首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Site-specific structural characterization of the glycosylation of human lecithin:cholesterol acyltransferase (LCAT) was carried out using microbore reversed-phase high performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC/ESIMS). A recently described mass spectrometric technique involving monitoring of carbohydrate-specific fragment ions during HPLC/ESIMS was employed to locate eight different groups of glycopeptides in a digest of a human LCAT protein preparation. In addition to the four expected N-linked glycopeptides of LCAT, a di-O-linked glycopeptide was detected, as well as three additional glycopeptides. Structural information on the oligosaccharides from all eight glycopeptides was obtained by sequential glycosidase digestion of the glycopeptides followed by HPLC/ESIMS. All four potential N-linked glycosylation sites (Asn20, Asn84, Asn272, and Asn384) of LCAT were determined to contain sialylated triantennary and/or biantennary complex structures. Two unanticipated O-linked glycosylation sites were identified at Thr407 and Ser409 of the LCAT O-linked glycopeptide, each of which contain sialylated galactose beta 1-->3N-acetylgalactosamine structures. The three additional glycopeptides were determined to be from a copurifying protein, apolipoprotein D, which contains potential N-linked glycosylation sites at Asn45 and Asn78. These glycopeptides were determined to bear sialylated triantennary oligosaccharides or fucosylated sialylated biantennary oligosaccharides. Previous studies of LCAT indicated that removal of the glycosylation site at Asn272 converts this protein to a phospholipase (Francone OL, Evangelista L, Fielding CJ, 1993, Biochim Biophys Acta 1166:301-304). Our results indicate that the carbohydrate structures themselves are not the source of this functional discrimination; rather, it must be mediated by the structural environment around Asn272.  相似文献   

2.
O-Glycosylation of three consecutive Thr residues in a fluorescein-conjugated peptide PTTTPLK - which mimics a portion of mucin 2 - by four isozymes of UDP-N-acetylgalactosaminyltransferases (pp-GalNAc-T1, T2, T3, or T4) was investigated. Partially glycosylated versions of this peptide, PT*TTPLK, PTTT*PLK, PT*TT*PLK, PTT*T*PLK, PT* degrees TTPLK, and PTTT* degrees PLK (*, N-acetylgalactosamine; degrees, galactose), were also tested. The products were separated by RP-HPLC and characterized by MALDI-TOF MS and peptide sequencing. The first and the third Thr residues act as the peptide's initial glycosylation sites for pp-GalNAc-T4, which were different from the sites for pp-GalNAc-T1 and T2 (the first Thr residue) or T3 (the third Thr residue) shown in our previous report. All pp-GalNAc-T isozymes tested exhibited distinct specificities toward glycopeptides. The most notable findings were: (a) prior incorporation of an N-acetylgalactosamine residue at the third Thr greatly enhanced N-acetylgalactosamine incorporation into the other Thr residues when pp-GalNAc-T2, T3, or T4 were used; (b) the enhancing effect of the N-acetylgalactosamine residue on the third Thr was completely abrogated by galactosylation of this N-acetylgalactosamine; (c) prior incorporation of an N-acetylgalactosamine at the first Thr did not have any enhancing effect; (d) pp-GalNAc-T2 was unique as it transferred N-acetylgalactosamine into the second Thr residue only when N-acetylgalactosamine was attached to the third one.  相似文献   

3.
The glycosylation abilities of snails deserve attention, because snail species serve as intermediate hosts in the developmental cycles of some human and cattle parasites. In analogy to many other host-pathogen relations, the glycosylation of snail proteins may likewise contribute to these host-parasite interactions. Here we present an overview on the O-glycan structures of 8 different snails (land and water snails, with or without shell): Arion lusitanicus, Achatina fulica, Biomphalaria glabrata, Cepaea hortensis, Clea helena, Helix pomatia, Limax maximus and Planorbarius corneus. The O-glycans were released from the purified snail proteins by β-elimination. Further analysis was carried out by liquid chromatography coupled to electrospray ionization mass spectrometry and - for the main structures - by gas chromatography/mass spectrometry. Snail O-glycans are built from the four monosaccharide constituents: N-acetylgalactosamine, galactose, mannose and fucose. An additional modification is a methylation of the hexoses. The common trisaccharide core structure was determined in Arion lusitanicus to be N-acetylgalactosamine linked to the protein elongated by two 4-O-methylated galactose residues. Further elongations by methylated and unmethylated galactose and mannose residues and/or fucose are present. The typical snail O-glycan structures are different to those so far described. Similar to snail N-glycan structures they display methylated hexose residues.  相似文献   

