首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Central injection of neuropeptide-Y (NPY) has been shown to attenuate secretion of LH in ovariectomized rats, rabbits, and monkeys. Several investigators have reported elevated concentrations of NPY in the central nervous system of undernourished animals. The relationship between nutrition and reproduction positions NPY as a potential neuromodulator involved in nutritionally induced changes in secretion of LH. Three experiments were conducted with the following objectives: 1) to examine the effects of NPY on secretion of LH in ovariectomized (OVX) ewes and the influence of estradiol-17 beta (E) on these effects; 2) to determine whether NPY may act through direct effects on the pituitary to influence secretion of LH; and 3) to determine changes in concentrations of NPY in laterocerebro-spinal fluid (CSF) of food-restricted ewes compared to well-fed ewes. In Experiment 1, OVX ewes with s.c. implants of E (OVX + E, n = 4) or no steroid treatment (OVX, n = 4) were fitted with intracerebroventricular (i.c.v.) and jugular cannulae. One of 4 doses of porcine NPY (pNPY; 0, 0.5, 5, or 50 micrograms) was injected i.c.v. and blood samples were collected every 10 min for 4 h prior to and following i.c.v. injection. Blood serum was assayed for LH. The experiment was replicated four times such that each ewe received each dose of pNPY. Mean concentrations of LH as well as frequency and amplitude of pulses of LH were attenuated in response to i.c.v. injection of pNPY in a dose-related manner in both OVX and OVX + E ewes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
CHIP: a link between the chaperone and proteasome systems   总被引:6,自引:0,他引:6       下载免费PDF全文
CHIP, carboxy terminus of Hsc70 interacting protein, is a cytoplasmic protein whose amino acid sequence is highly conserved across species. It is most highly expressed in cardiac and skeletal muscle and brain. The primary amino acid sequence is characterized by 3 domains, a tetratricopeptide repeat (TPR) domain at its amino terminus, a U-box domain at its carboxy terminus, and an intervening charged domain. CHIP interacts with the molecular chaperones Hsc70-Hsp70 and Hsp90 through its TPR domain, whereas its U-box domain contains its E3 ubiquitin ligase activity. Its interaction with these molecular chaperones results in client substrate ubiquitylation and degradation by the proteasome. Thus, CHIP acts to tilt the folding-refolding machinery toward the degradative pathway, and it serves as a link between the two. Because protein degradation is required for healthy cellular function, CHIP's ability to degrade proteins that are the signature of disease, eg, ErbB2 in breast and ovarian cancers, could prove to be a point of therapeutic intervention.  相似文献   

3.
Members of the Rho family of small guanosine triphosphatases are well known for their important functions in the dynamic regulation of actin cytoskeleton. We recently found that a HECT domain E3 ubiquitin ligase, called Smurf1, regulates cell polarity and protrusion formation by targeting RhoA for degradation at cellular protrusions. Smurf1 regulates these functions as a partner of protein kinase Cxi, a component of the polarity complex. Furthermore, using siRNA-mediated knockdown, we demonstrated this pathway is required to maintain the transformed morphology and motility of a tumor cell. Smurf1 thus provides a link between the control of cell polarity and ubiquitin-mediated RhoA degradation during directional cell movements. Here we further discuss the mechanism by which the spatial control of Smurf1 activity is accomplished and the potential implications of these findings in cancer and development.  相似文献   

4.
The 26S proteasome is a large multi-subunit protein complex that exerts specific degradation of proteins in the cell. The 26S proteasome consists of the 20S proteolytic particle and the 19S regulator. In order to be targeted for proteasomal degradation most of the proteins must undergo the post-translational modification of poly-ubiquitination. However, a number of proteins can also be degraded by the proteasome via a ubiquitin-independent pathway. Such degradation is exercised largely through the binding of substrate proteins to the PSMA3 (alpha 7) subunit of the 20S complex. However, a systematic analysis of proteins interacting with PSMA3 has not yet been carried out. In this report, we describe the identification of proteins associated with PSMA3 both in the cytoplasm and nucleus. A combination of two-dimensional gel electrophoresis (2D-GE) and tandem mass-spectrometry revealed a large number of PSMA3-bound proteins that are involved in various aspects of mRNA metabolism, including splicing. In vitro biochemical studies confirmed the interactions between PSMA3 and splicing factors. Moreover, we show that 20S proteasome is involved in the regulation of splicing in vitro of SMN2 (survival motor neuron 2) gene, whose product controls apoptosis of neurons.  相似文献   

