首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nonstructural protein 3 (NS3) helicase/protease is an important component of the hepatitis C virus (HCV) replication complex. We hypothesized that a specific β-strand tethers the C terminus of the helicase domain to the protease domain, thereby maintaining HCV NS3 in a compact conformation that differs from the extended conformations observed for other Flaviviridae NS3 enzymes. To test this hypothesis, we removed the β-strand and explored the structural and functional attributes of the truncated NS3 protein (NS3ΔC7). Limited proteolysis, hydrodynamic, and kinetic measurements indicate that NS3ΔC7 adopts an extended conformation that contrasts with the compact form of the wild-type (WT) protein. The extended conformation of NS3ΔC7 allows the protein to quickly form functional complexes with RNA unwinding substrates. We also show that the unwinding activity of NS3ΔC7 is independent of the substrate 3'-overhang length, implying that a monomeric form of the protein promotes efficient unwinding. Our findings indicate that an open, extended conformation of NS3 is required for helicase activity and represents the biologically relevant conformation of the protein during viral replication.  相似文献   

2.
C L Tai  W K Chi  D S Chen    L H Hwang 《Journal of virology》1996,70(12):8477-8484
To assess the RNA helicase activity of hepatitis C virus (HCV) nonstructural protein 3 (NS3), a polypeptide encompassing amino acids 1175 to 1657, which cover only the putative helicase domain, was expressed in Escherichia coli by a pET expression vector. The protein was purified to near homogeneity and assayed for RNA helicase activity in vitro with double-stranded RNA substrates prepared from a multiple cloning sequence and an HCV 5' nontranslated region (5'-NTR) or 3'-NTR. The enzyme acted successfully on substrates containing both 5' and 3' single-stranded regions (standard) or on substrates containing only the 3' single-stranded regions (3'/3') but failed to act on substrates containing only the 5' single-stranded regions (5'/5') or on substrates lacking the single-stranded regions (blunt). These results thus suggest 3' to 5' directionality for HCV RNA helicase activity. However, a 5'/5' substrate derived from the HCV 5'-NTR was also partially unwound by the enzyme, possibly because of unique properties inherent in the 5' single-stranded regions. Gel mobility shift analyses demonstrated that the HCV NS3 helicase could bind to either 5'- or 3'-tailed substrates but not to substrates lacking a single-stranded region, indicating that the polarity of the RNA strand to which the helicase bound was a more important enzymatic activity determinant. In addition to double-stranded RNA substrates, HCV NS3 helicase activity could displace both RNA and DNA oligonucleotides on a DNA template, suggesting that HCV NS3 too was disposed to DNA helicase activity. This study also demonstrated that RNA helicase activity was dramatically inhibited by the single-stranded polynucleotides. Taken altogether, our results indicate that the HCV NS3 helicase is unique among the RNA helicases characterized so far.  相似文献   

3.
Helicase motif VI is a short arginine-rich motif within the NTPase/helicase domain of the non-structural protein 3 (NS3) of the hepatitis C virus (HCV). We previously demonstrated that it reduces the catalytic activity and intracellular shuttling of protein kinase C (PKC). Thus, NS3-mediated PKC inhibition may be involved in HCV-associated hepatocellular carcinoma (HCC). In this study, we expand on our earlier results, which were obtained in experiments with short fragments of NS3, to show for the first time that the catalytically active, longer C-terminal NTPase/helicase of NS3 acts as a potent PKC inhibitor in vitro. PKC inhibition assays with the NTPase-inactive mutant NS3h-D1316A revealed a mixed type kinetic inhibition pattern. A broad range of 11 PKC isotypes was tested and all of the PKC isotypes were inhibited with IC50-values in the low micromolar range. These findings were confirmed for the wild-type NTPase/helicase domain in a non-radiometric PKC inhibition assay with ATP regeneration to rule out any effect of ATP hydrolysis caused by its NTPase activity. PKCα was inhibited with a micromolar IC50 in this assay, which compares well with our result for NS3h-D1316A (IC50 = 0.7 μM). In summary, these results confirm that catalytically active NS3 NTPase/helicase can act in an analogous manner to shorter NS3 fragments as a pseudosubstrate inhibitor of PKC.  相似文献   

