首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzymes that digest plant cell wall polysaccharides generally contain non-catalytic, carbohydrate-binding modules (CBMs) that function by attaching the enzyme to the substrate, potentiating catalytic activity. Here, we present the first structure of a family 35 CBM, derived from the Cellvibrio japonicus beta-1,4-mannanase Man5C. The NMR structure has been determined for both the free protein and the protein bound to mannopentaose. The data show that the protein displays a typical beta-jelly-roll fold. Ligand binding is not located on the concave surface of the protein, as occurs in many CBMs that display the jelly-roll fold, but is formed by the loops that link the two beta-sheets of the protein, similar to family 6 CBMs. In contrast to the majority of CBMs, which are generally rigid proteins, CBM35 undergoes significant conformational change upon ligand binding. The curvature of the binding site and the narrow binding cleft are likely to be the main determinants of binding specificity. The predicted solvent exposure of O6 at several subsites provides an explanation for the observed accommodation of decorated mannans. Two of the key aromatic residues in Man5C-CBM35 that interact with mannopentaose are conserved in mannanase-derived CBM35s, which will guide specificity predictions based on the primary sequence of proteins in this CBM family.  相似文献   

2.
Carbohydrate binding modules (CBMs) are specialized proteins that bind to polysaccharides and oligosaccharides. Caldanaerobius polysaccharolyticus Man5ACBM16-1/CBM16-2 bind to glucose-, mannose-, and glucose/mannose-configured substrates. The crystal structures of the two proteins represent the only examples in CBM family 16, and studies that evaluate the roles of amino acid residues in ligand binding in this family are lacking. In this study, we probed the roles of amino acids (selected based on CBM16-1/ligand co-crystal structures) on substrate binding. Two tryptophan (Trp-20 and Trp-125) and two glutamine (Gln-81 and Gln-93) residues are shown to be critical in ligand binding. Additionally, several polar residues that flank the critical residues also contribute to ligand binding. The CBM16-1 Q121E mutation increased affinity for all substrates tested, whereas the Q21G and N97R mutants exhibited decreased substrate affinity. We solved CBM/substrate co-crystal structures to elucidate the molecular basis of the increased substrate binding by CBM16-1 Q121E. The Gln-121, Gln-21, and Asn-97 residues can be manipulated to fine-tune ligand binding by the Man5A CBMs. Surprisingly, none of the eight residues investigated was absolutely conserved in CBM family 16. Thus, the critical residues in the Man5A CBMs are either not essential for substrate binding in the other members of this family or the two CBMs are evolutionarily distinct from the members available in the current protein database. Man5A is dependent on its CBMs for robust activity, and insights from this study should serve to enhance our understanding of the interdependence of its catalytic and substrate binding modules.  相似文献   

3.
Carbohydrate-binding polypeptides, including carbohydrate-binding modules (CBMs) from polysaccharidases, and lectins, are widespread in nature. Whilst CBMs are classically considered distinct from lectins, in that they are found appended to polysaccharide-degrading enzymes, this distinction is blurring. The crystal structure of CsCBM6-3, a "sequence-family 6" CBM in a xylanase from Clostridium stercorarium, at 2.3 A reveals a similar, all beta-sheet fold to that from MvX56, a module found in a family 33 glycoside hydrolase sialidase from Micromonospora viridifaciens, and the lectin AAA from Anguilla anguilla. Sequence analysis leads to the classification of MvX56 and AAA into a family distinct from that containing CsCBM6-3. Whilst these polypeptides are similar in structure they have quite different carbohydrate-binding specificities. AAA is known to bind fucose; CsCBM6-3 binds cellulose, xylan and other beta-glucans. Here we demonstrate that MvX56 binds galactose, lactose and sialic acid. Crystal structures of CsCBM6-3 in complex with xylotriose, cellobiose, and laminaribiose, 2.0 A, 1.35 A, and 1.0 A resolution, respectively, reveal that the binding site of CsCBM6-3 resides on the same polypeptide face as for MvX56 and AAA. Subtle differences in the ligand-binding surface give rise to the different specificities and biological activities, further blurring the distinction between classical lectins and CBMs.  相似文献   

