首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 538 毫秒
1.
2.
Dorsoventral patterning of the embryonic axis relies upon the mutual antagonism of competing signaling pathways to establish a balance between ventralizing BMP signaling and dorsal cell fate specification mediated by the organizer. In zebrafish, the initial embryo-wide domain of BMP signaling is refined into a morphogenetic gradient following activation dorsally of a maternal Wnt pathway. The accumulation of β-catenin in nuclei on the dorsal side of the embryo then leads to repression of BMP signaling dorsally and the induction of dorsal cell fates mediated by Nodal and FGF signaling. A separate Wnt pathway operates zygotically via Wnt8a to limit dorsal cell fate specification and maintain the expression of ventralizing genes in ventrolateral domains. We have isolated a recessive dorsalizing maternal-effect mutation disrupting the gene encoding Integrator Complex Subunit 6 (Ints6). Due to widespread de-repression of dorsal organizer genes, embryos from mutant mothers fail to maintain expression of BMP ligands, fail to fully express vox and ved, two mediators of Wnt8a, display delayed cell movements during gastrulation, and severe dorsalization. Consistent with radial dorsalization, affected embryos display multiple independent axial domains along with ectopic dorsal forerunner cells. Limiting Nodal signaling or restoring BMP signaling restores wild-type patterning to affected embryos. Our results are consistent with a novel role for Ints6 in restricting the vertebrate organizer to a dorsal domain in embryonic patterning.  相似文献   

3.
In vertebrates, specification of the dorso-ventral axis requires Wnt signaling, which leads to formation of the Nieuwkoop center and the Spemann organizer (dorsal organizer), through the nuclear accumulation of beta-catenin. Zebrafish bozozok/dharma (boz) and squint (sqt), which encode a homeodomain protein and a Nodal-related protein, respectively, are required for the formation of the dorsal organizer. The zygotic expression of boz and sqt in the dorsal blastoderm and dorsal yolk syncytial layer (YSL) was dependent on the maternally derived Wnt signal, and their expression at the late blastula and early gastrula stages was dependent on the zygotic expression of their own genes. The dorsal organizer genes, goosecoid (gsc) and chordin (din), were ectopically expressed in wild-type embryos injected with boz or sqt RNA. The expression of gsc strictly depended on both boz and sqt while the expression of din strongly depended on boz but only partially depended on sqt and cyclops (cyc, another nodal-related gene). Overexpression of boz in embryos defective in Nodal signaling elicited the ectopic expression of din but not gsc and resulted in dorsalization, implying that boz could induce part of the organizer, independent of the Nodal proteins. Furthermore, boz; sqt and boz;cyc double mutants displayed a severely ventralized phenotype with anterior truncation, compared with the single mutants, and boz;sqt;cyc triple mutant embryos exhibited an even more severe phenotype, lacking the anterior neuroectoderm and notochord, suggesting that Boz/Dharma and the Nodal-related proteins cooperatively regulate the formation of the dorsal organizer.  相似文献   

4.
5.
6.
Noggin proteins are important regulators of the early development of the vertebrate neural system. Previously, it has been traditionally thought that vertebrates have only one noggin gene (Noggin1), whose main function is the inhibition of BMP signaling pathway during the formation of dorsoventral polarity in embryos. Then other proteins of this family were discovered, and the studies of Noggin2 protein showed that noggin proteins also participate in the modulation of Nodal/Activin and Wnt/beta-catenin signaling pathways in the early development of amphibian head structures. The purpose of this study is to investigate the properties of another noggin protein, Noggin4. We proved that Noggin4 plays an important role in the formation of head structure in clawed frog, since it inhibits the activity of Wnt/beta-catenin signaling pathway. At the same time, unlike Noggin1 and Noggin2, Noggin4 does not inhibit the activity of TGF-beta signaling pathways (BMP and Nodal/Activin).  相似文献   

7.
8.
9.
10.
11.
The canonical, beta-catenin-dependent Wnt pathway is a crucial player in the early events of Xenopus development. Dorsal axis formation and mesoderm patterning are accepted effects of this pathway, but the regulation of expression of genes involved in mesoderm specification is not. This conclusion is based largely on the inability of the Wnt pathway to induce mesoderm in animal cap explants. Using injections of inhibitors of canonical Wnt signaling, we demonstrate that expression of the general mesodermal marker Brachyury (Xbra) requires a zygotic, ligand-dependent Wnt activity throughout the marginal zone. Analysis of the Xbra promoter reveals that putative TCF-binding sites mediate Wnt activation, the first sites in this well-studied promoter to which an activation role can be ascribed. However, established mesoderm inducers like eFGF and activin can bypass the Wnt requirement for Xbra expression. Another mesoderm promoting factor, VegT, activates Xbra in a Wnt-dependent manner. We also show that the activin/nodal signaling is necessary for ectopic Xbra induction by the Wnt pathway, but not by VegT. Our data significantly change the understanding of Brachyury regulation in Xenopus, implying the existence of an unknown zygotic Wnt ligand in Spemann's organizer. Since Brachyury is considered to have a major role in mesoderm formation, it is possible that Wnts might play a role in mesoderm specification, in addition to patterning.  相似文献   

