbon stock in forest soil in each climate zone reported, the global sink of atmospheric CO2 into forest soil was roughly estimated to be 42 GtC (billion tons of carbon) per 30 years, which was 1.4 GtC year–1 on average over the past three decades. 相似文献
7.
8.
Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics 总被引:1,自引:0,他引:1
Robinson D 《Proceedings. Biological sciences / The Royal Society》2007,274(1626):2753-2759
Recent evidence suggests that significantly more plant carbon (C) is stored below ground than existing estimates indicate. This study explores the implications for biome C pool sizes and global C fluxes. It predicts a root C pool of at least 268 Pg, 68% larger than previously thought. Although still a low-precision estimate (owing to the uncertainties of biome-scale measurements), a global root C pool this large implies stronger land C sinks, particularly in tropical and temperate forests, shrubland and savanna. The land sink predicted from revised C inventories is 2.7 Pg yr(-1). This is 0.1 Pg yr(-1) larger than current estimates, within the uncertainties associated with global C fluxes, but conflicting with a smaller sink (2.4 Pg yr(-1)) estimated from C balance. Sink estimates derived from C inventories and C balance match, however, if global soil C is assumed to be declining by 0.4-0.7% yr(-1), rates that agree with long-term regional rates of soil C loss. Either possibility, a stronger land C sink or widespread soil C loss, argues that these features of the global C cycle should be reassessed to improve the accuracy and precision of C flux and pool estimates at both global and biome scales. 相似文献
9.
Gert-Jan Nabuurs† Mart-Jan Schelhaas Godefridus M. J. Mohren§ Christopher B. Field‡ 《Global Change Biology》2003,9(2):152-160
Estimates of the role of the European terrestrial biosphere in the global carbon cycle still vary by a factor 10. This is due to differences in methods and assumptions employed, but also due to difference in reference periods of the studies. The magnitude of the sink varies between years because of inter‐annual variation of short‐term climate, but also due to long‐term trends in development of the vegetation and its management. For this purpose, we present the results of an application of a carbon bookkeeping model to the forest sector of the European forests from 1950 to 1999. The analysis includes the compartments trees, soils, and wood products. The model uses statistics on European (30 countries excl. CIS) stemwood volume increment, forest area change, fellings, wood products and their international trade, and natural disturbances, supplemented with conversion coefficients, soil parameters and information on management. An (almost uninterrupted) increasing sink (Net Biome Production) in the European forest sector was found, increasing from 0.03 Pg C year ?1 in the 1950s to 0.14 Pg C year ?1 in the 1990s (for resp. 132 million hectares and 140 million hectares of forest). The sink in the tree and the soil compartment were approximately of the same size until 1970. After the 1970s the size of the sink in the tree biomass increases quickly, causing the tree biomass to account for some two thirds of the total sink in the 1990s. The results as presented here have to be regarded with caution especially with regard to the early decades of the analysis and with regard to the soil compartment. 相似文献
10.
Soil respiration and carbon balance in a subtropical native forest and two managed plantations 总被引:3,自引:0,他引:3
Yu-Sheng Yang Guang-Shui Chen Jian-Fen Guo Jin-Sheng Xie Xiao-Guo Wang 《Plant Ecology》2007,192(1):71-84
From 1999 to 2003, a range of carbon fluxes was measured and integrated to establish a carbon balance for a natural evergreen
forest of Castanopsis kawakamii (NF) and adjacent monoculture evergreen plantations of C. kawakamii (CK) and Chinese fir (Cunninghamia lanceolata, CF) in Sanming Nature Reserve, Fujian, China. Biomass carbon increment of aboveground parts and coarse roots were measured
by the allometric method. Above- and belowground litter C inputs were assessed by litter traps and sequential cores, respectively.
Soil respiration (SR) was determined by the alkaline absorbance method, and the contribution from roots, above- and belowground litters was separated
by the DIRT plots. Annual SR averaged 13.742 t C ha−1 a−1 in the NF, 9.439 t C ha−1 a−1 in the CK, and 4.543 t C ha−1 a−1 in the CF. For all forests, SR generally peaked in later spring or early summer (May or June). The contribution of root respiration ranged from 47.8% in
the NF to 40.3% in the CF. On average, soil heterotrophic respiration (HR) was evenly distributed between below- (47.3∼54.5%) and aboveground litter (45.5%–52.7%). Annual C inputs (t C ha−1 a−1) from litterfall and root turnover averaged 4.452 and 4.295, 4.548 and 2.313, and 2.220 and 1.265, respectively, in the NF,
CK, and CF. As compared to HR, annual net primary production (NPP) of 11.228, 13.264, and 6.491 t C ha−1 a−1 in the NF, CK, and CF brought a positive net ecosystem production (NEP) of 4.144, 7.514, and 3.677 t C ha−1 a−1, respectively. It suggests that native forest in subtropical China currently acts as an important carbon sink just as the
timber plantation does, and converting native forest to tree plantations locally during last decades might have caused a high
landscape carbon loss to the atmosphere. 相似文献
11.
