共查询到20条相似文献,搜索用时 0 毫秒
2.
The gene encoding esterase (CE1) from Bacillus pumilus ARA with a calculated molecular weight of 28.4 kDa was cloned, sequenced and efficiently expressed in Escherichia coli. The open reading frame of 747 nucleotides encoded a protein, which was classified as a carboxylesterase with an identity of 87 % to esterase from Bacillus subtilis 168. Recombinant CE1 was purified in a single step to electrophoretic homogeneity by IMAC (Ni 2+). The enzyme displayed maximum activity toward p-nitrophenyl ( pNP) acetate at 37–40 °C and pH?6.5–7.0. It was stable in the pH range from 6.5 to 8.0, and at temperature from 25 to 40 °C. Among four p-nitrophenyl esters tested, the best substrate was pNP acetate with K m and k cat values of 0.33 mM and 4.07 s ?1, respectively. Amounts of 2 mM Ca 2+ and Co 2+ significantly increased the esterase activity to 190 and 121 %, respectively. These results suggest that CE1 has very attractive applications of increasing feed digestibility in animal nutrition in this moderate temperature range. 相似文献
3.
Salinisphaera sp. P7-4 was isolated from the intestine of silver whiting, Sillago japonicas caught in the Pacific Ocean, and the esterase gene was cloned using the shotgun method. The amino acid sequence deduced from the nucleotide sequence (951 bp) corresponded to a protein of 316 amino acid residues with a molecular weight of 34,443. The esterase had 46 and 44% identities with the esterase enzymes of Ralstonia eutropha JMP134 and Rhodopseudomonas palustris HaA2, respectively. The primary structure of P7-4 esterase showed the conserved catalytic triad (Ser, Asp, His), consensus pentapeptide GXSXG, and oxyanion hole sequence (HG). The protein P7-4 was successfully expressed in Escherichia coli in a biologically active form. The enzyme showed high catalytic activity at low temperatures (5-25° C) with an activation energy of 2.18 kcal/mol. This result indicated that the esterase from Salinisphaera sp. P7-4 is a new cold-adapted enzyme. The enzyme preferentially hydrolyzed acyl-group chains with short chain lengths of ≤10 carbon. Metal ions such as Cd2(+), Co2(+), Cu2(+), Hg2(+), Ni2(+) and Zn2(+) inhibited enzymatic activity. Additionally, EDTA has no effect on its activity, whereas inhibition was observed with PMSF, a serine hydrolase inhibitor. 相似文献
4.
【目的】从深海沉积物微生物元基因组文库中克隆新的酯酶基因,并进行酶学性质研究。【方法】利用含有三丁酸甘油酯的酯酶选择性筛选培养基,从深海沉积物微生物元基因组文库中筛选得到酯酶阳性Fosmid克隆。对筛选得到的fosmid FL10进行部分酶切构建亚克隆文库,筛选得到酯酶阳性亚克隆pFLS10。PCR扩增目的片段后与pET28a连接构建酯酶基因原核表达质粒,转化大肠杆菌(Escherichia coli)BL21。纯化表达产物并对其进行活性测定及酶学性质研究。【结果】序列分析显示该pFLS10亚克隆质粒含有一段924bp的ORF(Open Reading Frame),与一海洋元基因组文库中筛选出的酯酶ADA70030序列一致性为71%。该酶为一新的低温酯酶,对C4底物(对硝基苯丁酸酯)水解能力最强。该酶最适作用温度为20℃,最适作用pH为7.5,20℃时较为稳定,pH8-10的范围内有良好的pH稳定性,K+、Mg2+对该酶具有一定的激活作用,Mn2+等对其具有不同程度的抑制作用。【结论】应用元基因组技术筛选到了新的酯酶基因fls10并进行了克隆表达,该酶在低温及碱性条件下较为稳定且活力较高,对于工业化生产具有一定的应用潜力。关键词:深海沉积物;元基因组文库;低温酯酶;酶学特征 相似文献
5.
