首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Furamidine and related diamidines represent a promising series of drugs active against widespread parasites, in particular the Pneumocystic carinii pathogen. In this series, the phenylfuranbenzimidazole diamidine derivative DB293 was recently identified as the first unfused aromatic dication capable of forming stacked dimers in the DNA minor groove of GC-containing sequences. Here we present a detailed biochemical and biophysical characterization of the DNA sequence recognition properties of DB293. Three complementary footprinting techniques using DNase I, Fe(II)-EDTA, and an anthraquinone photonuclease were employed to locate binding sites for DB293 in different DNA restriction fragments. Two categories of sites were identified by DNase I footprinting: (i) 4/5 bp sequences containing contiguous A.T pairs, such as 5'-AAAA and 5'-ATTA; and (ii) sequences including the motif 5'-ATGA.5'-TCAT. In particular, a 13-bp sequence including two contiguous ATGA motifs provided a highly preferential recognition site for DB293. Quantitative footprinting analysis revealed better occupancy of the 5'-ATGA site compared to the AT-rich sites. Preferential binding of DB293 to ATGA sites was also observed with other DNA fragments and was confirmed independently by means of hydroxyl radical footprinting generated by the Fe(II)-EDTA system, as well as by a photofootprinting approach using the probe anthraquinone-2-sulfonate (AQS). In addition, this photosensitive reagent revealed the presence of sites of enhanced cutting specific to DB293. This molecule, but not other minor groove binders such as netropsin, induces specific local structural changes in DNA near certain binding sites, as independently shown by DNase I and the AQS probe. Recognition of the ATGA sequence by DB293 was investigated further using melting temperature experiments and surface plasmon resonance (SPR). The use of different hairpin oligonucleotides showed that DB293 can interact with AT sites via the formation of 1:1 drug-DNA complexes but binds much more strongly, and cooperatively, to ATGA-containing sequences to form 2:1 drug-DNA complexes. DB293 binds strongly to ATGA sequences with no significant context dependence but is highly sensitive to the orientation of the target sequence. The formation of 2:1 DB293/DNA complexes is abolished by reversing the sequence 5'-ATGA-->3'-ATGA, indicating that directionality plays an important role in the drug-DNA recognition process. Similarly, a single mutation in the A[T-->G]GA sequence is very detrimental to the dimer interactions of DB293. From the complementary footprinting and SPR data, the 5'-ATGA sequence is identified as being a highly favored dimer binding site for DB293. The data provide clues for delineating a recognition code for diamidine-type minor groove binding agents, and ultimately to guide the rational design of gene regulatory molecules targeted to specific sites of the genetic material.  相似文献   

3.
The T:G mismatched base pair is associated with many genetic mutations. Understanding its biological consequences may be aided by studying the structural perturbation of DNA caused by a T:G base pair and by specific probing of the mismatch using small molecular ligands. We have shown previously that AR-1-144, a tri-imidazole (Im-Im-Im) minor groove binder, recognizes the sequence CCGG. NMR structural analysis of the symmetric 2:1 complex of AR-1-144 and GAACCGGTTC revealed that each AR-1-144 binds to four base pairs with the guanine N2 amino group forming a bifurcated hydrogen bond to a side-by-side Im/Im pair. We predicted that the free G-N2 amino group in a T:G wobble base pair can form two individual hydrogen bonds to a side-by-side Im/Im pair. Thus an Im/Im pair may be a good recognition motif for a T:G base pair in DNA. Cooperative and tight binding of an AR-1-144 homodimer to GAACTGGTTC permits a detailed structural analysis by 2D NOE NMR refinement and the refined structure confirms our prediction. Surprisingly, AR-1-144 does not bind to GAATCGGTTC. We further show that both the Im-Im-Im/Im-Py-Im heterodimer and the Im-Im-Im/Im-Im-Im homodimer bind strongly to the CACGGGTC + GACTCGTG duplex. These results together suggest that an Im/Im pair can specifically recognize a single T:G mismatch. Our results may be useful in future design of molecules (e.g. linked dimers) that can recognize a single T:G mismatch with specificity.  相似文献   