5.
Ubiquitin receptor proteins play an important role in delivering ubiquitylated protein substrates to the proteasome for degradation. HHR23a and hPLIC2 are two such ubiquitin receptors that contain ubiquitin-like (UBL) domains, which interact with the proteasome, and ubiquitin-associated (UBA) domains, which interact with ubiquitin. Depending on their abundance UBL/UBA family members can either promote or inhibit the degradation of other proteins, which suggests their participation in the delivery of substrates to the proteasome is highly regulated. In previous work, we determined UBL/UBA domain interactions to promote intramolecular interactions in hHR23a that are abrogated with the addition of either ubiquitin or the proteasome component S5a. In yeast, we determined the hHR23a ortholog (Rad23) to interact with another UBL/UBA family member (Ddi1) and to bind a common tetraubiquitin chain. Here, we use NMR spectroscopy to reveal that hHR23a interacts with hPLIC2 via UBL/UBA domain interactions and to map their binding surfaces. In addition, we demonstrate that these two proteins associate in mammalian cells. Intriguingly, inhibition of the proteasome mitigates hHR23a/hPLIC2 interaction.  相似文献   

6.
The functional characterization of a specific gene, or its protein product, often relies on assessing the consequences of its elimination, usually accomplished by gene knockout, ribozyme, antisense, or RNA-mediated interference (RNAi) technologies. The selective degradation of cellular proteins is mediated primarily by the ubiquitin-proteasome pathway. Manipulation of the ubiquitin-dependent proteolytic machinery to eliminate specific gene products at the protein level has been previously attempted with some success in vitro; however, the in vivo efficacy of this approach has not yet been achieved. Here we report successful engineering of the substrate receptor of a major ubiquitin-proteolytic machinery to direct the degradation of otherwise stable cellular proteins both in yeast and in mammalian cells.  相似文献   

7.
8.
Cox CJ  Dutta K  Petri ET  Hwang WC  Lin Y  Pascal SM  Basavappa R 《FEBS letters》2002,527(1-3):303-308
The proteins securin and cyclin B are destroyed in mitosis by the ubiquitin/proteasome system. This destruction is important to mitotic progression. The N-terminal regions of these proteins contain the sequence features recognized by the ubiquitination system. We have demonstrated using circular dichroism and 1-D and 2-D nuclear magnetic resonance that these rather substantial regions are natively unfolded. Based on these findings, we propose a model that helps to explain previously enigmatic observations.  相似文献   

9.
The formation of multiple cysts in one or several organs is a characteristic of several human inherited diseases. Recent research suggests that problems in planar cell polarity may be the common denominator in polycystic diseases. Mutations in at least two genes are linked to autosomal dominant polycystic liver disease (PCLD), PRKCSH and SEC63. A recent study linked PRKCSH to the signaling- and cytoskeletal adaptor-component β-catenin. In a yeast two hybrid screen we identified the cytosolic protein nucleoredoxin (NRX) as an interaction partner of human Sec63. Since NRX is involved in the Wnt signaling pathways, we characterized this interaction. Thus, Sec63 is linked to the Wnt signaling pathways and this interaction may be the reason why mutations in SEC63 can lead to PCLD.

Structured summary

Sec63physically interacts with NRX by two hybrid(View interaction)NRXbinds to Sec63 by peptide array (View Interaction 1, 2)Sec63binds to NRX by pull down(View interaction)Sec63binds to NRX by peptide array (View Interaction 1, 2, 3)  相似文献   

10.
11.
During the early phase of infection, the E1B-55K protein of adenovirus type 5 (Ad5) counters the E1A-induced stabilization of p53, whereas in the late phase, E1B-55K modulates the preferential nucleocytoplasmic transport and translation of the late viral mRNAs. The mechanism(s) by which E1B-55K performs these functions has not yet been clearly elucidated. In this study, we have taken a proteomics-based approach to identify and characterize novel E1B-55K-associated proteins. A multiprotein E1B-55K-containing complex was immunopurified from Ad5-infected HeLa cells and found to contain E4-orf6, as well as several cellular factors previously implicated in the ubiquitin-proteasome-mediated destruction of proteins, including Cullin-5, Rbx1/ROC1/Hrt1, and Elongins B and C. We further demonstrate that a complex containing these as well as other proteins is capable of directing the polyubiquitination of p53 in vitro. These ubiquitin ligase components were found in a high-molecular-mass complex of 800 to 900 kDa. We propose that these newly identified binding partners (Cullin-5, Elongins B and C, and Rbx1) complex with E1B-55K and E4-orf6 during Ad infection to form part of an E3 ubiquitin ligase that targets specific protein substrates for degradation. We further suggest that E1B-55K functions as the principal substrate recognition component of this SCF-type ubiquitin ligase, whereas E4-orf6 may serve to nucleate the assembly of the complex. Lastly, we describe the identification and characterization of two novel E1B-55K interacting factors, importin-alpha 1 and pp32, that may also participate in the functions previously ascribed to E1B-55K and E4-orf6.  相似文献   