4.
Characterization of mucins in the alimentary tract of the grass snake, Natrix natrix was performed by histochemical (PAS, Alcian Blue, pH 2.5 and pH 1.0, sialidase-Alcian Blue, pH 2.5, HID-AB pH 2.5) and lectin-histochemical (WGA, SWGA, PNA, sialidase-PNA, SBA, sialidase-SBA, DBA, sialidase-DBA, ConA, BSI-B4, AAA, UEA-1, LTA) techniques. Oesophageal lining epithelium consisted of ciliated and goblet cells, with no pluricellular glands. Mannosylated sialosulfomucins were observed. Fundic mucosa of stomach presented surface cells producing sialomucins with terminal sialic acid linked to galactose. In gastric glands neck and oxynticopeptic cells were found. Neck cells had sialomucins with mannose, N-acetylglucosamine, galactose, N-acetylgalactosamine and fucose-α-(1,2)-linked residues. Cytoplasm of oxynticopeptic cells showed N-acetylgalactosamine and fucose residues. Secretion of surface cells in pyloric mucosa was similar to that of fundic ones, differing in having fucose. Goblet cells in the small intestine of N. natrix produced sulfo- and sialomucins, with sialic acid linked to galactose and N-acetylgalactosamine residues. Mucins also presented residues of mannose. Goblet cells in the large intestine presented sulfomucins only, with terminal N-acetylgalactosamine, galactose and N-acetylglucosamine. The glycosylation patterns found are probably related to protection against injuries, gastric juice and microorganisms, both pathogenic and decomposers, as well as to dietary adaptations.  相似文献   

5.
The asparagine-linked carbohydrate structures at each of the three glycosylation sites of human thyrotrophin were investigated by 400 MHz 1H-NMR spectroscopy. Highly purified, biologically active human thyrotrophin (hTSH) was dissociated into its subunits hTSH alpha (glycosylated at Asn 52 and Asn 78) and hTSH beta (glycosylated at Asn 23). The alpha-subunit was further treated with trypsin which gave two glycopeptides that were subsequently separated by reverse-phase HPLC and identified by amino acid sequence analysis. The oligosaccharides were liberated from hTSH alpha glycopeptides and from intact hTSH beta by hydrazinolysis, and were fractionated as alditols by anion-exchange and ion-suppression amine-adsorption HPLC preparatory to structural analysis. The N-glycans present on hTSH were mainly diantennary complex-type structures with a common Man alpha 1-3 branch that terminated with 4-O-sulphated GalNAc. The Man alpha 1-6 branch displayed structural heterogeneity in the terminal sequence, with chiefly alpha 2-3-sialylated Gal and/or 4-O-sulphated GalNAc. The relative amounts of the two major complete diantennary oligosaccharides and their core fucosylation differed according to glycosylation site; the sulphated/sialylated diantennary oligosaccharide was most abundant at the two sites on the alpha-subunit, whereas the disulphated, core-fucosylated oligosaccharide was more plentiful on the beta-subunit. Some interesting structural features, not previously reported for the N-glycans of hTSH, included 3-O-sulphated galactose (SO4-3Gal) and peripheral fucose (Fuc alpha 1-3GlcNAc) in the Man alpha 1-6 branch of some diantennary structures; the former suggests the presence of a hitherto uncharacterized galactose-3-O-sulphotransferase in thyrotroph cells of the human anterior pituitary gland.  相似文献   