4.
DNA recognition agents based on the indole-based aziridinyl eneimine and the cyclopent[b]indole methide species were designed and evaluated. The recognition process involved either selective alkylation or intercalating interactions in the major groove. DNA cleavage resulted from phosphate backbone alkylation (hydrolytic cleavage) and N(7) -alkylation (piperidine cleavage). The formation and fate of the eneimine was studied using enriched 13C NMR spectra and X-ray crystallography. The aziridinyl eneimine specifically alkylates the N(7) position of DNA resulting in direction of the aziridinyl alkylating center to either the 3'- or 5'-phosphate of the alkylated base. The eneimine species forms dimers and trimers that appear to recognize DNA at up to three base pairs. The cyclopent[b]indole quinone methide recognizes the 3'-GT-5' sequence and alkylates the guanine N(7) and the thymine 6-carbonyl oxygen causing the hydrolytic removal of these bases. In summary, new classes of DNA recognition agents are described and the utility of 13C-enrichment and 13C NMR to study DNA alkylation reactions is illustrated.  相似文献   

5.
Two oligodeoxyribonucleotides, d-CTTCTTTTTTATTTT, I(A), and d-ATTATTTTTTATTTT, II(A), where C is 5-methylcytosine and A is 8-oxoadenine, were prepared and their interactions with the duplex d-GAAGAAAAAAYAAAA/d-TTTTZTTTTTTCTTC, III.IV(Y.Z), were studied. Oligomers I(A) and II(A) each form triplexes with III.IV(G.C) at temperatures below 20 degrees C as shown by continuous variation experiments, melting experiments, and circular dichroism (CD) spectroscopy. The CD spectra of these triplexes are almost identical to those formed by I(C) and II(C), oligomers which contain cytosine in place of 8-oxoadenine. This suggests that the 8-oxoadenine-containing triplexes have conformations which are very similar to those of the cytosine-containing triplexes. The melting temperature (Tm) for dissociation of the third strand of triplex II.III.IV(A.G.C) is 22 degrees C at pH 7.0 and 8.0, whereas the Tm of the corresponding transition in triplex II.III.IV(C.G.C) decreases from 28 degrees C at pH 7.0 to 17 degrees C at pH 8.0. The pH dependence of the Tm in the latter triplex reflects the necessity of protonating the N-3 of cytosine in order for it to form two hydrogen bonds with G of the G.C base pair. It appears that the keto form of 8-oxoadenine can potentially form two hydrogen bonds with the N-7 and O-6 atoms of G of the G.C base pair, when the 8-oxoadenine is in the syn conformation and in contrast to cytosine does not require protonation of the base. Oligomer I(A) does not form triplexes with III.IV(Y.Z) when Y.Z is A.T or T.A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Joubert A  Sun XW  Johansson E  Bailly C  Mann J  Neidle S 《Biochemistry》2003,42(20):5984-5992
A dimeric bis-benzimidazole molecule has been designed by computer modeling to bind to a DNA sequence via the DNA minor groove that covers a complete turn of B-DNA. A series of bis-benzimidazole dimers incorporating a -O-(CH(2))(n)()-X-CH(2))(n)()-O- linker, with n = 2 or 3 and X = O or N(+)H(Me), were screened for their capacity to fit the DNA minor groove. The modeling studies enabled an optimal linker to be devised (n = 3, X = N(+)H(Me)), and the synthesis of the predicted "best" molecule, N-methyl-N,N-bis-3,3-[4'-[5' '-(2' "-p-methoxyphenyl)-5' "-1H-benzimidazolyl]-2' '-1H-benzimidazolyl]phenoxypropylamine (5), is reported. The optimized linker permits the two symmetric bis-benzimidazole motifs to maintain hydrogen-bonded contacts with the floor of the DNA minor groove. DNase I footprinting studies have shown that this ligand binds with high affinity to sequences representing approximately a complete turn of B-DNA, represented by the [A.T](4)-[G.C]-[A.T](4) motif, and only poorly to sequences of half this site size, in accord with the computer modeling studies. Compound 5 does not show acute cellular cytotoxicity, in contrast with its monomeric bis-benzimidazole precursors, yet is rapidly taken up into cells.  相似文献   

7.
S Hanlon  L Wong    G R Pack 《Biophysical journal》1997,72(1):291-300
Poisson-Boltzmann calculations by Pack and co-workers suggest the presence of regions of increased hydrogen ion density in the grooves of DNA. As an experimental test of this prediction, we have attached proton-sensitive probes, with variable linker lengths, to random-sequence DNA at G sites in the minor groove. The amino groups of beta-alanine, gamma-aminobutyric acid (GABA), and epsilon-aminocaproic acid have been coupled at pH 5, via a formaldehyde link, to the exocyclic amino group of guanine, utilizing a reaction that has been extensively investigated by Hanlon and co-workers. The resulting adducts at pH 5 retained duplex B form but exhibited typical circular dichroism (CD) changes previously shown to be correlated with the presence of a net positive charge in the minor groove. Increases in the solvent pH reversed the CD spectral changes in a manner suggesting deprotonation of the carboxylic acid group of the adduct. These data were used to calculate an apparent pK(a) for the COOH. The pK(a) was increased by 2.4 units for beta-alanine, by 1.7 units for GABA, and by 1.5 units for epsilon-amino caproic acid, relative to their values in the free amino acid. This agrees well with Poisson-Boltzmann calculations and the energy minimization of the structures of the adducts that place the carboxyl groups in acidic domains whose hydrogen ion density is approximately 2 orders of magnitude greater than that of bulk solvent.  相似文献   