4.
Enzymes that hydrolyze insoluble complex polysaccharide structures contain non-catalytic carbohydrate binding modules (CBMS) that play a pivotal role in the action of these enzymes against recalcitrant substrates. Family 6 CBMs (CBM6s) are distinct from other CBM families in that these protein modules contain multiple distinct ligand binding sites, a feature that makes CBM6s particularly appropriate receptors for the beta-1,3-glucan laminarin, which displays an extended U-shaped conformation. To investigate the mechanism by which family 6 CBMs recognize laminarin, we report the biochemical and structural properties of a CBM6 (designated BhCBM6) that is located in an enzyme, which is shown, in this work, to display beta-1,3-glucanase activity. BhCBM6 binds beta-1,3-glucooligosaccharides with affinities of approximately 1 x 10(5) m(-1). The x-ray crystal structure of this CBM in complex with laminarihexaose reveals similarity with the structures of other CBM6s but a unique binding mode. The binding cleft in this protein is sealed at one end, which prevents binding of linear polysaccharides such as cellulose, and the orientation of the sugar at this site prevents glycone extension of the ligand and thus conferring specificity for the non-reducing ends of glycans. The high affinity for extended beta-1,3-glucooligosaccharides is conferred by interactions with the surface of the protein located between the two binding sites common to CBM6s and thus reveals a third ligand binding site in family 6 CBMs. This study therefore demonstrates how the multiple binding clefts and highly unusual protein surface of family 6 CBMs confers the extensive range of specificities displayed by this protein family. This is in sharp contrast to other families of CBMs where variation in specificity between different members reflects differences in the topology of a single binding site.  相似文献   

5.
The microbial deconstruction of the plant cell wall is a critical biological process, which also provides important substrates for environmentally sustainable industries. Enzymes that hydrolyze the plant cell wall generally contain non-catalytic carbohydrate binding modules (CBMs) that contribute to plant cell wall degradation. Here we report the biochemical properties and crystal structure of a family of CBMs (CBM60) that are located in xylanases. Uniquely, the proteins display broad ligand specificity, targeting xylans, galactans, and cellulose. Some of the CBM60s display enhanced affinity for their ligands through avidity effects mediated by protein dimerization. The crystal structure of vCBM60, displays a β-sandwich with the ligand binding site comprising a broad cleft formed by the loops connecting the two β-sheets. Ligand recognition at site 1 is, exclusively, through hydrophobic interactions, whereas binding at site 2 is conferred by polar interactions between a protein-bound calcium and the O2 and O3 of the sugar. The observation, that ligand recognition at site 2 requires only a β-linked sugar that contains equatorial hydroxyls at C2 and C3, explains the broad ligand specificity displayed by vCBM60. The ligand-binding apparatus of vCBM60 displays remarkable structural conservation with a family 36 CBM (CBM36); however, the residues that contribute to carbohydrate recognition are derived from different regions of the two proteins. Three-dimensional structure-based sequence alignments reveal that CBM36 and CBM60 are related by circular permutation. The biological and evolutionary significance of the mechanism of ligand recognition displayed by family 60 CBMs is discussed.  相似文献   

