首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper reports the application of differential phase surface plasmon resonance (SPR) imaging in two-dimensional (2D) protein biosensor arrays. Our phase imaging approach offers a distinct advantage over the conventional angular SPR technique in terms of utilization efficiency of optical sensor elements in the imaging device. In the angular approach, each biosensor site in the biosensor array requires a linear array of optical detector elements to locate the SPR angular dip. The maximum biosensor density that a two-dimensional imaging device can offer is a one-dimensional SPR biosensor array. On the other hand, the phase-sensitive SPR approach captures data in the time domain instead of the spatial domain. It is possible that each pixel in the captured interferogram represents one sensor site, thus offering high-density two-dimensional biosensor arrays. In addition, our differential phase approach improves detection resolution through removing common-mode disturbances. Experimental results demonstrate a system resolution of 8.8 x 10(-7)RIU (refractive index unit). Real-time monitoring of bovine serum albumin (BSA)/anti-BSA binding interactions at various concentration levels was achieved using a biosensor array. The detection limit was 0.77 microg/ml. The reported two-dimensional SPR biosensor array offers a real-time and non-labeling detection tool for high-throughput protein array analysis. It may find promising applications in protein therapeutics, drug screening and clinical diagnostics.  相似文献   

2.
The combination of surface plasmon resonance (SPR) and mass spectrometry (MS) has created a unique approach to protein investigations. Surface plasmon resonance is used to quantify interactions between proteins and surface-immobilized ligands, and MS is used to determine the structural features of the bound proteins. Recent progress in SPR-MS includes improved methods and operations, increased limits of detection, multi-protein analysis and protein-complex delineation. With the subsequent design of SPR protein arrays, SPR-MS is expected to enter into the field of high-throughput protein interaction discovery and miniaturized diagnostics.  相似文献   

3.
Protein chip technology   总被引:42,自引:0,他引:42  
Microarray technology has become a crucial tool for large-scale and high-throughput biology. It allows fast, easy and parallel detection of thousands of addressable elements in a single experiment. In the past few years, protein microarray technology has shown its great potential in basic research, diagnostics and drug discovery. It has been applied to analyse antibody-antigen, protein-protein, protein-nucleic-acid, protein-lipid and protein-small-molecule interactions, as well as enzyme-substrate interactions. Recent progress in the field of protein chips includes surface chemistry, capture molecule attachment, protein labeling and detection methods, high-throughput protein/antibody production, and applications to analyse entire proteomes.  相似文献   

4.
The Epic® system, a high-throughput label-free optical biosensor system, is applied for the biochemical interrogation of phosphor-specific interactions of the 14-3-3 protein and its substrates. It has shown the capability not only for high-throughput characterization of binding rank and affinity but also for the exploration of potential interacting kinases for the substrates. A perspective of biochemical applications for diagnostics and biomarker discovery, as well as cell-based applications for endogenous receptors and viral infection characterization, are also provided.  相似文献   

5.
We have developed a new, high-throughput, competition-based tagged-internal standard (TIS) assay to measure the levels of blood proteins in human serum. In this assay, target proteins in the sample serum compete with tagged-internal standard proteins for binding to an antibody array. Antibody arrays are fabricated by immobilizing a target protein-specific antibody on the carboxylate-modified latex bead surface of well-type arrays. A solution of Alexa 546-conjugated target protein is added to a sample of human serum and applied to the well-type antibody array. The array is then analyzed with a fluorescence scanner and the level of unlabeled target protein in the human sera is inferred from the amount of tagged protein bound to the array. We successfully applied this assay to measure the level of C-reactive protein (CRP) in 92 unlabeled human sera. The TIS assay was found to be specific and reproducible for the quantitative analysis of CRP. The antibody array data from the TIS assay correlate well with clinical laboratory data obtained using the commercialized latex-enhanced turbidimetry immunoassay (n=3, r=0.967, CV=0.32%). Thus, the antibody array-based TIS assay system is high-throughput, quantitative, and label-free and may be useful in the rapid serodiagnosis of human disease.  相似文献   

6.
Antibody-based microarrays are a novel technology that hold great promise in proteomics. Microarrays can be printed with thousands of recombinant antibodies carrying the desired specificities, the biologic sample (e.g., an entire proteome) and any specifically bound analytes detected. The microarray patterns that are generated can then be converted into proteomic maps, or molecular fingerprints, revealing the composition of the proteome. Using this tool, global proteome analysis and protein expression profiling will thus provide new opportunities for biomarker discovery, drug target identification and disease diagnostics, as well as providing insights into disease biology. Intense work is currently underway to develop this novel technology platform into the high-throughput proteomic tool required by the research community.  相似文献   