8.
Polyamides consisting of N-methylpyrrole (Py), N-methylimidazole (Im), and N-methyl-3-hydroxypyrrole (Hp) are synthetic ligands that recognize predetermined DNA sequences with affinities and specificities comparable to many DNA-binding proteins. As derivatives of the natural products distamycin and netropsin, Py/Im/Hp polyamides have retained the N-methyl substituent, although structural studies of polyamide:DNA complexes have not revealed an obvious function for the N-methyl. In order to assess the role of the N-methyl moiety in polyamide:DNA recognition, a new monomer, desmethylpyrrole (Ds), where the N-methyl moiety has been replaced with hydrogen, was incorporated into an eight-ring hairpin polyamide by solid-phase synthesis. MPE footprinting, affinity cleavage, and quantitative DNase I footprinting revealed that replacement of each Py residue with Ds resulted in identical binding site size and orientation and similar binding affinity for the six-base-pair (bp) target DNA sequence. Remarkably, the Ds-containing polyamide exhibited an 8-fold loss in specificity for the match site versus a mismatched DNA site, relative to the all-Py parent. Polyamides with Ds exhibit increased water solubility, which may alter the cell membrane permeability properties of the polyamide. The addition of Ds to the repertoire of available monomers may prove useful as polyamides are applied to gene regulation in vivo. However, the benefits of Ds incorporation must be balanced with a potential loss in specificity.  相似文献   

9.
The antitumour antibiotic mithramycin A (MTA) is a DNA minor-groove binding ligand. It binds to C/G-rich tracts as a dimer that forms in the presence of divalent cations such as Mg2+. Differential scanning calorimetry, UV thermal denaturation, isothermal titration calorimetry and competition dialysis were used, together with computations of the hydrophobic free energy of binding, to determine the thermodynamic profile of MTA binding to DNA. The results were compared to those obtained in parallel using the structurally related mithramycin SK (MSK). The binding of MTA to salmon testes DNA determined by UV melting studies (Kobs = 1.2 (±0.3) × 105M−1) is tighter than that of MSK (2.9 (±1.0) × 104M−1) at 25°C. Competition dialysis studies showed a tighter MTA binding to both salmon testes DNA (42% C + G) and Micrococcus lysodeikticus DNA (72% C + G). The thermodynamic analysis of binding data at 25°C shows that the binding of MTA and MSK to DNA is entropically driven, dominated by the hydrophobic transfer of the antibiotics from solution to the DNA-binding site. Direct molecular recognition between MTA or MSK and DNA through hydrogen bonding and van der Waals contacts may also contribute significantly to complex formation.  相似文献   

10.
The restriction modification methylase M. Mbo II has been purified using a sensitive oligonucleotide linker assay. The enzyme methylates the Mbo II recognition sequence* GAAGA at adenine to produce GAAGmA. M. Mbo II can be used in conjunction with the methylation dependent restriction endonuclease Dpn I (GmATC) to produce cleavage at the 10 base sequence GAAGATCTTC. When M. Mbo II is used in combination with M. Cla I (ATCGATCGAT), cleavage by Dpn I occurs at the four ten base sequences GAAGATCTTC, GAAGATCGAT, ATCGATCTTC and ATCGATCGAT, which is equivalent to a nine base recognition site. The use of combinations of adenine methylases and Dpn I to generate highly selective DNA cleavages at a variety of sequences up to fourteen base pairs is discussed.  相似文献   

11.
By using electromobility shift assay (EMSA), we have identified a protein able to recognize the DNA only if it was previously reacted with minor groove binders. This protein binds with very high affinity AT containing DNA treated with minor groove binders such as distamycin A, Hoechst 33258 and 33342, CC-1065 and ethidium bromide minor groove intercalator, but not with major groove binders such as quinacrine mustard, cisplatin or melphalan, or with topoisomerase I inhibitor camptothecin or topoisomerase II inhibitor doxorubicin. This protein was found to be present in different extracts of human, murine and hamster cells, with the human protein which appears to have a molecular weight slightly lower than that of the other species. This protein was found to be expressed both in cancer and normal tissues. By using molecular ultrafiltration techniques as well as southwestern analysis it was estimated that the apparent molecular weight is close to 100 kDa. We can exclude an identity between this protein and other proteins, with a similar molecular weight previously reported to be involved in DNA damage recognition/repair, such as topoisomerase I, mismatch repair activities such as the prokaryotic MutS protein and its human homologue hMSH2 or proteins of the nucleotide excision repair system such as ERCC1, -2, -3 and -4.  相似文献   