Cycling of soil carbon in the first year after a clear-felling was compared with that before the felling in a Japanese red
pine forest in Hiroshima Prefecture, west Japan. The daily mean temperature at the soil surface in summer was increased after
the felling in comparison to that before felling, and the water content of both the A0 layer and the surface mineral soil was decreased due to the loss of the forest canopy. The rate of weight loss of the A0 layer was reduced after felling. However, accumulation of the A0 layer rapidly decreased because of the lack of litter supply to the forest floor. Low soil respiration after felling was
mainly caused by the cessation of root respiration. Analysis of annual soil carbon cycling was then conducted using a compartment
model. The relative decomposition rate of the A0 layer decreased whereas that of humus and dead roots in mineral soil increased to some extent after felling. The accumulation
of carbon in mineral soil, however, increased slightly due to the supply of humus from roots killed by the felling. 相似文献
12.
Soil carbon cycling was studied in Japanese cedar plantations with different stand ages after clear-cutting and was analyzed by a compartment model. The amount of biomass and the litterfall rate increased rapidly with the growth of Japanese cedar, which were approximated by a simple logistic function of stand age. The accumulation of A0 layer decreased from 21tha–1 to 5tha–1 during the 10years following clear-cutting, and then recovered to nearly the same level as before clear-cutting within 20years after clear-cutting, although the amount of soil carbon in the mineral soil recovered more than 40years after clear-cutting. The total and mineral soil respiration rates increased rapidly after clear-cutting and gradually decreased in young stands and stabilized in old stands. The relative decomposition rate of the A0 layer and organic matters in mineral soil was high in the young stands because of the relatively high soil temperature rather than the soil moisture content. After the closing up of the canopy, the relative decomposition rates of the A0 layer and humus in the mineral soil stabilized at 0.14 to 0.16y–1 and 0.005 to 0.013y–1, respectively. Consequently, soil carbon cycling was strongly affected by clear-cutting. The amount of soil carbon rapidly decreased because of the cessation of litterfall and the increase of the relative decomposition rate of the A0 layer and humus, and recovered gradually to the level before clear-cutting with the growth of the cedar plantation. The change in soil carbon cycling with stand development was partly caused by the change in soil temperature and moisture content but was mainly caused by the amount of cedar litterfall which changed significantly in the early stage of the stand following clear-cutting, and became slower and leveled off in the late stage with stabilization of the environmental conditions and litterfall rate. 相似文献
13.
A 3-year exposure to CO2 and O3 induced minor changes in soil N cycling in a meadow ecosystem 总被引:1,自引:0,他引:1
Teri Kanerva Ansa Palojärvi Kaisa Rämö Katinka Ojanperä Martti Esala Sirkku Manninen 《Plant and Soil》2006,286(1-2):61-73
We investigated the individual and interactive effects of moderately elevated CO2 (ambient air + 100 ppm) and/or O3 (40–50 ppb) on soil N cycling and microbial biomass N in a 3-year open-top chamber experiment conducted in meadow mesocosms. The results show that elevated O3 decreased the concentrations of mineral N and NH4+-N in the mesocosm soil in the last growing season (2004). Total N, NO3−-N, microbial biomass N, decomposition rate, potential nitrification and denitrification were not affected by elevated O3 and/or CO2. It is thus concluded that the proposed future ambient O3 and CO2 levels, such as used in this experiment, may not induce major changes in the below-ground N processes in N-poor northern European hay meadow ecosystems. 相似文献
14.
Organic carbon cycling in Taylor Valley, Antarctica: quantifying soil reservoirs and soil respiration 总被引:4,自引:0,他引:4
Organic carbon reservoirs and respiration rates in soils have been calculated for most major biomes on Earth revealing patterns related to temperature, precipitation, and location. Yet data from one of the Earth's coldest, driest, and most southerly soil ecosystems, that of the McMurdo Dry Valleys of Antarctica, are currently not a part of this global database. In this paper, we present the first regional calculations of the soil organic carbon reservoirs in a dry valley ecosystem (Taylor Valley) and report measurements of CO2 efflux from Antarctic soils. Our analyses indicate that, despite the absence of visible accumulations of organic matter in most of Taylor Valley's arid soils, this soil environment contained a significant percentage (up to 72%) of the seasonally unfrozen organic carbon reservoir in the terrestrial ecosystem. Field measurements of soil CO2‐efflux in Taylor Valley soils were used to evaluate biotic respiration and averaged 0.10 ± 0.08 μmol CO2 m?2 s?1. Laboratory soil microcosms suggested that this respiration rate was sensitive to increases in temperature, moisture, and carbon addition. Finally, a steady‐state calculation of the mean residence time for organic carbon in Taylor Valley soils was 23 years. Because this value contradicts all that is currently known about carbon cycling rates in the dry valleys, we suggest that the dry valley soil carbon dynamics is not steady state. Instead, we suggest that the dynamic is complex, with at least two (short‐ and long‐term) organic carbon reservoirs. We also suggest that organic carbon in the dry valley soil environment may be more important, and play a more active role in long‐term ecosystem processes, than previously believed. 相似文献
15.