A new agarase, AgaA(CN41), cloned from Vibrio sp. strain CN41, consists of 990 amino acids, with only 49% amino acid sequence identity with known β-agarases. AgaA(CN41) belongs to the GH50 (glycoside hydrolase 50) family but yields neoagarotetraose as the end product. AgaA(CN41) was expressed and characterized. 相似文献
6.
A xylanase gene ( xyn10A) was cloned from Bacillus sp. SN5 and expressed in Escherichia coli. It encoded a 348-residue polypeptide of ~45?kDa. The deduced amino acid sequence had 68?% identity with the endo-1,4-beta-xylanase from Paenibacillus lactis 154 that belonged to family 10 of the glycoside hydrolases. Purified recombinant Xyn10A had maximum activity at 40?°C and pH 7.0, with the specific activity of 105?U/mg and a Km of 0.6?mg/ml for beechwood xylan. Xyn10A retained more than 80?% activity between 25 and 45?°C and 29?% activity at 5?°C. It exhibited the highest activity (134?%) in 0.5?M NaCl and still retained 90?% activity in 2.5?M NaCl. It retained about 87?% activity after incubation in 2?M NaCl for 24?h. The cold-active and halo-tolerant properties of Xyn10A make it promising for application in the food industry, especially in the processing of saline food and sea food. 相似文献
7.
A novel lipolytic enzyme was isolated from a metagenomic library after demonstration of lipolytic activity on an LB agar plate
containing 1% (w/v) tributyrin. A novel esterase gene ( estIM1), encoding a lipolytic enzyme (EstIM1), was cloned using a shotgun method from a pFosEstIM1 clone of the metagenomic library,
and the enzyme was characterized. The estIM1 gene had an open reading frame (ORF) of 936 base pairs and encoded a protein of 311 amino acids with a molecular mass 34 kDa
and a p I value of 4.32. The deduced amino acid sequence was 62% identical to that of an esterase from an uncultured bacterium (ABQ11271).
The amino acid sequence indicated that EstIM1 was a member of the family IV of lipolytic enzymes, all of which contain a GDSAG
motif shared with similar enzymes of lactic acid microorganisms. EstIM1 was active over a temperature range of 1–50°C, at
alkaline pH. The activation energy for hydrolysis of p-nitrophenyl propionate was 1.04 kcal/mol, within a temperature range of 1–40°C. The activity of EstIM1 was about 60% of maximal
even at 1°C, suggesting that EstIM1 is efficiently cold-adapted. Further characterization of this cold-adapted enzyme indicated
that the esterase may be very valuable in industrial applications. 相似文献
8.
A psychrotrophic strain 7195 showing extracellular lipolytic activity towards tributyrin was isolated from deep-sea sediment of Prydz Bay and identified as a Psychrobacter species. By screening a genomic DNA library of Psychrobacter sp. 7195, an open reading frame of 954 bp coding for a lipase gene, lipA1, was identified, cloned, and sequenced. The deduced LipA1 consisted of 317 amino acids with a molecular mass of 35,210 kDa. It had one consensus motif, G-N-S-M-G (GXSXG), containing the putative active-site serine, which was conserved in other cold-adapted lipolytic enzymes. The recombinant LipA1 was purified by column chromatography with DEAE Sepharose CL-4B, and Sephadex G-75, and preparative polyacrylamide gel electrophoresis, in sequence. The purified enzyme showed highest activity at 30 degrees C, and was unstable at temperatures higher than 30 degrees C, indicating that it was a typical cold-adapted enzyme. The optimal pH for activity was 9.0, and the enzyme was stable between pH 7.0-10.0 after 24 h incubation at 4 degrees C. The addition of Ca2+ and Mg2+ enhanced the enzyme activity of LipA1, whereas the Cd2, Zn2+, Co2+, Fe3+, Hg2+, Fe2+, Rb2+, and EDTA strongly inhibited the activity. The LipA1 was activated by various detergents, such as Triton X-100, Tween 80, Tween 40, Span 60, Span 40, CHAPS, and SDS, and showed better resistance towards them. Substrate specificity analysis showed that there was a preference for trimyristin and p-nitrophenyl myristate (C14 acyl groups). 相似文献
9.