4.
Zhang C  Cai Z  Kim YC  Kumar R  Yuan F  Shi PY  Kao C  Luo G 《Journal of virology》2005,79(14):8687-8697
Hepatitis C virus (HCV) nonstructural protein 3 (NS3) possesses multiple enzyme activities. The N-terminal one-third of NS3 primarily functions as a serine protease, while the remaining two-thirds of NS3 serve as a helicase and nucleoside triphosphatase. Whether the multiple enzyme activities of NS3 are functionally interdependent and/or modulated by other viral NS proteins remains unclear. We performed biochemical studies to examine the functional interdependence of the NS3 protease and helicase domains and the modulation of NS3 helicase by NS5B, an RNA-dependent RNA polymerase (RdRp). We found that the NS3 protease domain of the full-length NS3 (NS3FL) enhances the NS3 helicase activity. Additionally, HCV RdRp stimulates the NS3FL helicase activity by more than sevenfold. However, the helicase activity of the NS3 helicase domain was unaffected by HCV RdRp. Glutathione S-transferase pull-down as well as fluorescence anisotropy results revealed that the NS3 protease domain is required for specific NS3 and NS5B interaction. These findings suggest that HCV RdRp regulates the functions of NS3 during HCV replication. In contrast, NS3FL does not increase NS5B RdRp activity in vitro, which is contrary to a previously published report that the HCV NS3 enhances NS5B RdRp activity.  相似文献   

5.
Nonstructural protein 3 (NS3) from hepatitis C virus (HCV) is a serine protease that provides an essential function in maturation of the virus by cleaving the nonstructural regions of the viral polyprotein. The goal of this work was to isolate RNA aptamers that bind specifically to the NS3 protease active site in the truncated polypeptide DeltaNS3. RNA aptamers were selected in vitro by systematic evolution of ligands by exponential enrichment (SELEX). The RNA pool for SELEX had a 30-nucleotide randomized core region. After nine selection cycles, a pool of DeltaNS3-specific RNA aptamers were obtained. This RNA pool included 45 clones that divided into three main classes (G9-I, II and III). These classes include the conserved sequence GA(A/U)UGGGAC. These aptamers bind to DeltaNS3 with a binding constant of about 10 nM and inhibit approximately 90% of the protease activity of DeltaNS3 and MBP-NS3 (full-length of NS3 fused with maltose binding protein). In addition, these aptamers inhibited approximately 70% of the MBP-NS3 protease activity in the presence of the NS4A peptide P41. G9-I aptamer appeared to be a noncompetitive inhibitor for DeltaNS3 with a Ki approximately 100 nM in the presence of P41. These results suggest that the pool of selected aptamers have potential as anti-HCV compounds. Mutational analysis of the G9-I aptamer demonstrated that the sequences required for protease inhibition are in stem I, stem III and loop III of the aptamer. These regions include the conserved sequence GA(A/U)UGGGAC.  相似文献   

6.
The hepatitis C virus non-structural protein 3 (HCV NS3) possesses both protease and helicase activities that are essential for viral replication. In a previous study, we obtained RNA aptamers that specifically and efficiently inhibited NS3 protease activity (G9 aptamers). In order to add helicase-inhibition capability, we attached (U)14 to the 3'-terminal end of a minimized G9 aptamer, DeltaNEO-III. NEO-III-14U was shown to inhibit the NS3 protease activity more efficiently than the original aptamer and, furthermore, to efficiently inhibit the unwinding reaction by NS3 helicase. In addition, NEO-III-14U has the potential to diminish specific interactions between NS3 and the 3'-UTR of HCV-positive and -negative strands. NEO-III-14U showed effective inhibition against NS3 protease in living cells.  相似文献   