6.
The hydrolysis of the plant cell wall by microbial glycoside hydrolases and esterases is the primary mechanism by which stored organic carbon is utilized in the biosphere, and thus these enzymes are of considerable biological and industrial importance. Plant cell wall-degrading enzymes in general display a modular architecture comprising catalytic and non-catalytic modules. The X4 modules in glycoside hydrolases represent a large family of non-catalytic modules whose function is unknown. Here we show that the X4 modules from a Cellvibrio japonicus mannanase (Man5C) and arabinofuranosidase (Abf62A) bind to polysaccharides, and thus these proteins comprise a new family of carbohydrate-binding modules (CBMs), designated CBM35. The Man5C-CBM35 binds to galactomannan, insoluble amorphous mannan, glucomannan, and manno-oligosaccharides but does not interact with crystalline mannan, cellulose, cello-oligosaccharides, or other polysaccharides derived from the plant cell wall. Man5C-CBM35 also potentiates mannanase activity against insoluble amorphous mannan. Abf62A-CBM35 interacts with unsubstituted oat-spelt xylan but not substituted forms of the hemicellulose or xylo-oligosaccharides, and requires calcium for binding. This is in sharp contrast to other xylan-binding CBMs, which interact in a calcium-independent manner with both xylo-oligosaccharides and decorated xylans.  相似文献   

7.
CsMan26 from Caldicellulosiruptor strain Rt8.B4 is a modular β-mannanase consisting of two N-terminal family 27 carbohydrate-binding modules (CBMs), followed by a family 35 CBM and a family 26 glycoside hydrolase catalytic module (mannanase). A functional dissection of the full-length CsMan26 and a comprehensive characterisation of the truncated derivatives were undertaken to evaluate the role of the CBMs. Limited proteolysis was used to define biochemically the boundaries of the different structural modules in CsMan26. The full-length CsMan26 and three truncated derivatives were produced in Escherichia coli, purified and characterised. The systematic removal of the CBMs resulted in a decrease in the optimal temperature for activity and in the overall thermostability of the derivatives. Kinetic experiments indicated that the presence of the mannan-specific family 27 CBMs increased the affinity of the enzyme towards the soluble galactomannan substrate but this was accompanied by lower catalytic efficiency. The full-length CsMan26 and its truncated derivatives were unable to hydrolyse mannooligosaccharides with degree of polymerisation (DP) of three or less. The major difference in the hydrolysis pattern of larger mannooligosaccharides (DP >3) by the derivatives was determined by their abilities to further hydrolyse the intermediate sugar mannotetraose.  相似文献   

8.
The crystal structure of the Clostridium cellulovorans carbohydrate-binding module (CBM) belonging to family 17 has been solved to 1.7 A resolution by multiple anomalous dispersion methods. CBM17 binds to non-crystalline cellulose and soluble beta-1,4-glucans, with a minimal binding requirement of cellotriose and optimal affinity for cellohexaose. The crystal structure of CBM17 complexed with cellotetraose solved at 2.0 A resolution revealed that binding occurs in a cleft on the surface of the molecule involving two tryptophan residues and several charged amino acids. Thermodynamic binding studies and alanine scanning mutagenesis in combination with the cellotetraose complex structure allowed the mapping of the CBM17 binding cleft. In contrast to the binding groove characteristic of family 4 CBMs, family 17 CBMs appear to have a very shallow binding cleft that may be more accessible to cellulose chains in non-crystalline cellulose than the deeper binding clefts of family 4 CBMs. The structural differences in these two modules may reflect non-overlapping binding niches on cellulose surfaces.  相似文献   

9.
Enzyme systems that attack the plant cell wall contain noncatalytic carbohydrate-binding modules (CBMs) that mediate attachment to this composite structure and play a pivotal role in maximizing the hydrolytic process. Although xyloglucan, which includes a backbone of beta-1,4-glucan decorated primarily with xylose residues, is a key component of the plant cell wall, CBMs that bind to this polymer have not been identified. Here we showed that the C-terminal domain of the modular Clostridium thermocellum enzyme CtCel9D-Cel44A (formerly known as CelJ) comprises a novel CBM (designated CBM44) that binds with equal affinity to cellulose and xyloglucan. We also showed that accommodation of xyloglucan side chains is a general feature of CBMs that bind to single cellulose chains. The crystal structures of CBM44 and the other CBM (CBM30) in CtCel9D-Cel44A display a beta-sandwich fold. The concave face of both CBMs contains a hydrophobic platform comprising three tryptophan residues that can accommodate up to five glucose residues. The orientation of these aromatic residues is such that the bound ligand would adopt the twisted conformation displayed by cello-oligosaccharides in solution. Mutagenesis studies confirmed that the hydrophobic platform located on the concave face of both CBMs mediates ligand recognition. In contrast to other CBMs that bind to single polysaccharide chains, the polar residues in the binding cleft of CBM44 play only a minor role in ligand recognition. The mechanism by which these proteins are able to recognize linear and decorated beta-1,4-glucans is discussed based on the structures of CBM44 and the other CBMs that bind single cellulose chains.  相似文献   