6.
The N-glycosylation sites of human Tamm-Horsfall glycoprotein from one healthy male donor have been characterized, based on an approach using endoproteinase Glu-C (V-8 protease, Staphylococcus aureus ) digestion and a combination of chromatographic techniques, automated Edman sequencing, and fast atom bombardment mass spectrometry. Seven out of the eight potential N-glycosylation sites, namely, Asn52, Asn56, Asn208, Asn251, Asn298, Asn372, and Asn489, turned out to be glycosylated, and the potential glycosylation site at Asn14, being close to the N-terminus, is not used. The carbohydrate microheterogeneity on three of the glycosylation sites was studied in more detail by high-pH anion-exchange chromatographic profiling and 500 MHz1H-NMR spectroscopy. Glycosylation site Asn489 contains mainly di- and tri-charged oligosaccharides which comprise, among others, the GalNAc4 S (beta1-4)GlcNAc terminal sequence. Only glycosylation site Asn251 bears oligomannose-type carbohydrate chains ranging from Man5GlcNAc2to Man8GlcNAc2, in addition to a small amount of complex- type structures. Profiling of the carbohydrate moieties of Asn208 indicates a large heterogeneity, similar to that established for native human Tamm-Horsfall glycoprotein, namely, multiply charged complex-type carbohydrate structures, terminated by sulfate groups, sialic acid residues, and/or the Sda-determinant.   相似文献   

7.
This report describes the N-glycosylation site mapping of human serotransferrin (h-STF). Reduced and S-carboxymethylated h-STF was digested with trypsin or chymotrypsin. Glycopeptides in the proteolytic digests were isolated by serial concanavalin A (Con A), Sambucus nigra agglutinin (SNA), and Phaseolus vulgaris leukoagglutinin (LPHA) affinity chromatography and subjected to preliminary analysis by 1H NMR spectroscopy. The glycopeptide fractions were then individually digested with N-glycanase. One part of the digest of each fraction was analyzed by fast atom bombardment-mass spectrometry (FAB-MS) to identify the peptide sequences of the glycosylation sites. The other part was used to isolate the oligosaccharide by the corresponding lectin affinity chromatography and to characterize the structures of the isolated oligosaccharides by 1H NMR spectroscopy and FAB-MS. The oligosaccharides in the Con A-bound fraction were shown to have bi-alpha(2-->6)-sialyl, diantennary structures. The SNA-bound fraction was shown to contain trisialyl, triantennary structures. Di- and triantennary oligosaccharides were found to occur on each of the two N-glycosylation sites of h-STF (Asn413 and Asn611) in the ratio of approximately 85:15. The SNA-bound glycopeptides were further fractionated by LPHA affinity chromatography. Two different oligosaccharides were characterized, namely, a trisialyl 2,4-triantennary and a trisialyl 2,6-triantennary glycan. The ratio of 2,4-triantennary vs 2,6-triantennary oligosaccharides attached to glycosylation site Asn413 was found to be approximately 5:1, whereas the two isomeric triantennary oligosaccharides were found to be attached to glycosylation site Asn611 in the ratio approximately 1:1.  相似文献   

8.
The N-glycosylation pattern of the neural cell adhesion molecule (NCAM), isolated from brains of newborn mice, has been analyzed. Following digestion with trypsin, generated glycopeptides were fractionated by serial immunoaffinity chromatography using immobilized monoclonal antibodies specifically recognizing polysialic acid (PSA) units or the HNK1-carbohydrate epitope. Subsequent analyses of the resulting (glyco)peptides by Edman degradation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) revealed polysialylated glycans to be exclusively linked to glycosylation sites 5 (Asn(431)) and 6 (Asn(460)), whereas glycans carrying the HNK1-epitope could be assigned to sites 2 (Asn(297)), 5, 6, and, to a lesser extent, site 3 (Asn(329)). PSA-, HNK1-, and non-PSA/HNK1-glycan fractions were characterized by carbohydrate constituent and methylation analyses as well as MALDI-TOF-MS in conjunction with chromatographic fractionation techniques. The results revealed that the core structures of PSA-glycans represented predominantly fucosylated, partially sulfated 2,6-branched isomers of triantennary as well as tetraantennary complex-type glycans, whereas carbohydrate chains bearing the HNK1-epitope were dominated by diantennary species carrying in part bisecting GlcNAc residues. Non-PSA/HNK1-glycans exhibited a highly heterogeneous pattern of partially truncated, mostly diantennary structures being characterized by the presence of additional fucose, bisecting GlcNAc and/or sulfate residues. In conclusion, our results revealed that the glycosylation pattern of murine NCAM displays high structural and regional selectivity, which might play an important role in controlling the biological activities of this molecule.  相似文献   