7.
Structure activity relationships (SARs) of product-based inhibitors of hepatitis C virus NS3 protease were evaluated using an in vitro assay system comprising the native bifunctional full-length NS3 (protease-helicase/NTPase). The results were compared to previously reported data derived from the corresponding NS3 protease domain assay. Shortening the length of the protease inhibitors from hexapeptides to tripeptides revealed that the decrease in potency was much less when determined in the assay system with the full-length NS3 protein. Disagreements in SARs at different positions (P5 P2) were also discovered. Taken together, the results suggest that the impact of the helicase domain upon protease inhibitor binding is substantial.  相似文献   

8.
Picornavirus 3C proteases (3Cpro) are cysteine proteases related by amino acid sequence to trypsin-like serine proteases. Comparisons of 3Cpro of hepatitis A virus (HAV) to those of other picornaviruses have resulted in prediction of active-site residues: histidine at position 44 (H44), aspartic acid (D98), and cysteine (C172). To test whether these residues are key members of a putative catalytic triad, oligonucleotide-directed mutagenesis was targeted to 3Cpro in the context of natural polypeptide precursor P3. Autocatalytic processing of the polyprotein containing wild-type or variant 3Cpro was tested by in vivo expression of vaccinia virus-HAV chimeras in an animal cell-T7 hybrid system and by in vitro translation of corresponding RNAs. Comparison with proteins present in HAV-infected cells showed that both expression systems mimicked authentic polyprotein processing. Individual substitutions of H44 by tyrosine and of C172 by glycine or serine resulted in complete loss of the virus-specific proteolytic cascade. In contrast, a P3 polyprotein in which D98 was substituted by asparagine underwent only slightly delayed processing, while an additional substitution of valine (V47) by glycine within putative protein 3A caused a more pronounced loss of processing. Therefore, apparently H44 and C172 are active-site constituents whereas D98 is not. The results, furthermore, suggest that substitution of amino acid residues distant from polyprotein cleavage sites may reduce proteolytic activity, presumably by altering substrate conformation.  相似文献   

9.
10.
Gwack Y  Yoo H  Song I  Choe J  Han JH 《Journal of virology》1999,73(4):2909-2915
Hepatitis G virus (HGV) nonstructural protein 3 (NS3) contains amino acid sequence motifs typical of ATPase and RNA helicase proteins. In order to examine the RNA helicase activity of the HGV NS3 protein, the NS3 region (amino acids 904 to 1580) was fused with maltose-binding protein (MBP), and the fusion protein was expressed in Escherichia coli and purified with amylose resin and anion-exchange chromatography. The purified MBP-HGV/NS3 protein possessed RNA-stimulated ATPase and RNA helicase activities. Characterization of the ATPase and RNA helicase activities of MBP-HGV/NS3 showed that the optimal reaction conditions were similar to those of other Flaviviridae viral NS3 proteins. However, the kinetic analysis of NTPase activity showed that the MBP-HGV/NS3 protein had several unique properties compared to the other Flaviviridae NS3 proteins. The HGV NS3 helicase unwinds RNA-RNA duplexes in a 3'-to-5' direction and can unwind RNA-DNA heteroduplexes and DNA-DNA duplexes as well. In a gel retardation assay, the MBP-HGV/NS3 helicase bound to RNA, RNA/DNA, and DNA duplexes with 5' and 3' overhangs but not to blunt-ended RNA duplexes. We also found that the conserved motif VI was important for RNA binding. Further deletion mapping showed that the RNA binding domain was located between residues 1383 and 1395, QRRGRTGRGRSGR. Our data showed that the MBP-HCV/NS3 protein also contains the RNA binding domain in the similar domain.  相似文献   