We report the identification and characterization of a novel cytokine-like gene family using structure-based methods to search for novel four-helix-bundle cytokines in genomics databases. There are four genes in this family, FAM3A, FAM3B, FAM3C, and FAM3D, each encoding a protein (224-235 amino acids) with a hydrophobic leader sequence. Northern analysis indicates that FAM3B is highly expressed in pancreas, FAM3D in placenta, and FAM3A and FAM3C in almost all tissues. Immunohistochemistry showed that FAM3A is expressed prominently in the vascular endothelium, particularly capillaries. We found that FAM3A and FAM3B protein were both localized to the islets of Langerhans of the endocrine pancreas. Recombinant FAM3B protein has delayed effects on beta-cell function, inhibiting basal insulin secretion from a beta-cell line in a dose-dependent manner. 相似文献
10.
【目的】克隆芽孢杆菌HJ14的酯酶基因Est Z1并利用大肠杆菌表达得到相应的酯酶,分析重组酯酶的酶学性质和对邻苯二甲酸二乙酯(Diethyl phthalate,DEP)的降解。【方法】特异性扩增酯酶基因Est Z1并对其全长测序,分析其氨基酸序列。利用p EASY-E2表达系统将Est Z1转化到Escherichia coli BL21(DE3)中完成异源表达。根据组氨酸标签纯化Est Z1,研究其酶学性质并利用HPLC和LC/MS检测系统定性分析其对DEP的降解。【结果】Est Z1全长903 bp,编码300个氨基酸残基,蛋白分子量33.84 k Da。Est Z1氨基酸序列分析结果显示,与NCBI数据库收录的HSL-like家族酯酶相似度最高可达到98%。酶学性质分析结果显示,Est Z1可水解碳链长度较短的p-NP底物,最适底物为p-NPC4(p-NP butyrate)。Est Z1的最适p H和最适温度分别为9.0和50°C,并且在p H 7.0–9.5和40–70°C范围内保持50%以上的酶活,为耐热碱性酯酶。Est Z1对多数金属离子和化学试剂保有良好的抗性。Est Z1可将DEP水解生成相应的单酯和醇。【结论】本文报道了Bacillus sp.HJ14来源的酯酶基因并对其在大肠杆菌中表达获得的重组酶的酶学性质进行研究,Est Z1具有良好的碱性p H耐受性和热稳定性,能够部分降解DEP,本研究对邻苯二甲酸酯类的生物降解有一定的参考意义。 相似文献
11.
The gram-negative antarctic bacterium Pseudoalteromonas sp. 22b, isolated from the alimentary tract of krill Thyssanoessa macrura, synthesizes an intracellular cold-adapted beta-galactosidase. The gene encoding this beta-galactosidase has been PCR amplified, cloned, expressed in Escherichia coli, purified, and characterized. The enzyme is active as a homotetrameric protein, and each monomer consists of 1028 amino acid residues. The enzyme was purified to homogeneity (50% recovery of activity) by using the fast, two-step procedure, including affinity chromatography on PABTG-Sepharose. Enzymatic properties of the recombinant protein are identical to those of native Pseudoalteromonas sp. 22b beta-galactosidase. The enzyme is cold-adapted and at 10 degrees C retains 20% of maximum activity. The purified enzyme displayed maximum activity close to 40 degrees C and at pH of 6.0-8.0. PNPG was its preferred substrate (58% higher activity than against ONPG). The enzyme was particularly thermolabile, losing all activities within 10 min at 50 degrees C. The hydrolysis of lactose in a milk assay revealed that 90% of milk lactose was hydrolyzed during 6 h at 30 degrees C and during 28 h at 15 degrees C. Because of its attributes, the recombinant Pseudoalteromonas sp. 22b beta-galactosidase could be applied at refrigeration temperatures for production of lactose-reduced dairy products. 相似文献
12.