10.
Polysaccharide-degrading enzymes are generally modular proteins that contain non-catalytic carbohydrate-binding modules (CBMs), which potentiate the activity of the catalytic module. CBMs have been grouped into sequence-based families, and three-dimensional structural data are available for half of these families. Clostridium thermocellum xylanase 11A is a modular enzyme that contains a CBM from family 6 (CBM6), for which no structural data are available. We have determined the crystal structure of this module to a resolution of 2.1 A. The protein is a beta-sandwich that contains two potential ligand-binding clefts designated cleft A and B. The CBM interacts primarily with xylan, and NMR spectroscopy coupled with site-directed mutagenesis identified cleft A, containing Trp-92, Tyr-34, and Asn-120, as the ligand-binding site. The overall fold of CBM6 is similar to proteins in CBM families 4 and 22, although surprisingly the ligand-binding site in CBM4 and CBM22 is equivalent to cleft B in CBM6. These structural data define a superfamily of CBMs, comprising CBM4, CBM6, and CBM22, and demonstrate that, although CBMs have evolved from a relatively small number of ancestors, the structural elements involved in ligand recognition have been assembled at different locations on the ancestral scaffold.  相似文献   

11.
The TIGR4 and SP3-BS71 strains of Streptococcus pneumoniae each produce family 98 glycoside hydrolases, called Sp4GH98 and Sp3GH98, respectively, which have different modular architectures and substrate specificities. Sp4GH98 degrades the LewisY antigen and possesses three C-terminal family 47 carbohydrate-binding modules (CBMs) that bind to this substrate. Sp3GH98 degrades the blood group A/B antigens and has two N-terminal family 51 CBMs that are of unknown function. Here, we examine the complex carbohydrate-binding specificity of the family 51 CBMs from Sp3GH98 (referred to as CBM51-1 and CBM51-2), the structural basis of this interaction, and the overall solution conformations of both Sp3GH98 and Sp4GH98, which are shown to be fully secreted proteins. Through glycan microarray binding analysis and isothermal titration calorimetry, CBM51-1 is found to bind specifically to the blood group A/B antigens. However, due to a series of relatively small structural rearrangements that were revealed in structures determined by X-ray crystallography, CBM51-2 appears to be incapable of binding carbohydrates. Analysis of small-angle X-ray scattering data in combination with the available high-resolution X-ray crystal structures of the Sp3GH98 and Sp4GH98 catalytic modules and their CBMs yielded models of the biological solution structures of the full-length enzymes. These studies reveal the complex architectures of the two enzymes and suggest that carbohydrate recognition by the CBMs and the activity of the catalytic modules are not directly coupled.  相似文献   