12.
Natural killer (NK) cells and dendritic cells (DCs) are, respectively, central components of innate and adaptive immune responses. We describe here a third DC lineage, termed interferon-producing killer DCs (IKDCs), distinct from conventional DCs and plasmacytoid DCs and with the molecular expression profile of both NK cells and DCs. They produce substantial amounts of type I interferons (IFN) and interleukin (IL)-12 or IFN-gamma, depending on activation stimuli. Upon stimulation with CpG oligodeoxynucleotides, ligands for Toll-like receptor (TLR)-9, IKDCs kill typical NK target cells using NK-activating receptors. Their cytolytic capacity subsequently diminishes, associated with the loss of NKG2D receptor (also known as Klrk1) and its adaptors, Dap10 and Dap12. As cytotoxicity is lost, DC-like antigen-presenting activity is gained, associated with upregulation of surface major histocompatibility complex class II (MHC II) and costimulatory molecules, which formally distinguish them from classical NK cells. In vivo, splenic IKDCs preferentially show NK function and, upon systemic infection, migrate to lymph nodes, where they primarily show antigen-presenting cell activity. By virtue of their capacity to kill target cells, followed by antigen presentation, IKDCs provide a link between innate and adaptive immunity.  相似文献   

13.
Translation initiation in eukaryotes is accomplished by a large set of translation initiation factors, some of which are regulated by signals monitoring intracellular and environmental conditions. Here, we show that Uri1p is required for efficient translation initiation in budding yeast. Indeed, uri1Δ cells are slow growing, sensitive to translation inhibitors and they exhibit an increased 80S peak in polysome profiles. Moreover, GCN4 translation is derepressed in uri1Δ cells, strongly supporting an initiation defect. Genetic and biochemical experiments indicate that Uri1p interacts with the translation initiation factor eIF1A and promotes ternary complex (TC) recruitment to the 40S subunit. Interestingly, we found that Uri1p is also part of a chaperone‐network, including the prefoldin Pfd6p and several other proteins involved in cotranslational quality control such as the ribosome‐associated Hsp70 chaperone Ssb1p, the Hsp40 Sis1p and the translation elongation factor eEF1A. Together with genetic data, these interactions indicate that Uri1p may coordinate translation initiation and cotranslational quality control.  相似文献   

14.
The BAG-1 protein modulates the chaperone activity of Hsc70 and Hsp70 in the mammalian cytosol and nucleus. Remarkably, BAG-1 possesses a ubiquitin-like domain at its amino terminus, suggesting a link to the ubiquitin/proteasome system. Here we show that BAG-1 is indeed associated with the 26 S proteasome in HeLa cells. Binding of the chaperone cofactor to the proteolytic complex is regulated by ATP hydrolysis and is not mediated by Hsc70 and Hsp70. The presented findings reveal a role of BAG-1 as a physical link between the Hsc70/Hsp70 chaperone system and the proteasome. In fact, targeting of BAG-1 to the proteasome promotes an association of the chaperones with the proteolytic complex in vitro and in vivo. A regulatory function of the chaperone cofactor at the interface between protein folding and protein degradation is thus indicated.  相似文献   

15.
Secretory IgA (SIgA) is a multi-polypeptide complex consisting of a secretory component (SC) covalently attached to dimeric IgA containing one joining (J) chain. We present the analysis of both the N- and O-glycans on the individual peptides from this complex. Based on these data, we have constructed a molecular model of SIgA1 with all its glycans, in which the Fab arms form a T shape and the SC is wrapped around the heavy chains. The O-glycan regions on the heavy (H) chains and the SC N-glycans have adhesin-binding glycan epitopes including galactose-linked beta1-4 and beta1-3 to GlcNAc, fucose-linked alpha1-3 and alpha1-4 to GlcNAc and alpha1-2 to galactose, and alpha2-3 and alpha2-6-linked sialic acids. These glycan epitopes provide SIgA with further bacteria-binding sites in addition to the four Fab-binding sites, thus enabling SIgA to participate in both innate and adaptive immunity. We also show that the N-glycans on the H chains of both SIgA1 and SIgA2 present terminal GlcNAc and mannose residues that are normally masked by SC, but that can be unmasked and recognized by mannose-binding lectin, by disrupting the SC-H chain noncovalent interactions.  相似文献   

16.

Introduction

Smoking increases the risk of developing rheumatoid arthritis (RA) and affects the severity of established RA. Smoking can impact on Th17 lymphocyte differentiation and function through activation of the aryl hydrocarbon receptor (AHR), a process with implications for the pathogenic mechanisms in RA that involve the cytokine, interleukin (IL)-17A. The objective of this study was to establish any effect of smoking on the inflammatory tissue lesions of rheumatoid arthritis via the AHR and IL-17A.