7.
High-throughput proteomics using antibody microarrays   总被引:1,自引:0,他引:1  
Antibody-based microarrays are a novel technology that hold great promise in proteomics. Microarrays can be printed with thousands of recombinant antibodies carrying the desired specificities, the biologic sample (e.g., an entire proteome) and any specifically bound analytes detected. The microarray patterns that are generated can then be converted into proteomic maps, or molecular fingerprints, revealing the composition of the proteome. Using this tool, global proteome analysis and protein expression profiling will thus provide new opportunities for biomarker discovery, drug target identification and disease diagnostics, as well as providing insights into disease biology. Intense work is currently underway to develop this novel technology platform into the high-throughput proteomic tool required by the research community.  相似文献   

8.
In this article we demonstrate a versatile method for the generation of patterned protein films by encapsulation in arrays of the lipids, octadecylamine (ODA, cationic), and arachidic acid (AA, anionic). A simple 2 x 2 array of ODA and AA was vacuum deposited on different substrates using appropriate masks. Thereafter, the enzymes pepsin and fungal protease as well as the heme-proteins cytochrome c and hemoglobin were encapsulated in the different elements of the array by sequential immersion (combined with judicious masking) of the array elements in the different protein solutions. The proteins are incorporated into the lipid elements by electrostatic interaction between charged amino acid residues on the protein surface and charged functional groups in the lipid matrix. This procedure leads to spatially distinct regions of the different proteins on one substrate and shows promise for single-chip multianalyte immunoassay/multiplex, high-throughput biosensor and catalysis applications. Fourier transform infrared spectroscopy (FTIR) was used to monitor the incorporation of the proteins in the different elements of the array as well as to ascertain whether intermixing of the proteins in a particular array element had occurred. The heme-protein composite regions were further characterized using UV-VIS spectroscopy.  相似文献   

9.
In recent years, the importance of proteomic works, such as protein expression, detection and identification, has grown in the fields of proteomic and diagnostic research. This is because complete genome sequences of humans, and other organisms, progress as cellular processing and controlling are performed by proteins as well as DNA or RNA. However, conventional protein analyses are time-consuming; therefore, high throughput protein analysis methods, which allow fast, direct and quantitative detection, are needed. These are so-called protein microarrays or protein chips, which have been developed to fulfill the need for high-throughput protein analyses. Although protein arrays are still in their infancy, technical development in immobilizing proteins in their native conformation on arrays, and the development of more sensitive detection methods, will facilitate the rapid deployment of protein arrays as high-throughput protein assay tools in proteomics and diagnostics. This review summarizes the basic technologies that are needed in the fabrication of protein arrays and their recent applications.  相似文献   

10.
Nirantar SR  Ghadessy FJ 《Proteomics》2011,11(7):1335-1339
Emulsion technology has been successfully applied to the fields of next-generation high-throughput sequencing, protein engineering and clinical diagnostics. Here, we extend its scope to proteomics research by developing and characterizing a method, termed iCLIP (in vitro compartmentalized linkage of interacting partners), which enables genes encoding interacting protein pairs to be linked in a single segment of DNA. This will facilitate archiving of the interactomes from library versus library two-hybrid screens as libraries of linked DNAs. We further demonstrate the ability to interrogate a model yeast two-hybrid iCLIP library for interactants by "PCR-pulldown," using a primer specific to a gene of interest along with a universal primer. iCLIP libraries may also be subjected to high-throughput sequencing to generate interactome information. The applicability of the technique is also demonstrated in the related context of the bacterial two-hybrid system.  相似文献   

11.
News in Brief     
Protein microarrays are versatile tools for parallel, miniaturized screening of binding events involving large numbers of immobilized proteins in a time- and cost-effective manner. They are increasingly applied for high-throughput protein analyses in many research areas, such as protein interactions, expression profiling and target discovery. While conventionally made by the spotting of purified proteins, recent advances in technology have made it possible to produce protein microarrays through in situ cell-free synthesis directly from corresponding DNA arrays. This article reviews recent developments in the generation of protein microarrays and their applications in proteomics and diagnostics.  相似文献   

12.
An economic method for the fluorescent labeling of PCR fragments   总被引:33,自引:0,他引:33  
A poor man's approach to genotyping for research and high-throughput diagnostics.  相似文献   

13.
Multiplexed detection assays that analyze a modest number of nucleic acid targets over large sample sets are emerging as the preferred testing approach in such applications as routine pathogen typing, outbreak monitoring, and diagnostics. However, very few DNA testing platforms have proven to offer a solution for mid-plexed analysis that is high-throughput, sensitive, and with a low cost per test. In this work, an enhanced genotyping method based on MassCode technology was devised and integrated as part of a high-throughput mid-plexing analytical system that facilitates robust qualitative differential detection of DNA targets. Samples are first analyzed using MassCode PCR (MC-PCR) performed with an array of primer sets encoded with unique mass tags. Lambda exonuclease and an array of MassCode probes are then contacted with MC-PCR products for further interrogation and target sequences are specifically identified. Primer and probe hybridizations occur in homogeneous solution, a clear advantage over micro- or nanoparticle suspension arrays. The two cognate tags coupled to resultant MassCode hybrids are detected in an automated process using a benchtop single quadrupole mass spectrometer. The prospective value of using MassCode probe arrays for multiplexed bioanalysis was demonstrated after developing a 14plex proof of concept assay designed to subtype a select panel of Salmonella enterica serogroups and serovars. This MassCode system is very flexible and test panels can be customized to include more, less, or different markers.  相似文献   