12.
The α-nucleoside 7-(2′-deoxy-α-D-ribofuranosyl)hypoxanthine, incorporated into an otherwise β-configured oligodeoxynucleotide that is designed to bind to a DNA duplex in the parallel motif, recognizes selectively and efficiently a G-C base pair, presumably via monodentate α-H7·G-C base-triple formation.  相似文献   

13.
J Aymami  C M Nunn    S Neidle 《Nucleic acids research》1999,27(13):2691-2698
The crystal structure of the non-self-complementary dodecamer DNA duplex formed by d(CG[5BrC]ATAT-TTGCG) and d(CGCAAATATGCG) has been solved to 2.3 A resolution, together with that of its complex with the tris-benzimidazole minor groove binding ligand TRIBIZ. The inclusion of a bromine atom on one strand in each structure enabled the possibility of disorder to be discounted. The native structure has an exceptional narrow minor groove, of 2.5-2.6 A in the central part of the A/T region, which is increased in width by approximately 0.8 A on drug binding. The ligand molecule binds in the central part of the sequence. The benzimidazole subunits of the ligand participate in six bifurcated hydrogen bonds with A:T base pair edges, three to each DNA strand. The presence of a pair of C-H...O hydrogen bonds has been deduced from the close proximity of the pyrrolidine group of the ligand to the TpA step in the sequence.  相似文献   

14.
N D Grindley 《Cell》1978,13(3):419-426
Three independent integrations of the E. coli insertion sequence, IS1, into the gal operon have been analyzed. DNA sequences of portions of the wild-type galT gene which act as the target sites for these insertions, as well as the corresponding gal/IS1 junctions, are reported. Two features are particularly noteworthy. First, similar sequences appearing in inverted orientation consitute the ends of IS1: 18 of the terminal 23 base pairs at each end are identical. Second, in all three insertions, a 9 base pair segment found once in the wild-type sequence at the site of insertion is duplicated and appears in the same orientation at each end of the inserted element. The sequence of this 9 base pair repeat is different for each insertion analyzed. No homology between the inverted repeat sequences at the ends of IS1 and the sequences of the target sites is observed. Models for the mechanism of IS1 insertion are proposed.  相似文献   

15.
Two novel microgonotropens (MGTs) comprised of hairpin N-propylaminepyrrole polyamides linked to a Hoechst 33258 (Ht) analogue (3 and 4) were synthesized on solid phase by adopting an Fmoc technique using a series of HOBt mediated coupling reactions. The dsDNA-binding properties of MGTs 3 and 4 were determined by thermal denaturation experiments. Both MGTs were found to be selective for their nine-bp match dsDNA sequence 9 and were less tolerant of G/C bp substitutions in the binding region than linear progenitor MGT 1. MGT 3 was intolerant of a G/C substitution located in the middle of the binding region and did not bind to sequences 13 and 14. MGT 4 also did not bind to sequence 13, and its linker-bound Ht moiety was found to be more sensitive to a G/C substitution in the Ht-binding target, as demonstrated by the lack of binding to sequence 16.  相似文献   

16.
The effect of base pair substitutions on the function of the polyoma virus origin of DNA replication was studied. The mutations were all C-G to T-A transitions, induced by bisulfite treatment of recombinant DNA molecules. The mutagenesis was directed to short single-stranded gaps in duplex DNA, or to loops in heteroduplex molecules. Modification of a 34 base pair sequence of dyad symmetry led to cis-acting inhibition of viral DNA synthesis, ranging from slight defects to total inactivation. One of the mutants was temperature sensitive. Mutants with base changes in an adjacent DNA segment, including an 18 base pair long purine-pyrimidine tract, had similar, but less severe, deficiences. In contrast to the effect of mutations in the homologous region of the simian virus 40 genome, there was no strict relationship between mutation of the putative large T-antigen-binding base sequence GPuGGC and defective viral DNA synthesis.  相似文献   