11.
The hepatitis C virus (HCV) nonstructural protein 3 (NS3) with its cofactor NS4A is a pivotal enzyme for the replication of HCV. Inhibition of NS3-4A protease activity has been validated as an antiviral target in clinical studies of inhibitors of the enzyme. We have developed a sensitive time-resolved fluorescence (TRF) assay capable of detecting very low NS3-4A concentrations. A depsipeptide substrate is used that contains a europium-cryptate moiety and an efficient quenching group, QSY-7. The TRF assay is at least 30-fold more sensitive than a fluorescence energy transfer (FRET) assay and allows evaluation of NS3 protease inhibitors in reactions catalyzed by low enzyme concentrations (30 pM). Use of low enzyme concentrations allows for accurate measurement of inhibition by compounds with subnanomolar inhibition constants. The inhibitory potency of the potent protease inhibitor, BILN-2061, is significantly greater than previously reported. The ability to accurately determine inhibitory potency in reactions with low picomolar concentrations of NS3-4A is crucially important to allow valid comparisons between potent inhibitors. Studies of the interaction of NS3 with its NS4A cofactor at low enzyme concentration also reveal that the protease activity is salt dependent. This salt dependence of the enzyme activity is not present when high enzyme concentrations are used in the FRET assay.  相似文献   

12.
The IFN-induced double-stranded RNA (dsRNA)-activated protein kinase PKR is one of the key molecules in the antiviral effects of IFN. To clarify the effects of hepatitis C virus nonstructural protein 5A (NS5A) on antiviral activity of IFN, in particular on PKR kinase activity, in mammalian cells, we established inducible NS5A-expressing cell lines derived from human osteosarcoma (Saos-2). The cells expressing NS5A derived from an IFN-resistant clone (NS5A-lb) that interacted with endogenous PKR in vitro, showed a suppressive effect on IFN function as determined by interference with vesicular stomatitis virus (VSV) infection, whereas NS5A (NS5A-2a) from an IFN-sensitive clone did not block the antiviral effect of IFN. A mutant with deletion of the IFN sensitivity determining region (ISDR) in NS5A-1b (NS5A-AISDR) also interacted with PKR and suppressed its activity in vitro. However, neither NS5A-2a nor the C-terminal truncated mutant of NS5A-1b (NS5A-deltaC) blocked PKR activity. These observations confirmed the previous report that the inhibitory effect of NS5A on IFN activity is mediated at least in part by the repression of PKR. In addition, we showed that IFN sensitivity was determined not only by the ISDR but that the involvement of the C-terminal region of NS5A-1b is important for the suppression of PKR activity.  相似文献   

13.
Hepatitis C virus (HCV) nonstructural 3 (NS3) serine protease disrupts important cellular antiviral signaling pathways and plays a pivotal role in the proteolytic maturation of the HCV polyprotein precursor. This recent discovery has fostered the search for NS3 protease inhibitors. However, the enzyme's unusual induced fit behavior and peculiar molecular architecture have imposed considerable obstacles to the development of small molecule inhibitors. In this article, we demonstrate that such unique induced fit behavior and the chymotrypsin-like catalytic domain can provide the structural plasticity necessary to generate protein-based inhibitors of the NS3 protease. We took advantage of the macromolecular scaffold of a Drosophila serpin, SP6, which intrinsically supports chymotrypsin-like enzyme inhibition, to design a novel class of potent and selective inhibitors. We show that altering the SP6 reactive site loop (RSL) resulted in the development of the first effective (K(i) of 34 nm) and selective serpin, SP6(EVC/S), directed at the NS3 protease. SP6(EVC/S) operates as a suicide substrate inhibitor, and its partitioning between the complex-forming and proteolytic pathways for the NS3 protease is HCV NS4A cofactor-dependent and -specific. Once bound to the protease active site, SP6(EVC/S) partitions with equal probability to undergo proteolysis by NS3 at the C-terminal site of the engineered RSL, (P(6))Glu-Ile-(P(4))Val-Met-Thr-(P(1))Cys- downward arrow -(P(1)')Ser, or to form a covalent acyl-enzyme complex characteristic of cognate protease-serpin pairs. Our results also reveal a novel cofactor-induced serpin mechanism of enzyme inhibition that could be explored for developing effective and selective inhibitors of other important induced fit viral proteases of the Flaviviridae family such as the West Nile virus NS3 endoprotease.  相似文献   