14.
We have developed a novel technique for high-throughput simultaneous screening of multiple cytokine expression based on a protein array system. Our method has the advantage of showing the specificity of enzyme-linked immunosorbent assays, sensitivity of enhanced chemiluminescence (ECL), and high-throughput of microspot. In this system, the cytokine array membranes were created by spotting capture antibodies onto the membranes. The membranes were then incubated with biological samples such as conditioned media and patient's sera. The bound proteins were then recognized by biotin-conjugated antibodies and detected by horseradish peroxidase-conjugated streptavidin coupled with ECL. Experiments demonstrated that 24 cytokines from conditioned media and patient's sera could be simultaneously detected using this new approach. This methodology should allow us to develop many high-density protein array systems to detect a variety of proteins. To validate and quantitate the expression of key molecules in a wide range of samples, we have developed conditioned medium arrays to evaluate hundreds and even thousands of samples from individual cells and patients in a single microarray. The combinations of protein arrays and conditioned medium arrays or serum arrays will provide a powerful tool to identify the protein expression profiles and rapidly validate their expression in many types and numbers of samples.  相似文献   

15.
Miniaturized protein arrays address protein interactions with various types of molecules in a high-throughput and multiplexed fashion. This review focuses on achievements in the analysis of protein-DNA and protein-protein interactions. The technological feasibility of protein arrays depends on the different factors that enable the arrayed proteins to recognize molecular partners and on the specificity of the interactions involved. Proteome-scale studies of molecular interactions require high-throughput approaches for both the production and purification of functionally active proteins. Various solutions have been proposed to avoid non-specific protein interactions on array supports and to monitor low-abundance molecules. The data accumulated indicate that this emerging technology is perfectly suited to resolve networks of protein interactions involved in complex physiological and pathological phenomena in different organisms and to develop sensitive tools for biomedical applications.  相似文献   

16.
Technical approaches to construction of preparations for serologic diagnostics of Legionella infection were presented in the article; antigenic- and immunoglobulin-based diagnostic kits with known characteristics were developed. Immunogenic properties of protein and lypopolysaccharide antigens, which have diagnostic value, were studied; similarity of protein antigens from 7 serogroups of L. pneumophila was demonstrated. Soluble antigen with known composition was obtained and used for the development of antigen-based polymeric kit for diagnostics of Legionella infection. On the basis of hyperimmune sera, immunoglobulin-based polymeric diagnostic kit and array of coagglutinating diagnostic kits for the mentioned 7 serogroups were developed. Antigen-based polymeric diagnostic kit was recommended for licensure.  相似文献   

17.
Protein microarrays have been recently employed for signal pathway profiling and high-throughput protein expression analysis. Reversephase arrays, where the array consists of immobilized analytes and lysates has especially shown promise in low abundance analyte detection and signal pathway profiling using phospho-specific antibodies. A limitation to current reverse phase array methodology is the inability to multiplex proteomic-based endpoints as each array can only report one analyte endpoint. In this study, we report on the use of a dual dye based approach that can effectively double the number of endpoints observed per array allowing, for example, both phosphospecific and total protein levels to be measured and analyzed at once. The method utilizes antibody bound dyes that emit in the infrared spectral region as a means of sensitive and specific detection.  相似文献   

18.
DNA microarrays have emerged as a viable platform for detection of pathogenic organisms in clinical and environmental samples. These microbial detection arrays occupy a middle ground between low cost, narrowly focused assays such as multiplex PCR and more expensive, broad-spectrum technologies like high-throughput sequencing. While pathogen detection arrays have been used primarily in a research context, several groups are aggressively working to develop arrays for clinical diagnostics, food safety testing, environmental monitoring and biodefense. Statistical algorithms that can analyze data from microbial detection arrays and provide easily interpretable results are absolutely required in order for these efforts to succeed. In this article, we will review the most promising array designs and analysis algorithms that have been developed to date, comparing their strengths and weaknesses for pathogen detection and discovery.  相似文献   

19.
20.
Bertone P  Snyder M 《The FEBS journal》2005,272(21):5400-5411
Numerous innovations in high-throughput protein production and microarray surface technologies have enabled the development of addressable formats for proteins ordered at high spatial density. Protein array implementations have largely focused on antibody arrays for high-throughput protein profiling. However, it is also possible to construct arrays of full-length, functional proteins from a library of expression clones. The advent of protein-based microarrays allows the global observation of biochemical activities on an unprecedented scale, where hundreds or thousands of proteins can be simultaneously screened for protein-protein, protein-nucleic acid, and small molecule interactions. This technology holds great potential for basic molecular biology research, disease marker identification, toxicological response profiling and pharmaceutical target screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号