Trehalose synthase (TreS) catalyzes the reversible interconversion of maltose and trehalose. A novel treS gene with a length of 3,369 bp, encoding a protein of 1,122 amino acid residues with a predicted molecular mass of 126 kDa, was cloned from a marine Pseudomonas sp. P8005 (CCTCC: M2010298) and expressed in Escherichia coli. The amino acid sequence identities between this novel TreS and other reported TreS is relatively low. The purified recombinant TreS showed an optimum pH and temperature of 7.2 and 37 °C, respectively. The enzyme displayed a high conversion rate (70 %) of maltose to trehalose during equilibrium and had a higher catalytic efficiency ( k cat/ K m) for maltose than for trehalose, suggesting its application in the production of trehalose. In addition to maltose and trehalose, this enzyme can also act on sucrose, although this activity is relatively low. Mutagenesis studies demonstrated that enzymatic activity was reduced dramatically by individually substitution with alanine for D78, Y81, H121, D219, E261, H331 or D332, which implied that these residues might be important in P8005-TreS. Experiments using isotope-labeled substrates showed that [ 2H 2]trehalose combined with unlabeled trehalose was converted to [ 2H 2]maltose and maltose, but without any production of [ 2H]maltose or [ 2H]trehalose and with no incorporation of exogenous [ 2H 7]glucose into the disaccharides during the conversion catalyzed by this enzyme. This finding indicated the involvement of an intramolecular mechanism in P8005-TreS catalyzing the reversible interconversion of maltose and trehalose. 相似文献
13.
A newly isolated gene from Ralstonia sp. M1, encoding an esterase, was cloned in Escherichia coli and its nucleotide sequence determined. The 1.6kb insert revealed one complete open reading frame, predicted to encode an esterase (320 aa, 34.1kDa) with a pI of 9.86. EstR contained a putative oxyanion hole H36G37, a conserved pentapeptide G103HSLG107 and a conserved catalytic His265 and Asp237. The EstR sequence shared 64-70 and 44-48% identity with the hydrolases/acyltransferases from Burkholderia strains and from Ralstonia strains, respectively, 44 and 38% identity with the lactone-specific esterase from Pseudomonas fluorescens and Mesorhizobium loti, respectively. The esterase EstR was expressed with a high level of 41mg/g wet cells. The Ni-NTA-purified esterase EstR showed an optimal activity in the temperature range 60-65 degrees C and pH range 7.5-9.0 towards p-nitrophenyl caproate. The enzyme was found to be highly resistant to many organic solvents especially induced by ethanolamine. Metal ions showed slight effect on esterase activity. The inhibitor phenylmethanesulfonyl fluoride inhibited strongly the esterase. Triton X-45 induced the activation of EstR, but other detergents slightly to strongly decreased or completely inhibited. Among tested p-NP esters, caproate was the most preferential substrate of this esterase. 相似文献
14.
As part of the effort to find better cellulases for bioethanol production processes, we were looking for novel GH-7 family cellobiohydrolases, which would be particularly active on insoluble polymeric substrates and participate in the rate-limiting step in the hydrolysis of cellulose. The enzymatic properties were studied and are reported here for family 7 cellobiohydrolases from the thermophilic fungi Acremonium thermophilum, Thermoascus aurantiacus, and Chaetomium thermophilum. The Trichoderma reesei Cel7A enzyme was used as a reference in the experiments. As the native T. aurantiacus Cel7A has no carbohydrate-binding module (CBM), recombinant proteins having the CBM from either the C. thermophilum Cel7A or the T. reesei Cel7A were also constructed. All these novel acidic cellobiohydrolases were more thermostable (by 4-10 degrees C) and more active (two- to fourfold) in hydrolysis of microcrystalline cellulose (Avicel) at 45 degrees C than T. reesei Cel7A. The C. thermophilum Cel7A showed the highest specific activity and temperature optimum when measured on soluble substrates. The most effective enzyme for Avicel hydrolysis at 70 degrees C, however, was the 2-module version of the T. aurantiacus Cel7A, which was also relatively weakly inhibited by cellobiose. These results are discussed from the structural point of view based on the three-dimensional homology models of these enzymes. 相似文献
15.