14.
GB virus B (GBV-B) is closely related to hepatitis C virus (HCV) and causes acute hepatitis in tamarins (Saguinus species), making it an attractive surrogate virus for in vivo testing of anti-HCV inhibitors in a small monkey model. It has been reported that the nonstructural protein 3 (NS3) serine protease of GBV-B shares similar substrate specificity with its counterpart in HCV. Authentic proteolytic processing of the HCV polyprotein junctions (NS4A/4B, NS4B/5A, and NS5A/5B) can be accomplished by the GBV-B NS3 protease in an HCV NS4A cofactor-independent fashion. We further characterized the protease activity of a full-length GBV-B NS3 protein and its cofactor requirement using in vitro-translated GBV-B substrates. Cleavages at the NS4A/4B and NS5A/5B junctions were readily detectable only in the presence of a cofactor peptide derived from the central region of GBV-B NS4A. Interestingly, the GBV-B substrates could also be cleaved by the HCV NS3 protease in an HCV NS4A cofactor-dependent manner, supporting the notion that HCV and GBV-B share similar NS3 protease specificity while retaining a virus-specific cofactor requirement. This finding of a strict virus-specific cofactor requirement is consistent with the lack of sequence homology in the NS4A cofactor regions of HCV and GBV-B. The minimum cofactor region that supported GBV-B protease activity was mapped to a central region of GBV-B NS4A (between amino acids Phe22 and Val36) which overlapped with the cofactor region of HCV. Alanine substitution analysis demonstrated that two amino acids, Val27 and Trp31, were essential for the cofactor activity, a finding reminiscent of the two critical residues in the HCV NS4A cofactor, Ile25 and Ile29. A model for the GBV-B NS3 protease domain and NS4A cofactor complex revealed that GBV-B might have developed a similar structural strategy in the activation and regulation of its NS3 protease activity. Finally, a chimeric HCV/GBV-B bifunctional NS3, consisting of an N-terminal HCV protease domain and a C-terminal GBV-B RNA helicase domain, was engineered. Both enzymatic activities were retained by the chimeric protein, which could lead to the development of a chimeric GBV-B virus that depends on HCV protease function.  相似文献   

15.
The nonstructural 3 (NS3) protein encoded by the hepatitis C virus possesses both an N-terminal serine protease activity and a C-terminal 3'-5' helicase activity. This study examines the effects of the protease on the helicase by comparing the enzymatic properties of the full-length NS3 protein with truncated versions in which the protease is either deleted or replaced by a polyhistidine (His tag) or a glutathione S-transferase fusion protein (GST tag). When the NS3 protein lacks the protease domain it unwinds RNA more slowly and does not unwind RNA in the presence of excess nucleic acid that acts as an enzyme trap. Some but not all of the RNA helicase activity can be restored by adding a His tag or GST tag to the N terminus of the truncated helicase, suggesting that the effects of the protease are both specific and nonspecific. Similar but smaller effects are also seen in DNA helicase and translocation assays. While translocating on RNA (or DNA) the full-length protein hydrolyzes ATP more slowly than the truncated protein, suggesting that the protease allows for more efficient ATP usage. Binding assays reveal that the full-length protein assembles on single-stranded DNA as a higher order oligomer than the truncated fragment, and the binding appears to be more cooperative. The data suggest that hepatitis C virus RNA helicase, and therefore viral replication, could be influenced by the rotations of the protease domain which likely occur during polyprotein processing.  相似文献   

16.
The nonstructural protein 3 (NS3) of hepatitis C virus (HCV) inhibits the nuclear transport and the enzymatic activity of the catalytic subunit of protein kinase A. This inhibition is mediated by an arginine-rich domain localized between amino acids 1487-1500 of the HCV polyprotein. The data presented here indicate that the arginine-rich domain, when embedded in recombinant fragments of NS3, interacts with the catalytic site of protein kinase C (PKC) and inhibits the phosphorylation mediated by this enzyme in vitro and in vivo. Furthermore, a direct binding of PKC to the NS3 fragments leads to an inhibition of the free shuttling of the kinase between the cytoplasm and the particulate fraction. In contrast, a peptide corresponding to the arginine-rich domain (HCV (1487-1500)), despite also being a PKC inhibitor, did not influence the PKC shuttling process and was transported to the particulate fraction by the translocating kinase upon activation with tetradecanoylphorbol-13-acetate. Using the tetradecanoylphorbol-13-acetate -stimulated respiratory burst of NS3-introduced neutrophils as a model system, we could demonstrate that NS3 is able to block PKC-mediated functions within intact cells. Our data support the possibility that NS3 disrupts the PKC-mediated signal transduction.  相似文献   

