首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
From the results of taxonomic studies, Streptomyces sp. strain No. KT–151 isolated from a soil sample collected in Kumamoto City, was identified as a strain belonging to Streptomyces luteogriseus Schmitz, Deak, Crook and Hooper 1964. A new antibiotic, produced by this strain, was isolated as a leaflet crystal by ion-exchange chromatography and found to be an amino acid with the molecular formula, C5H12N2O2, and named antibiotic KT–151 (refered to as KT–151 hereinafter). The antibiotic showed antimicrobial activity against various Gram-positive and Gram-negative bacteria in a chemically defined medium but it was antagonized by several amino acids such as valine, leucine, isoleucine and threonine.  相似文献   

2.
ω-Amino acid: pyruvate aminotransferase of Pseudomonas sp. F–126 catalyzes a transamination between various diamines and pyruvate, an exclusive amino acceptor. Based on a stoichiometric studies it was shown that one of the two amino groups of 1,2-diaminoethane, putrescine and cadaverine transaminated to pyruvate. The transamination between putrescine and pyruvate seemed to proceed by a ping-pong bi bi mechanism. Michaelis constants for putrescine and pyruvate were calculated to be 76.9 and 6.25 mm, respectively.  相似文献   

3.
4.

Background

Rhesus macaques are unusual among schistosome hosts, self-curing from an established infection and thereafter manifesting solid immunity against a challenge, an ideal model for vaccine development. Previously, the immunological basis of self-cure was confirmed; surviving worms had ceased feeding but how immunological pressure achieved this was unclear. The schistosome esophagus is not simply a conduit for blood but plays a central role in its processing. Secretions from the anterior and posterior esophageal glands mix with incoming blood causing erythrocyte lysis and tethering and killing of leucocytes.

Methodology/Principal Findings

We have analysed the self-cure process in rhesus macaques infected with Schistosoma japonicum. Faecal egg output and circulating antigen levels were used to chart the establishment of a mature worm population and its subsequent demise. The physiological stress of surviving females at perfusion was especially evident from their pale, shrunken appearance, while changes in the structure and function of the esophagus were observed in both sexes. In the anterior region electron microscopy revealed that the vesicle secretory process was disrupted, the tips of lining corrugations being swollen by greatly enlarged vesicles and the putative sites of vesicle release obscured by intense deposits of IgG. The lumen of the posterior esophagus in starving worms was occluded by cellular debris and the lining cytoplasmic plates were closely adherent, also potentially preventing secretion. Seven proteins secreted by the posterior gland were identified and IgG responses were detected to some or all of them. Intrinsic rhesus IgG colocalized with secreted SjMEGs 4.1, 8.2, 9, 11 and VAL-7 on cryosections, suggesting they are potential targets for disruption of function.

Conclusions/Significance

Our data suggest that rhesus macaques self-cure by blocking esophagus function with antibody; the protein products of the glands provide a new class of potential vaccine targets.  相似文献   

5.

Background

Acid hydrolyzed wheat proteins (HWPs) are used in the food and cosmetic industry as emulsifiers. Cases of severe food allergic reactions caused by HWPs have been reported. Recent data suggest that these reactions are caused by HWPs produced by acid hydrolysis.

Objectives

To examine the sensitizing capacity of gluten proteins per se when altered by acid or enzymatic hydrolysis relative to unmodified gluten in rats naïve to gluten.

Methods

High IgE-responder Brown Norway (BN) rats bred on a gluten-free diet were sensitized without the use of adjuvant to three different gluten products (unmodified, acid hydrolyzed and enzymatic hydrolyzed). Rats were sensitized by intraperitoneal (i.p.) immunization three times with 200 µg gluten protein/rat or by oral dosing for 35 days with 0.2, 2 or 20 mg gluten protein/rat/day. Sera were analyzed for specific IgG and IgE and IgG-binding capacity by ELISA. IgE functionality was measured by rat basophilic leukemia (RBL) assay.

Results

Regardless of the route of dosing, all products had sensitizing capacity. When sensitized i.p., all three gluten products induced a strong IgG1 response in all animals. Acid hydrolyzed gluten induced the highest level of specific IgE but with a low functionality. Orally all three gluten products induced specific IgG1 and IgE but with different dose-response relations. Sensitizing rats i.p. or orally with unmodified or enzymatic hydrolyzed gluten induced specific IgG1 responses with similar binding capacity which was different from that of acid hydrolyzed gluten indicating that acid hydrolysis of gluten proteins induces formation of ‘new’ epitopes.

Conclusions

In rats not tolerant to gluten acid hydrolysis of gluten enhances the sensitizing capacity by the i.p. but not by the oral route. In addition, acid hydrolysis induces formation of new epitopes. This is in contrast to the enzymatic hydrolyzed gluten having an epitope pattern similar to unmodified gluten.  相似文献   

6.
7.
8.
Li  Minghang  Tian  Xiaocui  An  Ruidi  Yang  Mei  Zhang  Qian  Xiang  Fei  Liu  Hailin  Wang  Yuchun  Xu  Lu  Dong  Zhi 《Neurochemical research》2018,43(8):1703-1703
Neurochemical Research - The original version of this article unfortunately contained a mistake. The affiliation of the author Lu Xu has been submitted and published incorrectly and has been...  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号