12.
Cellulase Cel5A from alkalophilic Bacillus sp. 1139 contains a family 17 carbohydrate-binding module (BspCBM17) and a family 28 CBM (BspCBM28) in tandem. The two modules have significantly similar amino acid sequences, but amino acid residues essential for binding are not conserved. BspCBM28 was obtained as a discrete polypeptide by engineering the cel5A gene. BspCBM17 could not be obtained as a discrete polypeptide, so a family 17 CBM from endoglucanase Cel5A of Clostridium cellulovorans, CcCBM17, was used to compare the binding characteristics of the two families of CBM. Both CcCBM17 and BspCBM28 recognized two classes of binding sites on amorphous cellulose: a high affinity site (K(a) approximately 1 x 10(6) M(-1)) and a low affinity site (K(a) approximately 2 x 10(4) M(-1)). They did not compete for binding to the high affinity sites, suggesting that they bound at different sites on the cellulose. A polypeptide, BspCBM17/CBM28, comprising the tandem CBMs from Cel5A, bound to amorphous cellulose with a significantly higher affinity than the sum of the affinities of CcCBM17 and BspCBM28, indicating cooperativity between the linked CBMs. Cel5A mutants were constructed that were defective in one or both of the CBMs. The mutants differed from the wild-type enzyme in the amounts and sizes of the soluble products produced from amorphous cellulose. This suggests that either the CBMs can modify the action of the catalytic module of Cel5A or that they target the enzyme to areas of the cellulose that differ in susceptibility to hydrolysis.  相似文献   

13.
CpGH89 is a large multimodular enzyme produced by the human and animal pathogen Clostridium perfringens. The catalytic activity of this exo-α-D-N-acetylglucosaminidase is directed towards a rare carbohydrate motif, N-acetyl-β-D-glucosamine-α-1,4-D-galactose, which is displayed on the class III mucins deep within the gastric mucosa. In addition to the family 89 glycoside hydrolase catalytic module this enzyme has six modules that share sequence similarity to the family 32 carbohydrate-binding modules (CBM32s), suggesting the enzyme has considerable capacity to adhere to carbohydrates. Here we suggest that two of the modules, CBM32-1 and CBM32-6, are not functional as carbohydrate-binding modules (CBMs) and demonstrate that three of the CBMs, CBM32-3, CBM32-4, and CBM32-5, are indeed capable of binding carbohydrates. CBM32-3 and CBM32-4 have a novel binding specificity for N-acetyl-β-D-glucosamine-α-1,4-D-galactose, which thus complements the specificity of the catalytic module. The X-ray crystal structure of CBM32-4 in complex with this disaccharide reveals a mode of recognition that is based primarily on accommodation of the unique bent shape of this sugar. In contrast, as revealed by a series of X-ray crystal structures and quantitative binding studies, CBM32-5 displays the structural and functional features of galactose binding that is commonly associated with CBM family 32. The functional CBM32s that CpGH89 contains suggest the possibility for multivalent binding events and the partitioning of this enzyme to highly specific regions within the gastrointestinal tract.  相似文献   

14.
At the C-terminus of multimodular laminarinase Lic16A from Clostridium thermocellum, four carbohydrate-binding modules (CBM) of family 4 were found. Isolated CBM4_1, CBM4_2, CBM4_3, and CBM4_4 modules and the CBM4_(1-4) tandem were obtained. None of the recombinant proteins had the affinity to soluble ??-1,3-1,4-glucans, laminarin and lichenan, the main specific Lic16A substrates. All modules, except CBM4_4, had the ability to bind bacterial crystalline cellulose, which is atypical of family-4 CBMs. All CBMs 4 of Lic16A had an affinity to xylan, chitin, yeast cell wall ??-glucan, and avicel, while CBM4_3 and CBM4_4 also had an affinity to chitosan. The CBM4_(1-4) tandem had the highest affinity to the ??-glucan, avicel, and pustulan of the yeast cell wall. The CBM4_(1-4) binding constants for these substrates were approximately 100-fold higher than those of its individual modules, which suggests synergy in the process of absorbing these polysaccharides. This finding helps to explain the evolutionary process of CBM multiplication.  相似文献   