12.
13.
Planarians regenerate a whole animal from a small body piece within a few days. Recent studies have shown that the bone morphogenetic protein (BMP) pathway is required to reestablish the dorsoventral (DV) axis. In vertebrates, the specification of the DV axis depends on the coordinated action of a dual organizer defined by BMP and antidorsalizing morphogenetic protein (ADMP) under the control of several factors, including the inhibitors chordin and noggin. Planarians have an expanded noggin family (up to ten members), which have been classified as canonical noggin (nog) and noggin-like (nlg) genes, the latter carrying an insertion within the noggin domain. Here we show that a BMP/ADMP organizer governs DV axis reestablishment during planarian regeneration, highlighting a greater-than-thought conservation of the mechanisms that establish this axis in protostomes and deuterostomes. Also, we report that whereas noggin genes function as canonical BMP inhibitors, the silencing of planarian nlg8 induces ectopic neurogenesis and enhances ventralizing bmp(RNAi) phenotypes. Finally, we show that noggin-like genes are conserved from cnidarian to vertebrates and that both planarian nlg8 and Xenopus nlg ventralize Xenopus embryos when overexpressed. Remarkably, this ventralization is not associated with an increase in SMAD1/5/8 phosphorylation.  相似文献   

14.
A zebrafish maternal effect mutation, in the gene hecate, results in embryos that have defects in the formation of dorsoanterior structures and altered calcium release. hecate mutant embryos lack nuclear accumulation of beta-catenin and have reduced expression of genes specific to the dorsal organizer. We found that hecate mutant embryos exhibit a nearly 10-fold increase in the frequency of intracellular Ca2+ transients normally present in the enveloping layer during the blastula stages. Inhibition of Ca2+ release leads to ectopic expression of dorsal genes in mutant embryos suggesting that Ca2+ transients are important in mediating dorsal gene expression. Inhibition of Ca2+ release also results in the expression of dorsal-specific genes in the enveloping layer in a beta-catenin-independent manner, which suggests an additional function for the Ca2+ transients in this cellular layer. The mutant phenotype can be reversed by the expression of factors that activate Wnt/beta-catenin signaling, suggesting that the Wnt/beta-catenin pathway, at least as activated by an exogenous Wnt ligand, is intact in hec mutant embryos. Our results are consistent with a role for the hecate gene in the regulation of Ca2+ release during the cleavage stages, which in turn influences dorsal gene expression in both marginal cells along the dorsoventral axis and in the enveloping layer.  相似文献   

15.
The dorsal gastrula organizer plays a fundamental role in establishment of the vertebrate axis. We demonstrate that the zebrafish bozozok (boz) locus is required at the blastula stages for formation of the embryonic shield, the equivalent of the gastrula organizer and expression of multiple organizer-specific genes. Furthermore, boz is essential for specification of dorsoanterior embryonic structures, including notochord, prechordal mesendoderm, floor plate and forebrain. We report that boz mutations disrupt the homeobox gene dharma. Overexpression of boz in the extraembryonic yolk syncytial layer of boz mutant embryos is sufficient for normal development of the overlying blastoderm, revealing an involvement of extraembryonic structures in anterior patterning in fish similarly to murine embryos. Epistatic analyses indicate that boz acts downstream of beta-catenin and upstream to TGF-beta signaling or in a parallel pathway. These studies provide genetic evidence for an essential function of a homeodomain protein in beta-catenin-mediated induction of the dorsal gastrula organizer and place boz at the top of a hierarchy of zygotic genes specifying the dorsal midline of a vertebrate embryo.  相似文献   

16.
17.
18.
Wnt signaling and dorso-ventral axis specification in vertebrates.   总被引:3,自引:0,他引:3  
The dorso-ventral axis is specified in vertebrates through the formation of a dorsal signaling center known as the Spemann organizer. This process depends on signal transduction by beta-catenin that can be regulated by secreted Wnt proteins. Recent discoveries of new players in this signaling pathway have narrowed down the search for the initial cues for axis specification in vertebrate embryos.  相似文献   

19.
Protein kinase CK2 is required for dorsal axis formation in Xenopus embryos   总被引:2,自引:0,他引:2  
Dorsal axis formation in Xenopus embryos is dependent upon asymmetrical localization of beta-catenin, a transducer of the canonical Wnt signaling pathway. Recent biochemical experiments have implicated protein kinase CK2 as a regulator of members of the Wnt pathway including beta-catenin. Here, we have examined the role of CK2 in dorsal axis formation. CK2 was present in the developing embryo at an appropriate time and place to participate in dorsal axis formation. Overexpression of mRNA encoding CK2 in ventral blastomeres was sufficient to induce a complete ectopic axis, mimicking Wnt signaling. A kinase-inactive mutant of CK2alpha was able to block ectopic axis formation induced by XWnt8 and beta-catenin and was capable of suppressing endogenous axis formation when overexpressed dorsally. Taken together, these studies demonstrate that CK2 is a bona fide member of the Wnt pathway and has a critical role in the establishment of the dorsal embryonic axis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号