低温脂肪酶在低温条件下仍具有较高活性,在食品添加剂、洗涤添加剂及有机合成等产业具有非常独特的应用前景。从低温菌株中分离低温脂肪酶基因是开发新的低温脂肪酶的有效手段。首先利用油脂同化平板与三丁酸甘油酯-维多利亚蓝平板从冰川土样中筛选分离获得一株具有较高脂肪酶活性的真菌,18S rDNA鉴定其属于青霉属,命名为Penicillium sp.XMZ-9。根据真菌脂肪酶多序列比对获得的保守区,设计简并引物,利用降落PCR与染色体步移的方法从Penicillium sp.XMZ-9中克隆到2个完整的脂肪酶基因,分别记为LipA与LipB。LipA全长1 014 bp,无内含子,编码337个氨基酸。而LipB全长1 232 bp,cDNA长1 122 bp,含有2个内含子,编码373个氨基酸。将两基因的cDNA序列克隆到pET30a(+)载体上,转化大肠杆菌Escherichiacoli BL21(DE3)。经低温诱导表达后,LipA大部分表达为包涵体,包涵体经复性后具有脂肪酶活性,并表现出低温适应性;LipB则大部分表达为可溶性蛋白,Ni-亲和层析柱纯化后,其亦具有低温脂肪酶活性。青霉菌株XMZ-9的获得与低温脂肪酶的克隆表达研究,为研究低温菌株与低温酶的适冷机制提供了宝贵的资源,也为进一步开发利用低温脂肪酶奠定了基础。 相似文献
16.
Genomic analysis of a hyperthermophilic archaeon, Thermococcus sp. strain NA1, revealed the presence of a 1,068-bp open reading frame encoding a protein consisting of 356 amino acids with a calculated molecular mass of 39,714 Da (GenBank accession no. DQ144132). Sequence analysis showed that it was similar to the putative aminopeptidase P (APP) of Thermococcus kodakaraensis KOD1. Amino acid residues important for catalytic activity and the metal binding ligands conserved in bacterial, nematode, insect, and mammalian APPs were also conserved in the Thermococcus sp. strain NA1 APP. The archaeal APP, designated TNA1_APP (Thermococcus sp. strain NA1 APP), was cloned and expressed in Escherichia coli. The recombinant enzyme hydrolyzed the amino-terminal Xaa-Pro bond of Lys(Nepsilon-Abz)-Pro-Pro-pNA and the dipeptide Met-Pro (Km, 0.96 mM), revealing its functional identity. Further enzyme characterization showed the enzyme to be a Co2+-, Mn2+-, or Zn2+-dependent metallopeptidase. Optimal APP activity with Met-Pro as the substrate occurred at pH 5 and a temperature of 100 degrees C. The APP was thermostable, with a half-life of >100 min at 80 degrees C. This study represents the first characterization of a hyperthermophilic archaeon APP. 相似文献
17.
A novel esterase that belongs to the amidase signature family was found in a psychrotrophic bacterium, Acinetobacter sp. strain no. 6, isolated from Siberian soil. The gene coding for the esterase, named EstA8, was cloned, and an open reading frame of 1488 bp corresponding to 496 amino acid residues was identified. EstA8 showed 30% sequence identity with 6-aminohexanoate-cyclic-dimer hydrolases from Pseudomonas sp. strain NK87 and Flavobacterium sp. strain K172, which degrade a by-product of the nylon-6 industry. EstA8 was overproduced in Escherichia coli JM109 under the control of the lac promoter of pUC118 and purified. Consistent with the fact that the source microorganism is cold-adapted, the enzyme was unstable at moderate temperatures. It lost 75% of its original activity by incubation at 40 °C for 30 min. Despite its structural similarity to 6-aminohexanoate-cyclic-dimer hydrolase, 6-aminohexanoate cyclic dimer did not serve as the substrate. EstA8 is a member of the amidase signature family, but its esterase activity toward p-nitrophenyl esters, such as p-nitrophenyl acetate, was much higher than its amidase activity toward p-nitroanilides, such as p-nitroacetanilide. 相似文献
18.