17.
Hepatitis C virus nonstructural protein, NS5A, is a phosphoprotein produced from the processing of the viral polyprotein precursor. NS5A associates with several cellular proteins in mammalian cells, and the biological consequences of this interaction are currently unknown. To this end, five stable NS5A-expressing murine and human cell lines were established. Tetracycline-regulated NIH3T3 cells and rat liver epithelial cells as well as the constitutive, NS5A-expressing, human Chang liver, HeLa, and NIH3T3 cells all exhibited cell growth retardation compared with the control cells. Cell cycle analysis by flow cytometry indicated that the NS5A-expressing human epitheloid tumor cells had a reduced S phase and an increase in the G(2)/M phase, which could be explained by a p53-dependent induction of p21(Waf1/Cip1) protein and mRNA levels. NS5A interacts with Cdk1 in vivo and in vitro, and a significant portion of the p21(Waf1/Cip1) was found to be in a complex with Cdk2 in the NS5A-expressing human hepatic cell line. Cdk1 and cyclin B1 proteins were also reduced in human Chang liver cells consistent with the increase in G(2)/M phase. Our results suggest that the NS5A protein causes growth inhibition and cell cycle perturbations by targeting the Cdk1/2-cyclin complexes.  相似文献   

18.
Molecular Biology Reports - The hepatitis C virus (HCV) is a major cause of illness around the world. HCV genotype 3a is the most prevalent genotype in Thailand. Direct-acting antiviral (DAA) drugs...  相似文献   

19.
RNA-remodeling proteins, including RNA helicases and chaperones, play vital roles in the remodeling of structured RNAs. During viral replication, viruses require RNA-remodeling proteins to facilitate proper folding and/or re-folding the viral RNA elements. Coxsackieviruses B3 (CVB3) and Coxsackieviruses B5 (CVB5), belonging to the genus Enterovirus in the family Picornaviridae, have been reported to cause various infectious diseases such as hand-foot-and-mouth disease, aseptic meningitis, and viral myocarditis. However, little is known about whether CVB3 and CVB5 encode any RNA remodeling proteins. In this study, we showed that 2C proteins of CVB3 and CVB5 contained the conserved SF3 helicase A, B, and C motifs, and functioned not only as RNA helicase that unwound RNA helix bidirectionally in an NTP-dependent manner, but also as RNA chaperone that remodeled structured RNAs and facilitated RNA strand annealing independently of NTP. In addition, we determined that the NTPase activity and RNA helicase activity of 2C proteins of CVB3 and CVB5 were dependent on the presence of divalent metallic ions. Our findings demonstrate that 2C proteins of CVBs possess RNA-remodeling activity and underline the functional importance of 2C protein in the life cycle of CVBs.  相似文献   

20.
We determined the partial amino (N)-terminal amino acid sequence of hepatitis C virus p21 (nonstructural protein 2 [NS2]). Cleavage at the p21 (NS2) N terminus depended on the presence of microsomal membranes. The amino-terminal position of p21 (NS2) was assigned to amino acid 810 of the hepatitis C virus strain IIJ precursor polyprotein. Mutation of the alanine residue at position P1 of the putative cleavage site inhibited membrane-dependent processing. This alteration in processing together with the fact that hydrophobic amino acid residues are clustered upstream of the putative cleavage site suggested the involvement of a signal peptidase(s) in the cleavage. Furthermore, mutation analysis of this possible cleavage site revealed the presence of another microsome membrane-dependent cleavage site upstream of the N terminus of p21 (NS2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号