9.
Phaseolin, the major storage protein of the common bean (Phaseolus vulgaris), is a glycoprotein which is synthesized during seed development and accumulates in protein storage vacuoles or protein bodies. The protein has three different N-linked oligosaccharide side chains: Man9(GlcNAc)2, Man7(GlcNAc)2, and Xyl-Man3(GlcNAc)2 (where Xyl represents xylose). The structures of these glycans were determined by 1H NMR spectroscopy. The Man9(GlcNAc)2 glycan has the typical structure found in plant and animal glycoproteins. The structures of the two other glycans are shown below. (Formula; see text) Phaseolin was separated by electrophoresis on denaturing gels into four size classes of polypeptides. The two abundant ones have two oligosaccharides each, whereas the less abundant ones have only one oligosaccharide each. Polypeptides with two glycans have Man7(GlcNAc)2 attached to Asn252 and Man9(GlcNAc)2 attached to Asn341. Polypeptides with only one glycan have Xyl-Man3(GlcNAc)2 attached to Asn252. Both these asparagine residues are in canonical glycosylation sites; the numbering starts with the N-terminal methionine of the signal peptide of phaseolin. The presence of the Man7(GlcNAc)2 and of Xyl-Man3(GlcNAc)2 at the same asparagine residue (position 252) of different polypeptides seems to be controlled by the glycosylation status of Asn341. When Asp341 is unoccupied, the glycan at Asn252 is complex. When Asn341 is occupied, the glycan at Asn252 is only modified to the extent that 2 mannosyl residues are removed. The processing of the glycans, after the removal of the glucose residues, involves enzymes in the Golgi apparatus as well as in the protein bodies. Formation of the Xyl-Man3(GlcNAc)2 glycan is a multistep process that involves the Golgi apparatus-mediated removal of 6 mannose residues and the addition of 2 N-acetylglucosamine residues and 1 xylose. The terminal N-acetylglucosamine residues are later removed in the protein bodies. The conversion of Man9(GlcNAc)2 to Man7(GlcNAc)2 is a late processing event which occurs in the protein bodies. Experiments in which [3H]glucosamine-labeled phaseolin obtained from the endoplasmic reticulum (i.e. precursor phaseolin) is incubated with jack bean alpha-mannosidase show that the high mannose glycan on Asn252, but not the one on Asn341, is susceptible to enzyme degradation. Incubation of [3H] glucosamine-labeled phaseolin obtained from the Golgi apparatus with jack bean beta-N-acetylglucosaminidase results in the removal of the terminal N-acetylglucosamine residues from the complex chain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
A technique was investigated for the direct visualization on paraffin sections of galactose and N-acetylgalactosamine residues terminating saccharide chains in complex carbohydrates. Sections were incubated with the enzyme galactose oxidase (GO), which oxidizes the C-6 hydroxyl of galactose or N-acetylgalactosamine (GalNAc) residues, and the resulting aldehyde was visualized by its reaction with Schiff's reagent. Submaxillary and sublingual glands, pancreas, stomach, duodenum, and ileum from mice and rats were stained with the GO-Schiff sequence and results were compared with staining by a peanut lectin-horseradish peroxidase (PL-HRP) conjugate that binds selectively to terminal galactose and preferentially to the terminal dimer beta-D-Gal-(1 leads to 3)-D-GalNAc. Three classes of reactive sites were revealed: 1) those reactive with both GO-Schiff and PL-HRP, 2) those stained with the GO-Schiff sequence but unreactive with PL-HRP, and 3) those GO-Schiff unreactive but PL-HRP positive. Based on the carbohydrate binding specificity of GO and PL, it is suggested that tissue complex carbohydrates in group one contain terminal beta-galactose residues with unmodified hydroxyls at C-2, C-4, and C-6, whereas those in group two contain terminal GalNAc residues. The structure of oligosaccharides in group 3 sites remains enigmatic.  相似文献   