15.
Carbohydrate recognition is central to the biological and industrial exploitation of plant structural polysaccharides. These insoluble polymers are recalcitrant to microbial degradation, and enzymes that catalyze this process generally contain non-catalytic carbohydrate binding modules (CBMs) that potentiate activity by increasing substrate binding. Agarose, a repeat of the disaccharide 3,6-anhydro-alpha-L-galactose-(1,3)-beta-D-galactopyranose-(1,4), is the dominant matrix polysaccharide in marine algae, yet the role of CBMs in the hydrolysis of this important polymer has not previously been explored. Here we show that family 6 CBMs, present in two different beta-agarases, bind specifically to the non-reducing end of agarose chains, recognizing only the first repeat of the disaccharide. The crystal structure of one of these modules Aga16B-CBM6-2, in complex with neoagarohexaose, reveals the mechanism by which the protein displays exquisite specificity, targeting the equatorial O4 and the axial O3 of the anhydro-L-galactose. Targeting of the CBM6 to the non-reducing end of agarose chains may direct the appended catalytic modules to areas of the plant cell wall attacked by beta-agarases where the matrix polysaccharide is likely to be more amenable to further enzymic hydrolysis.  相似文献   

16.
Many carbohydrate-active enzymes have complex architectures comprising multiple modules that may be involved in catalysis, carbohydrate binding, or protein-protein interactions. Carbohydrate-binding modules (CBMs) are a common ancillary module whose function is to promote the adherence of the complete enzyme to carbohydrate substrates. CBM family 32 has been proposed to be one of the most diverse CBM families classified to date, yet all of the structurally characterized CBM32s thus far recognize galactose-based ligands. Here, we report a unique binding specificity and mode of ligand binding for a family 32 CBM. NagHCBM32-2 is one of four CBM32 modules in NagH, a family 84 glycoside hydrolase secreted by Clostridium perfringens. NagHCBM32-2 has the β-sandwich scaffold common to members of the family; however, its specificity for N-acetylglucosamine is unusual among CBMs. X-ray crystallographic analysis of the module at resolutions from 1.45 to 2.0 Å and in complex with disaccharides reveals that its mode of sugar recognition is quite different from that observed for galactose-specific CBM32s. This study continues to unravel the diversity of CBMs found in family 32 and how these CBMs might impart the carbohydrate-binding specificity to the extracellular glycoside hydrolases in C. perfringens.  相似文献   

17.
The majority of plant cell wall hydrolases are modular enzymes which, in addition to a catalytic module, possess one or more carbohydrate-binding modules (CBMs). These carbohydrate-active enzymes and their constituent modules have been classified into a number of families based upon amino acid sequence similarity. The Clostridium thermocellum xylanase, Xyn10B, contains two CBMs that belong to family 22 (CBM22). The crystal structure of the C-terminal CBM22 (CBM22-2) was determined in a previous study [Charnock, S. J., et al. (2000) Biochemistry 39, 5013--5021] and revealed a surface cleft which presents several conserved residues that are implicated in ligand binding. These amino acids have been substituted and the structure and biochemical properties of the mutants analyzed. The data show that R25A, W53A, Y103A, Y136A, and E138A exhibit greatly reduced affinity for xylotetraose relative to that of the wild-type protein. Conversely, mutations Y103F and Y136F have little effect on ligand binding. Using thermodynamic, X-ray, and NMR measurements on the mutants, we show that the cleft of CBM22-2 does indeed form the ligand-binding site. Trp 53 and Tyr 103 most likely participate in hydrophobic stacking interactions with the ligand, while Glu 138 makes one or more important hydrogen bonds with the tetrasaccharide. Although Arg 25 and Tyr 136 are likely to form hydrogen bonds with the ligand, they are also shown to play a critical role in maintaining the structural integrity of the binding cleft.  相似文献   