Methods

Twenty synovial and eighteen subcutaneous nodule tissue samples from 31 patients with RA were studied. Patient smoking status at the time of tissue collection was established. Expression of AHR, CYP1A1, AHRR, IL6, IL17A, IL17F, IL22, IL23, IL23R, IFNG, TBX21, IDO1 and FOXP3 genes were assessed in tissues and cultured cells using real-time PCR. Two-colour immunofluorescence was used to co-localise AHR and CYP1A1 protein in synovial tissues. The response of monocytes and monocyte-derived dendritic cells (mo-DCs) to the AHR agonist, benzo(a)pyrene (BaP) was compared in vitro.

Results

AHR gene expression was demonstrated in rheumatoid synovial tissues and nodules with significantly greater expression in synovia. Expression was not influenced by smoking in either tissue. Evidence of AHR activation, indicated by CYP1A1 and AHRR gene expression, was found only in synovia from patients who smoked. However, IL17A gene expression was lower in synovia from smokers. TBX21 and FOXP3 expression was not affected by smoking. Within the synovial tissues of smokers the principal cell type with evidence of AHR activation was a subset of synovial DCs. This observation was consistent with the sensitivity of human mo-DCs to BaP stimulation demonstrated in vitro. Exposure to BaP affected mo-DC function as demonstrated by decreased IL6 expression induced by PolyI:C, without affecting indoleamine 2,3 dioxygenase (IDO)1 expression.

Conclusion

Our findings show that one effect of smoking on inflamed rheumatoid synovial tissue involves activation of the AHR pathway. A subset of synovial DCs is important in the response to cigarette smoke. The potential for smoking to affect DC behaviour in joint tissues has relevance to both early and late phases of RA pathogenesis and warrants further investigation.  相似文献   

17.
There is now compelling evidence that members of the family of small heat shock proteins (HSP) can be secreted by a variety of different types of cells. Secretion of small HSP may at times represent altruistic delivery of supporting and stabilizing factors from one cell to another. A probably more general effect of extracellular small HSP, however, is exerted by their ability to activate macrophages and macrophage-like cells. When doing so, small HSP induce an immune-regulatory state of activation, stimulating macrophages to suppress inflammation. For this reason, small HSP deserve consideration as broadly applicable therapeutic agents for inflammatory disorders. In one particular case, however, adaptive immune responses to the small HSP itself may subvert the protective quality of the innate immune response it triggers. This situation only applies to alpha B-crystallin, and is unique for humans as well. In this special case, local concentrations of alpha B-crystallin determine the balance between protective innate responses and destructive adaptive responses, the latter of which are held responsible for the development of multiple sclerosis lesions. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.  相似文献   

18.
We have shown previously that deletion of the Saccharomyces cerevisiae UMP1 gene encoding the 20S proteasome maturase causes sensitivity to UV radiation. In the current report, we have extended this finding to show that mutations specifically compromising chymotrypsin-like or trypsin-like activity of 20S proteasome peptidases also result in increased UV sensitivity. We have also established that mutations affecting proteasome activity, namely ump1Delta, pre2-K108R and pup1-T20A, result in spontaneous and UV-induced mutator phenotypes. To elucidate the origin of these DNA repair phenotypes of the proteasomal mutants, we performed epistasis analysis, with respect to UV sensitivity, using yeast strains with the UMP1 deletion in different DNA repair backgrounds. We show that UMP1 is not epistatic to RAD23 and RAD2, which are involved in the nucleotide excision repair (NER) pathway. Instead, our results indicate that UMP1 as well as PUP1 and PRE2 (encoding catalytic subunits of 20S proteasome) belong to an epistatic group of genes functioning in post-replication DNA repair (PRR) and are hypostatic to RAD18, which, in complex with RAD6, plays a central role in PRR. We also show that UMP1 is epistatic to REV3 and RAD30, although the relationship of UMP1 with these genes is different.  相似文献   

19.
20.
Mitochondrial dynamics play an important role in a large number of cellular processes. Previously, we reported that treatment of mammalian cells with the cysteine-alkylators, N-ethylmaleimide and ethacrynic acid, induced rapid mitochondrial fusion forming a large reticulum approximately 30 min after treatment. Here, we further investigated this phenomenon using a number of techniques including live-cell confocal microscopy. In live cells, drug-induced fusion coincided with a cessation of fast mitochondrial movement which was dependent on microtubules. During this loss of movement, thin mitochondrial tubules extending from mitochondria were also observed, which we refer to as ‘mitochondrial extensions’. The formation of these mitochondrial extensions, which were not observed in untreated cells, depended on microtubules and was abolished by pretreatment with nocodazole. In this study, we provide evidence that these extensions result from of a block in mitochondrial fission combined with continued application of motile force by microtubule-dependent motor complexes. Our observations strongly suggest the existence of a link between microtubule-based mitochondrial trafficking and mitochondrial fission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号