17.
With the goal of developing a better understanding of the antiparasitic biological action of DB75, we have evaluated its interaction with duplex alternating and nonalternating sequence AT polymers and oligomers. These DNAs provide an important pair of sequences in a detailed thermodynamic analysis of variations in interaction of DB75 with AT sites. The results for DB75 binding to the alternating and nonalternating AT sequences are quite different at the fundamental thermodynamic level. Although the Gibbs energies are similar, the enthalpies for DB75 binding with poly(dA).poly(dT) and poly(dA-dT).poly(dA-dT) are +3.1 and -4.5 kcal/mol, respectively, while the binding entropies are 41.7 and 15.2 cal/mol.K, respectively. The underlying thermodynamics of binding to AT sites in the minor groove plays a key role in the recognition process. It was also observed that DB75 binding with poly(dA).poly(dT) can induce T.A.T triplet formation and the compound binds strongly to the dT.dA.dT triplex.  相似文献   

18.
DB921 and DB911 are benzimidazole-biphenyl isomers with terminal charged amidines. DB911 has a central meta-substituted phenyl that gives it a shape similar to those of known minor groove binding compounds. DB921 has a central para-substituted phenyl with a linear conformation that lacks the appropriate radius of curvature to match the groove shape. It is thus expected that DB911, but not DB921, should be an effective minor groove binder, but we find that DB921 not only binds in the groove but also has an unusually high binding constant in SPR experiments (2.9 x 10(8) M(-)(1), vs 2.1 x 10(7) M(-)(1) for DB911). ITC thermodynamic analysis with an AATT sequence shows that the stronger binding of DB921 is due to a more favorable binding enthalpy relative to that of DB911. CD results support minor groove binding for both compounds but do not provide an explanation for the binding of DB921. X-ray crystallographic analysis of DB921 bound to AATT shows that an induced fit structural change in DB921 reduces the twist of the biphenyl to complement the groove, and places the functional groups in position to interact with bases at the floor of the groove. The phenylamidine of DB921 forms indirect contacts with the bases through a bound water. The DB921-water pair forms a curved binding module that matches the shape of the minor groove and provides a number of strong interactions that are not possible with DB911. This result suggests that traditional views of compound curvature required for minor groove complex formation should be reevaluated.  相似文献   

19.
Previous studies have shown that drugs which bind in the DNA minor groove reduce the curvature of bent DNA. In this article, we examined the effects of these drugs on the nucleosome assembly of DNA molecules that display different degrees of intrinsic curvature. DAPI (4,6-diamidino-2-phenylindole) inhibited the assembly of a histone octamer onto a 192-base pair circular DNA fragment from Caenorhabditis elegans and destabilized a nucleosome that was previously assembled on this segment. The inhibitory effect was highly selective since it was not seen with nonbent molecules, bent molecules with noncircular shapes, or total genomic DNA. This marked template specificity was attributed to the binding of the ligand to multiple oligo A-tracts distributed over the length of the fragment. A likely mechanism for the effect is that the bound ligand prevents the further compression of the DNA into the minor groove which is required for assembly of DNA into nucleosomes. To further characterize the effects of the drug on chromatin formation, a nucleosome was assembled onto a 322-base pair DNA fragment that contained the circular element and a flanking nonbent segment of DNA. The position of the nucleosome along the fragment was then determined using a variety of nuclease probes including exonuclease III, micrococcal nuclease, DNase I, and restriction enzymes. The results of these studies revealed that the nucleosome was preferentially positioned along the circular element in the absence of DAPI but assembled onto the nonbent flanking sequence in the presence of the drug. DAPI also induced the directional movement of the nucleosome from the circular element onto the nonbent flanking sequence when a nucleosome preassembled onto this template was exposed to the drug under physiologically relevant conditions.  相似文献   

20.
HinP1I recognizes and cleaves the palindromic tetranucleotide sequence G↓CGC in DNA. We report three structures of HinP1I–DNA complexes: in the presence of Ca2+ (pre-reactive complex), in the absence of metal ion (binary complex) and in the presence of Mg2+ (post-reactive complex). HinP1I forms a back-to-back dimer with two active sites and two DNA duplexes bound on the outer surfaces of the dimer facing away from each other. The 10 bp DNA duplexes undergo protein-induced distortions exhibiting features of A-, B- and Z-conformations: bending on one side (by intercalation of a phenylalanine side chain into the major groove), base flipping on the other side of the recognition site (by expanding the step rise distance of the local base pair to Z-form) and a local A-form conformation between the two central C:G base pairs of the recognition site (by binding of the N-terminal helix in the minor groove). In the pre- and post-reactive complexes, two metals (Ca2+ or Mg2+) are found in the active site. The enzyme appears to cleave DNA sequentially, hydrolyzing first one DNA strand, as seen in the post-reactive complex in the crystalline state, and then the other, as supported by the observation that, in solution, a nicked DNA intermediate accumulates before linearization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号