18.
The enzymic degradation of plant cell walls plays a central role in the carbon cycle and is of increasing environmental and industrial significance. The catalytic modules of enzymes that catalyze this process are generally appended to noncatalytic carbohydrate-binding modules (CBMs). CBMs potentiate the rate of catalysis by bringing their cognate enzymes into intimate contact with the target substrate. A powerful plant cell wall-degrading system is the Clostridium thermocellum multienzyme complex, termed the "cellulosome." Here, we identify a novel CBM (CtCBM62) within the large C. thermocellum cellulosomal protein Cthe_2193 (defined as CtXyl5A), which establishes a new CBM family. Phylogenetic analysis of CBM62 members indicates that a circular permutation occurred within the family. CtCBM62 binds to d-galactose and l-arabinopyranose in either anomeric configuration. The crystal structures of CtCBM62, in complex with oligosaccharides containing α- and β-galactose residues, show that the ligand-binding site in the β-sandwich protein is located in the loops that connect the two β-sheets. Specificity is conferred through numerous interactions with the axial O4 of the target sugars, a feature that distinguishes galactose and arabinose from the other major sugars located in plant cell walls. CtCBM62 displays tighter affinity for multivalent ligands compared with molecules containing single galactose residues, which is associated with precipitation of these complex carbohydrates. These avidity effects, which confer the targeting of polysaccharides, are mediated by calcium-dependent oligomerization of the CBM.  相似文献   

19.
In general, cellulases and hemicellulases are modular enzymes in which the catalytic domain is appended to one or more noncatalytic carbohydrate binding modules (CBMs). CBMs, by concentrating the parental enzyme at their target polysaccharide, increase the capacity of the catalytic module to bind the substrate, leading to a potentiation in catalysis. Clostridium thermocellum hypothetical protein Cthe_0821, defined here as C. thermocellum Man5A, is a modular protein comprising an N-terminal signal peptide, a family 5 glycoside hydrolase (GH5) catalytic module, a family 32 CBM (CBM32), and a C-terminal type I dockerin module. Recent proteomic studies revealed that Cthe_0821 is one of the major cellulosomal enzymes when C. thermocellum is cultured on cellulose. Here we show that the GH5 catalytic module of Cthe_0821 displays endomannanase activity. C. thermocellum Man5A hydrolyzes soluble konjac glucomannan, soluble carob galactomannan, and insoluble ivory nut mannan but does not attack the highly galactosylated mannan from guar gum, suggesting that the enzyme prefers unsubstituted β-1,4-mannoside linkages. The CBM32 of C. thermocellum Man5A displays a preference for the nonreducing ends of mannooligosaccharides, although the protein module exhibits measurable affinity for the termini of β-1,4-linked glucooligosaccharides such as cellobiose. CBM32 potentiates the activity of C. thermocellum Man5A against insoluble mannans but has no significant effect on the capacity of the enzyme to hydrolyze soluble galactomannans and glucomannans. The product profile of C. thermocellum Man5A is affected by the presence of CBM32.  相似文献   

20.
Starch-hydrolyzing enzymes lacking alpha-glucan-specific carbohydrate-binding modules (CBMs) typically have lowered activity on granular starch relative to their counterparts with CBMs. Thus, consideration of starch recognition by CBMs is a key factor in understanding granular starch hydrolysis. To this end, we have dissected the modular structure of the maltohexaose-forming amylase from Bacillus halodurans (C-125). This five-module protein comprises an N-terminal family 13 catalytic module followed in order by two modules of unknown function, a family 26 CBM (BhCBM26), and a family 25 CBM (BhCBM25). Here we present a comprehensive structure-function analysis of starch and alpha-glucooligosaccharide recognition by BhCBM25 and BhCBM26 using UV methods, isothermal titration calorimetry, and x-ray crystallography. The results reveal that the two CBMs bind alpha-glucooligosaccharides, particularly those containing alpha-1,6 linkages, with different affinities but have similar abilities to bind granular starch. Notably, these CBMs appear to recognize the same binding sites in granular starch. The enhanced affinity of the tandem CBMs for granular starch is suggested to be the main biological advantage for this enzyme to contain two CBMs. Structural studies of the native and ligand-bound forms of BhCBM25 and BhCBM26 show a structurally conserved mode of ligand recognition but through non-sequence-conserved residues. Comparison of these CBM structures with other starch-specific CBM structures reveals a generally conserved mode of starch recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号