By screening 25 different psychrophilic strains isolated from the Arctic habitat, we isolated a strain capable of producing lipase. We identified this strain as Psychrobacter sp. ZY124 based on the amplified 16S rDNA sequence. The lipase, named as Lipase ZC12, produced from the supernatant of Psychrobacter sp. ZY124 cultured at 15 °C was purified to homogeneity by ammonium sulfate precipitation followed by Phenyl Sepharose FF gel hydrophobic chromatography. Based on the obtained amino acid sequence, Lipase ZC12 is classified as a member of the Proteus/psychrophilic subfamily of lipase family I.1; it has a molecular weight of 37.9 kDa. We also determined that the apparent optimum temperature for Lipase ZC12 activity is 40 °C. Lipase ZC12 shows remarkable organic solvent tolerance by remaining more 50% after incubated with 10–90% different organic solvents. In addition, acyl chain esters with C12 or longer were confirmed to be preferable substrates for Lipase ZC12. Lipase ZC12 also shows better stereoselectivity for (R, S)-1-phenylethanol chiral resolution in n-hexane solvent with (S)-1-phenylethanol (eep 92%) and conversion rate (39%) by transesterification reactions. These properties may provide potential applications in biocatalysis and biotransformation in non-aqueous media, such as in detergent, transesterification or esterification and chiral resolution. 相似文献
19.
AIMS: To screen and clone a novel enzyme with specific activity for the resolution of (R)-beta-acetylmercaptoisobutyrate (RAM) from (R,S)-beta-acetylmercaptoisobutyrate [(R,S)-ester]. METHODS AND RESULTS: A micro-organism that produces a novel esterase was isolated and identified as the bacterium Burkholderia cepacia by using the analysis of cellular fatty acids, Biolog automated microbial identification/characterization system, and 16S rRNA gene sequence analysis. A novel esterase gene was cloned from the chromosomal DNA of B. cepacia and was designated as cpoA. The cpoA encodes a polypeptide of 273 amino acids which shows a strong sequence homology with many bacterial nonhaeme chloroperoxidases. In addition, a typical serine-hydrolase motif, Gly-X-Ser-X-Gly, and the highly conserved catalytic triad, Ser95, Asp224, and His253, were identified in the deduced amino acid sequence of cpoA by multiple sequence alignment. CONCLUSION: The cpoA cloned from B. cepacia encodes a novel esterase which is highly related to the nonhaeme chloroperoxidases. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report that describes the isolation and cloning of a serine esterase gene from B. cepacia, which is useful in the chiral resolution of (R,S)-ester. The cloned gene will allow additional research on the bifunctionality of the enzyme with esterase and chloroperoxidase activity at the structural and functional levels. 相似文献
20.
We previously identified a Pseudomonas sp. strain, ADP, which rapidly metabolized atrazine in liquid culture, agar plates, and soils (R. T. Mandelbaum, D. L. Allan, L. P. Wackett, Appl. Environ. Microbiol. 61:1451-1457, 1995). In this study, we report the cloning and partial characterization of a gene region from Pseudomonas sp. strain ADP that encodes atrazine degradation activity. A 22-kb EcoRI genomic DNA fragment, designated pMD1, was shown to encode atrazine dechlorination activity in Escherichia coli DH5 alpha. Atrazine degradation was demonstrated by a zone-clearing assay on agar medium containing crystalline atrazine and by chromatographic methods. A gene conferring the atrazine-clearing phenotype was subsequently subcloned as a 1.9-kb AvaI fragment in pACYC184, designated pMD4, and was expressed in E. coli. This result and random Tn5 mutagenesis established that the 1.9-kb AvaI fragment was essential for atrazine dechlorination. High-pressure liquid and thin-layer chromatographic analyses were used to rigorously establish that E. coli containing pMD4 degraded atrazine and accumulated hydroxyatrazine. Hydroxyatrazine was detected only transiently in E. coli containing pMD1. This is consistent with the idea that hydroxyatrazine is the first metabolite in atrazine degradation by Pseudomonas sp. strain ADP. A 0.6-kb ApaI-PstI fragment from pMD4, containing the putative atrazine chlorohydrolase gene, hybridized to DNA from atrazine-degrading bacteria isolated in Switzerland and Louisiana.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
|