11.
Recombinant human uterine tissue plasminogen activator (tPA), in part metabolically labeled with [6-3H]glucosamine or [35S]sulfate, was isolated from mouse epithelial cells (C127). Oligosaccharides present were liberated by treatment of tryptic glycopeptides with endo-beta-N-acetylglucosaminidase H or peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F and fractionated by high-performance liquid chromatography. The glycans were characterized by digestion with exoglycosidases, methylation analysis and, in part, by acetolysis and 1H-NMR spectroscopy. Glycopeptides comprising individual glycosylation sites were identified by N-terminal amino acid sequencing. The results demonstrate that recombinant tPA from C127 cells carries at Asn117 oligomannosidic glycans with 5-8 mannose residues as well as small amounts of hybrid-type species. Asn184 is only partially glycosylated and substituted by fucosylated triantennary and small amounts of diantennary N-acetyllactosaminic glycans. Likewise, Asn448 carries predominantly fucosylated triantennary species, in addition to, small amounts of diantennary and tetraantennary oligosaccharides. As a characteristic feature, part of the triantennary glycans at Asn184 and Asn448 contain additional Gal(alpha 1-3) substituents and/or sulfate groups linked to position six of beta-galactosyl residues forming NeuAc(alpha 2-3)[HO3S-6]Gal(beta 1-4) units. Oligosaccharides attached to Asn448 are almost completely substituted by (alpha 2-3)- or (alpha 2-6)-linked sialic acid residues and carry the majority of sulfate groups present. Glycans at Asn184 were found to be less sialylated and sulfated.  相似文献   

12.
The transforming growth factor-beta 1 (TGF beta 1) and -beta 2 (414) precursors both contain three predicted sites of N-linked glycosylation within their pro regions. These are located at amino acid residues 72, 140, and 241 for the TGF beta 2 (414) precursor and at residues 82, 136, and 176 for the TGF beta 1 precursor; both proteins contain mannose-6-phosphate (M-6-P) residues. The major sites of M-6-P addition are at Asn (82) and Asn (136), the first two sites of glycosylation, for the TGF beta 1 precursor. We now show that the major site of M-6-P addition within the TGF beta 2 (414) precursor is at Asn241, the third glycosylation site. To determine the importance of N-linked glycosylation to the secretion of TGF beta 1 and -beta 2, site-directed mutagenesis was used to change the Asn residues to Ser residues; the resulting DNAs were transfected into COS cells, and their supernatants were assayed for TGF beta activity. Substitution of Asn (241) of the TGF beta 2 (414) precursor resulted in an 82% decrease in secreted TGF beta 2 bioactivity. Mutation at Asn72 resulted in a 44% decrease, while mutation at Asn140 was without effect. Elimination of all three glycosylation sites resulted in undetectable levels of TGF beta 2. These results were compared with similar mutations made in the cDNA encoding the TGF beta 1 precursor. Mutagenesis of the two M-6-P-containing sites (Asn82 and Asn136) resulted in an 83% decrease in secreted TGF beta 1; replacement of Asn82 and Asn136 with Ser individually resulted in 85% and 42% decreases in activity, respectively. Substitution of Asn176 with Ser was without effect, while substitution of all three sites of glycosylation resulted in undetectable levels of TGF beta 1 activity, similar to the results obtained with TGF beta 2. The nine Cys residues within the mature region of TGF beta 1 were mutated to serine, and their effects on TGF beta 1 secretion were evaluated. Mutation of most Cys residues resulted in undetectable levels of TGF beta 1 protein or activity in conditioned medium. Mutation of Cys (355) led to the secretion of inactive TGF beta 1 monomers, suggesting that this residue is either directly involved in dimer formation or required for correct interchain disulfide bond formation.  相似文献   