Decline in a dominant invertebrate species contributes to altered carbon cycling in a low-diversity soil ecosystem 总被引:1,自引:0,他引:1
J. E. BARRETT ROSS A. VIRGINIA† DIANA H. WALL‡ BYRON J. ADAMS§ 《Global Change Biology》2008,14(8):1734-1744
Low-diversity ecosystems cover large portions of the Earth's land surface, yet studies of climate change on ecosystem functioning typically focus on temperate ecosystems, where diversity is high and the effects of individual species on ecosystem functioning are difficult to determine. We show that a climate-induced decline of an invertebrate species in a low-diversity ecosystem could contribute to significant changes in carbon (C) cycling. Recent climate variability in the McMurdo Dry Valleys of Antarctica is associated with changes in hydrology, biological productivity, and community composition of terrestrial and aquatic ecosystems. One of the greatest changes documented in the dry valleys is a 65% decrease in the abundance of the dominant soil invertebrate ( Scottnema lindsayae , Nematoda) between 1993 and 2005, illustrating sensitivity of biota in this ecosystem to small changes in temperature. Globally, such declines are expected to have significant influences over ecosystem processes such as C cycling. To determine the implications of this climate-induced decline in nematode abundance on soil C cycling we followed the fate of a 13 C tracer added to soils in Taylor Valley, Antarctica. Carbon assimilation by the dry valley nematode community contributed significantly to soil C cycling (2–7% of the heterotrophic C flux). Thus, the influence of a climate-induced decline in abundance of a dominant species may have a significant effect on ecosystem functioning in a low-diversity ecosystem. 相似文献
16.
17.
Soil carbon storage, litterfall and CO2 efflux in fertilized and unfertilized larch (Larix leptolepis) plantations 总被引:1,自引:0,他引:1
Choonsig Kim 《Ecological Research》2008,23(4):757-763
This study evaluated the effects of forest fertilization on the forest carbon (C) dynamics in a 36-year-old larch (Larix leptolepis) plantation in Korea. Above- and below-ground C storage, litterfall, root decomposition and soil CO2 efflux rates after fertilization were measured for 2 years. Fertilizers were applied to the forest floor at rates of 112 kg
N ha−1 year−1, 75 kg P ha−1 year−1 and 37 kg K ha−1 year−1 for 2 years (May 2002, 2003). There was no significant difference in the above-ground C storage between fertilized (41.20 Mg C
ha−1) and unfertilized (42.25 Mg C ha−1) plots, and the C increment was similar between the fertilized (1.65 Mg C ha−1 year−1) and unfertilized (1.52 Mg C ha−1 year−1) plots. There was no significant difference in the soil C storage between the fertilized and unfertilized plots at each soil
depth (0–15, 15–30 and 30–50 cm). The organic C inputs due to litterfall ranged from 1.57 Mg C ha−1 year−1 for fertilized to 1.68 Mg C ha−1 year−1 for unfertilized plots. There was no significant difference in the needle litter decomposition rates between the fertilized
and unfertilized plots, while the decomposition of roots with 1–2 mm diameters increased significantly with the fertilization
relative to the unfertilized plots. The mean annual soil CO2 efflux rates for the 2 years were similar between the fertilized (0.38 g CO2 m−2 h−1) and unfertilized (0.40 g CO2 m−2 h−1) plots, which corresponded with the similar fluctuation in the organic carbon (litterfall, needle and root decomposition)
and soil environmental parameters (soil temperature and soil water content). These results indicate that little effect on
the C dynamics of the larch plantation could be attributed to the 2-year short-term fertilization trials and/or the soil fertility
in the mature coniferous plantation used in this study. 相似文献
18.
