首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BALB/c IL-4Ralpha(-/-) mice, despite the absence of IL-4/IL-13 signaling and potent Th2 responses, remain highly susceptible to Leishmania major substain LV39 due exclusively to residual levels of IL-10. To address the contribution of CD4(+)CD25(+) T regulatory (Treg) cells to IL-10-mediated susceptibility, we depleted CD4(+)CD25(+) cells in vivo and reconstituted IL-4Ralpha x RAG2 recipients with purified CD4(+)CD25(-) T cells. Although anti-CD25 mAb treatment significantly decreased parasite numbers in IL-4Ralpha(-/-) mice, treatment with anti-IL-10R mAb virtually eliminated L. major parasites in both footpad and dermal infection sites. In addition, IL-4Ralpha x RAG2 mice reconstituted with CD4(+) cells depleted of CD25(+) Treg cells remained highly susceptible to infection. Analysis of L. major-infected BALB/c and IL-4Ralpha(-/-) inflammatory sites revealed that the majority of IL-10 was secreted by the CD4(+)Foxp3(-) population, with a fraction of IL-10 coming from CD4(+)Foxp3(+) Treg cells. All T cell IFN-gamma production was also derived from the CD4(+)Foxp3(-) population. Nevertheless, the IL-4Ralpha(-/-)-infected ear dermis, but not draining lymph nodes, consistently displayed 1.5- to 2-fold greater percentages of CD4(+)CD25(+) and CD4(+)Foxp3(+) Treg cells compared with the BALB/c-infected dermis. Thus, CD4(+)Foxp3(-) T cells are a major source of IL-10 that disrupts IFN-gamma activity in L. major-susceptible BALB/c mice. However, the increase in CD4(+)Foxp3(+) T cells within the IL-4Ralpha(-/-) dermis implies a possible IL-10-independent role for Treg cells within the infection site, and may indicate a novel immune escape mechanism used by L. major parasites in the absence of IL-4/IL-13 signaling.  相似文献   

2.
3.
Leishmania amazonensis infection, occurring predominantly in Central and South America, can manifest itself in several forms, including those of cutaneous and diffuse cutaneous leishmaniasis. The outcome of L. amazonensis infection depends largely on host immune responses to the parasites. While CD4+ T cell activation is a prerequisite for pathogenesis in L. amazonensis-infected mice, the roles of B cells and their antibody production are unclear. In this study, we provide evidence suggesting that B cells and antibodies are involved in disease pathogenesis. We documented a correlation between B cell activation and lesion progress in immunocompetent mice. In the absence of functional B cells and antibodies, JhD mice showed a delayed onset of disease and developed small lesions. Histological examination of these mice revealed a significant reduction in CD4+ and CD8+ T cells, but not in MAC1+ macrophages, at the infection site. In contrast to the wild-type mice that showed typical tissue necrosis, L. amazonensis-infected JhD mice showed no or minimal signs of necrotic foci. A marked reduction in CD4+ T cell proliferation and cytokine (IFN-gamma and IL-10) production in infected JhD mice suggested an involvement of B cells and antibodies in the priming of parasite-specific T cells. This notion was further supported by the observations that adoptive transfer of B cells or antibodies could restore CD4+ T cell activation and migration in infected JhD mice. Moreover, antibody coating of parasites could stimulate dendritic cells to produce high levels of cytokines and increase their ability to prime nai ve CD4+ T cells. Since CD4+ T cells are crucial to disease pathogenesis, this study suggests that B cells and their antibody production enhanced L. amazonensis infection, partially by promoting T cell priming and cellular migration to the infection site.  相似文献   

4.
Leishmaniasis affects 12 million people, but there are no vaccines. Immunological correlates of vaccine efficacy are unclear. Polarized Th1 vs Th2 responses in Leishmania major-infected mice suggested that a shift in balance from IL-4 to IFN-gamma was the key to vaccine success. Recently, a role for IL-10 and regulatory T cells in parasite persistence was demonstrated, prompting re-evaluation of vaccine-induced immunity. We compared DNA/modified vaccinia virus Ankara heterologous prime-boost with Leishmania homolog of the receptor for activated C kinase (LACK) or tryparedoxin peroxidase (TRYP). Both induced low IL-4 and high IFN-gamma prechallenge. Strikingly, high prechallenge CD4 T cell-derived IL-10 predicted vaccine failure using LACK, whereas low IL-10 predicted protection with TRYP. The ratio of IFN-gamma:IL-10 was thus a clear prechallenge indicator of vaccine success. Challenge infection caused further polarization to high IL-10/low IFN-gamma with LACK and low IL-10/high IFN-gamma with TRYP. Ex vivo quantitative RT-PCR and in vitro depletion and suppression experiments demonstrated that Ag-driven CD4+ CD25+ T regulatory 1-like cells were the primary source of IL-10 in LACK-vaccinated mice. Anti-IL-10R treatment in vivo demonstrated that IL-10 was functional in determining vaccine failure, rendering LACK protective in the presence of high IFN-gamma/low IL-5 responses.  相似文献   