13.
One of the mouse sperm surface binding sites for zona pellucida ligands exhibits galactosyltransferase (GT) enzyme activity. The present study was undertaken to ascertain whether the GT site behaves as a noncatalytic binding site in its physiological capacity, with no glycosylation of zona ligands, or whether glycosylation of zona ligands is an integral part of sperm-zona binding. The effects of Mn2+, the obligatory cation for GT catalysis, on enzyme activity and sperm-zona binding were examined. With uridine-5'-diphosphogalactose (UDPgal) as galactose donor, and N-acetylglucosamine (GlcNAc) as galactose acceptor, increasing concentrations of Mn2+ in the range of 0.1-10 mM increased GT enzyme activity, with half-maximal activation at 0.65 mM Mn2+ (Vmax = 20 pmol/hr/10(6) cells). In the presence of 0-2 mM Mn2+, sperm-zona binding was inhibited in a concentration-dependent manner; 50% inhibition occurred at 1.25 mM Mn2+. At this concentration, GT enzyme activity was at 65% Vmax. To determine the specificity of the GT site for glycoprotein terminal carbohydrate residues, spermatozoa were incubated with, asialo-ovine submaxillary mucin (N-acetylgalactosamine residues), asialo-, -alpha 1-acid glycoprotein (beta 1-4 galactose residues) ovalbumin (Ov; GlcNAc residues), and asialo-agalacto-/alpha 1-acid glycoprotein (AsAgAGP; GlcN-Ac residues). Only Ov and AsAgAGP acted as acceptors for galactose in the enzyme assay and inhibitors in the sperm-zona binding assay. The kinetics of the interaction of AsAgAGP with the GT site were determined: the Km was 3.6 mg/ml, with Vmax of 33 pmol/hr/10(6) cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The HNK-1 carbohydrate epitope is found on many neural cell adhesion molecules. Its structure is characterized by a terminal sulfated glucuronyl acid. The glucuronyltransferases, GlcAT-P and GlcAT-S, are involved in the biosynthesis of the HNK-1 epitope, GlcAT-P as the major enzyme. We overexpressed and purified the recombinant human GlcAT-P from Escherichia coli. Analysis of its enzymatic activity showed that it catalyzed the transfer reaction for N-acetyllactosamine (Galbeta1-4GlcNAc) but not lacto-N-biose (Galbeta1-3GlcNAc) as an acceptor substrate. Subsequently, we determined the first x-ray crystal structures of human GlcAT-P, in the absence and presence of a donor substrate product UDP, catalytic Mn(2+), and an acceptor substrate analogue N-acetyllactosamine (Galbeta1-4GlcNAc) or an asparagine-linked biantennary nonasaccharide. The asymmetric unit contains two independent molecules. Each molecule is an alpha/beta protein with two regions that constitute the donor and acceptor substrate binding sites. The UDP moiety of donor nucleotide sugar is recognized by conserved amino acid residues including a DXD motif (Asp(195)-Asp(196)-Asp(197)). Other conserved amino acid residues interact with the terminal galactose moiety of the acceptor substrate. In addition, Val(320) and Asn(321), which are located on the C-terminal long loop from a neighboring molecule, and Phe(245) contribute to the interaction with GlcNAc moiety. These three residues play a key role in establishing the acceptor substrate specificity.  相似文献   

15.
In the ascidian Halocynthia roretzi, sperm-egg binding is probably mediated through the interaction between alpha-L-fucosidase present on the sperm surface and anionic saccharide chains of the egg vitelline coat. To characterize biologically active glycans, total glycans were chemically released from the glycopeptide fraction of the vitelline coat. The fraction of uncharged glycans and two fractions of negatively charged glycans were separated by diethylaminoethyl-anion exchange chromatography. In a competitive inhibition assay of fertilization, both anionic fractions showed inhibitory activity, with more anionic glycans being most potent, while uncharged glycans were biologically inactive. Chemical desulfation combined with a competitive inhibition assay of fertilization and ion analysis determined that sulfate groups were responsible for anionic character and crucial for biological activity. Monosaccharide analysis of anionic fractions showed a high content of N-acetylgalactosamine, galactose, xylose and the presence of arabinose, mannose, N-acetylglucosamine, glucose and rhamnose. Glycans were O-linked and galactose and xylose residues were detected at reducing termini. Linkage analysis suggested that 1,4-linked xylose, 1,3-linked galactose and N-acetylgalactosamine residues, substituted to different degrees by sulfate groups on the C-3 and C-4 carbons, respectively, constituted the core structures of anionic glycans.  相似文献   

16.
Apolipoprotein H is a single chain polypeptide composed of 326 amino acids highly glycosylated. Its carbohydrate content is approximately 19% of the molecular weight. We show that it is rich in sialic acid linked alpha (2-6) to galactose or N-acetylgalactosamine. Sialic acid is not alpha (2-3) linked to galactose. Galactose is beta (1-4) linked to N-acetylglucosamine and beta (1-3) linked to N-acetylgalactosamine. Carbohydrate O-linked chains (mainly sialic acid) are alpha (2-6) linked to galactose or N-acetylgalactosamine. Galactose is also organised in O-linked chains and beta (1-4) linked to N-acetylglucosamine and beta (1-3) linked to acetylgalactosamine. Concanavalin A lectin was used to isolate two groups of apolipoprotein H molecules bearing biantennary and truncated hybrids and high mannose and hybrid oligosaccharides. Apolipoprotein H fails to bind lysine-Sepharose. Our results thus show that it presents truncated hybrid or hybrid-type carbohydrate chains which bear few unmasked mannose residues as a terminal sugar. Biochemical analysis of carbohydrate structures conducted on single isoforms separated through IEF revealed that no specific carbohydrate complex is bound to a single isoform.  相似文献   