Päivi Saari Sanna Saarnio Jussi V. K. Kukkonen Jarkko Akkanen Jaakko Heinonen Veli Saari Jukka Alm 《Biogeochemistry》2009,94(3):217-231
Forest clear-cutting followed by soil preparation means disturbance for soil microorganisms and disruption of N and C cycles. We measured fluxes of N2O and dissolved organic carbon (DOC) in upland soil (podzol) and adjacent peat within a clear-cut forest catchment. Both soil types behaved in a similar way, showing net uptake of N2O in the first year after the clear-cutting, and turning to net release in the second. The N2O flux dynamics were similar to those of N content in logging residues, as reported from a nearby site. As organic matter is used in the food web of the decomposers, we attempted to explain the dynamics of N2O uptake and release by measuring the concurrent dynamics of the low molecular weight (LMW) fraction and the aromaticity of DOC in a soil solution. The labile and most readily available LMW fractions of DOC were nearly absent in the year following the clear-cutting, but rose after two years. The more refractory high molecular weight (HMW) fraction of DOC decreased two years after the clear-cutting. The first year’s net uptake of N2O could be accounted for by the growth of decomposer biomass in the logging residues and detritus from the degenerating ground vegetation, resulting in immobilization of nitrogen. Simultaneously, the labile, LMW fraction of DOC became almost completely exhausted. The low availability of the LMW fraction could retard the growth and cause the accumulated decomposer biomass to collapse. During the following winter and summer the fraction of LMW clearly increased, followed by increased N2O emissions. The presence of LMW DOC fractions, not the concentration of DOC, seems to be an important controller for N2O liberation after a major disturbance such as clear-cutting and site preparation. The complex connection between DOC characteristics, nitrification or denitrification merits further studies. 相似文献
19.
Previous studies have found that root carbon inputs to the soil can stimulate the mineralization of existing soil carbon (C)
pools. It is still uncertain, however, whether this “primed” C is derived from elevated rates of soil organic matter (SOM)
decomposition, greater C release from microbial pools, or both. The goal of this research was to determine how the activities
of the microbial exoenzymes that control SOM decomposition are affected by root C inputs. This was done by manipulating rhizodeposition
with tree girdling in a coniferous subalpine forest in the Rocky Mountains of Colorado, USA, and following changes in the
activities of nine exoenzymes involved in decomposition, as well as soil dissolved organic C, dissolved organic and inorganic
nitrogen (N), and microbial biomass C and N. We found that rhizodeposition is high in the spring, when the soils are still
snow-covered, and that there are large ephemeral populations of microorganisms dependent upon this C. Microbial N acquisition
from peptide degradation increased with increases in microbial biomass when rhizodeposition was highest. However, our data
indicate that the breakdown of cellulose, lignin, chitin, and organic phosphorus are not affected by springtime increases
in soil microbial biomass associated with increases in rhizodeposition. We conclude that the priming of soil C mineralization
by rhizodeposition is due to growth of the microbial biomass and an increase in the breakdown of N-rich proteins, but not
due to increases in the degradation of plant litter constituents such as cellulose and lignin. 相似文献
20.
Forest age, which is affected by stand‐replacing ecosystem disturbances (such as forest fires, harvesting, or insects), plays a distinguishing role in determining the distribution of carbon (C) pools and fluxes in different forested ecosystems. In this synthesis, net primary productivity (NPP), net ecosystem productivity (NEP), and five pools of C (living biomass, coarse woody debris, organic soil horizons, soil, and total ecosystem) are summarized by age class for tropical, temperate, and boreal forest biomes. Estimates of variability in NPP, NEP, and C pools are provided for each biome‐age class combination and the sources of variability are discussed. Aggregated biome‐level estimates of NPP and NEP were higher in intermediate‐aged forests (e.g., 30–120 years), while older forests (e.g., >120 years) were generally less productive. The mean NEP in the youngest forests (0–10 years) was negative (source to the atmosphere) in both boreal and temperate biomes (?0.1 and –1.9 Mg C ha?1 yr?1, respectively). Forest age is a highly significant source of variability in NEP at the biome scale; for example, mean temperate forest NEP was ?1.9, 4.5, 2.4, 1.9 and 1.7 Mg C ha?1 yr?1 across five age classes (0–10, 11–30, 31–70, 71–120, 121–200 years, respectively). In general, median NPP and NEP are strongly correlated (R2=0.83) across all biomes and age classes, with the exception of the youngest temperate forests. Using the information gained from calculating the summary statistics for NPP and NEP, we calculated heterotrophic soil respiration (Rh) for each age class in each biome. The mean Rh was high in the youngest temperate age class (9.7 Mg C ha?1 yr?1) and declined with age, implying that forest ecosystem respiration peaks when forests are young, not old. With notable exceptions, carbon pool sizes increased with age in all biomes, including soil C. Age trends in C cycling and storage are very apparent in all three biomes and it is clear that a better understanding of how forest age and disturbance history interact will greatly improve our fundamental knowledge of the terrestrial C cycle. 相似文献