17.
Testicular androgen-binding protein (ABP) and liver sex hormone-binding globulin are encoded by the same gene. These proteins have the same primary amino acid sequences, but they differ in attached oligosaccharides; the differences are presumably due to cell-specific glycosylation mechanisms. To investigate the role of oligosaccharides in ABP/sex hormone-binding globulin subunit structure, secretion, and steroid binding, mutant rat ABP proteins were constructed that eliminated one or both of the two potential sites of asparagine (Asn)-linked glycosylation. Immunoblot analysis of wild type recombinant ABP yielded the typical heterogeneous banding pattern. Secreted ABP was composed of two protomers of M(r) 46,000 and M(r) 43,000, while cellular ABP yielded three mol wt species (M(r) 43,000, 41,000, and 39,000). Substitution of the Asn residue in either consensus sequence for Asn-linked glycosylation with an Ile residue resulted in increased mobility of the immunoreactive ABP species. These changes are consistent with the loss of an Asn-linked oligosaccharide. Substitution of both Asn residues yielded a single immunoreactive species in the medium and cell extracts that migrated as a M(r) 39,000 protein. These results demonstrate that the mol wt heterogeneity of ABP is due to differential Asn-linked glycosylation of both potential sites. All three mutant forms of ABP were secreted by the COS cells. However, the amount of immunoreactive ABP and [3H]5 alpha-dihydrotestosterone binding in the medium was lower than wild type (100%) in one of the single mutants (65%) and in the double mutant (29%). Unlike the glycosylation mutants, alteration of other residues, not involved in glycosylation, yielded cellular ABP and no detectable medium ABP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The N-terminal fragment of human thyroglobulin (residues 1 to 171) contains the preferential hormonogenic site of the molecule and 2 potential sites of N-glycosylation (Asn57 and Asn91). This fragment was isolated from a human thyroglobulin purified from a single goiter. The tryptic peptides bearing the glycosylation sites were separated by Bio-Gel P-30 and HPLC columns. The oligosaccharides borne at each site were analyzed, after tritium labeling, by concanavalin A-Sepharose and HPLC. At both sites the structures observed are heterogenous, with a majority of biantennary complex type structures.  相似文献   

19.
Binding characteristics of the galactose/N-acetylgalactosamine-specific, hepatic lectins of rabbit and rat were studied using small, high-affinity ligands containing two and three N-acetylgalactosamine residues per molecule [Lee, R. T. and Lee, Y. C. (1987) Glycoconjugate J. 4, 317-328]. These N-acetylgalactosamine cluster ligands have the receptor-ligand dissociation constants in nanomolar range, so that the lectin-ligand interaction can easily studied by an equilibrium (gel chromatography) or non-equilibrium (fast filtration assay) method. The results suggest that there exist on the average two N-acetylgalactosamine-combining sites per monomeric unit of both the rabbit and rat lectins.  相似文献   

20.
The three-dimensional structures of eel calcitonin (CT) and two glycosylated CT derivatives, [Asn(GlcNAc)3]-CT (CT-GlcNAc) and [Asn(Man6-GlcNAc2)3]-CT (CT-M6), in micelles were determined by solution NMR spectroscopy. The topologies of these peptides associated with oriented lipid bilayers were determined with solid-state NMR. All of the peptides were found to have an identical conformation in micelles characterized by an amphipathic alpha-helix consisting of residues Ser5 through Leu19 followed by an unstructured region at the C-terminus. The overall conformation of the peptide moiety was not affected by the glycosylation. Nevertheless, comparison of the relative exchange rates of the Leu12 amide proton might suggest the possibility that fluctuations of the alpha-helix are reduced by glycosylation. The presence of NOEs between the carbohydrate and the peptide moieties of CT-GlcNAc and CT-M6 and the amide proton chemical shift data suggested that the carbohydrate interacted with the peptide, and this might account for the conformational stabilization of the alpha-helix. Both the unmodified CT and the glycosylated CT were found to have orientations with their helix axes parallel to the plane of the lipid bilayers by solid-state NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号