5.
Vaccine-induced protection against leishmaniasis is largely dependent on cell-mediated type 1 response and IL-12-driven IFN-gamma production. Surprisingly, our previous data showed that IL-12/23p40(-/-) mice could be vaccinated against L. amazonensis and were able to produce limited amounts of IFN-gamma. Since the role of CD8+ T in immunization against L. amazonensis is obscure, the aim of this study was to evaluate the effects of CD8+ cells in protection against L. amazonensis in IL-12/23p40(-/-) mice. In order to deplete CD8+ cells, one group of vaccinated animals was treated with anti-CD8 mAb. Infection was followed for 8 weeks. The vaccinated CD8+ -depleted group developed smaller lesions than the non-depleted group. CD8 depletion did not affect tissue parasitism or antibody response against the parasite, and treated animals displayed milder inflammation and better tissue integrity. IFN-gamma production in spleen and draining lymph node was impaired in the depleted group, suggesting that CD8+ cells produced this cytokine in IL-12-independent vaccination. Such results suggest that this T cell subset contributes to augmented pathology in IL12/23p40(-/-) mice vaccinated and challenged with L. amazonensis. Although these cells could produce some IFN-gamma the in the absence of IL-12, they do not affect the parasite tissue load.  相似文献   

6.
Susceptibility and development of Th2 cells in BALB/c mice infected with Leishmania major result from early IL-4 production by Vbeta4Valpha8 CD4+ T cells in response to the Leishmania homolog of mammalian RACK1 Ag. A role for CD4+CD25+ regulatory T cells in the control of this early IL-4 production was investigated by depleting in vivo this regulatory T cell population. Depletion induced an increase in the early burst of IL-4 mRNA in the draining lymph nodes of BALB/c mice, and exacerbated the course of disease with higher levels of IL-4 mRNA and protein in their lymph nodes. We further showed that transfer of 10(7) BALB/c spleen cells that were depleted of CD4+CD25+ regulatory T cells rendered SCID mice susceptible to infection and allowed Th2 differentiation while SCID mice reconstituted with 10(7) control BALB/c spleen cells were resistant to infection with L. major and developed a Th1 response. Treatment with a mAb against IL-4 upon infection with L. major in SCID mice reconstituted with CD25-depleted spleen cells prevented the development of Th2 polarization and rendered them resistant to infection. These results demonstrate that CD4+CD25+ regulatory T cells play a role in regulating the early IL-4 mRNA and the subsequent development of a Th2 response in this model of infection.  相似文献   

7.
The dog is the major reservoir for human visceral leishmaniasis caused by Leishmania infantum. Interleukin-12 is considered to have an essential role in the development of both innate and adaptive immunity to Leishmania spp. and other intracellular pathogens. This study focused on the influence of IL-12 in experimental and natural canine visceral leishmaniasis. Responses of peripheral blood mononuclear cells to IL-12, interleukin-10 and Leishmania soluble antigen were evaluated in L. infantum experimentally infected oligosymptomatic beagles, uninfected beagles, naturally infected polysymptomatic dogs, and their matched uninfected controls. Leishmania soluble antigen induced strong peripheral blood mononuclear cells proliferation both in experimentally infected dogs (median stimulation index [SI]=15.01), and in naturally infected dogs (SI=8.86), but not by cells from the control groups. IL-12 addition further enhanced cell proliferation in naturally (SI=14.95), but not in experimentally infected animals. Peripheral blood mononuclear cells from experimentally infected dogs were able to produce significant amounts of IFN-gamma (3.39 ng/ml) upon LSA stimulation, but no such production was detected in cells from naturally infected or control animals. Interestingly, addition of IL-12 reversed the inhibitory effect of LSA on IFN-gamma production by cells from polysymptomatic naturally infected dogs and the uninfected beagles (4.84 and 7.45 ng/ml, respectively), and further increased IFN-gamma production by peripheral blood mononuclear cells from experimentally infected oligosymptomatic dogs (29.28 ng/ml). IFN-gamma mRNA expression correlated well with IFN-gamma production. Addition of IL-10 to Leishmania soluble antigen stimulated peripheral blood mononuclear cells inhibited proliferation and IFN-gamma production in experimentally infected dogs. Thus, the ability of IL-12 to augment IFN-gamma production by peripheral blood mononuclear cells from dogs with experimental or natural symptomatic canine visceral leishmaniasis makes it a good candidate for cytokine therapy in dogs that are refractory to current therapy.  相似文献   

8.
9.
The signals that trigger IL-4-independent IL-4 synthesis by conventional CD4(+) T cells are not yet defined. In this study, we show that coactivation with anti-CD4 mAb can stimulate single naive CD4(+) T cells to form IL-4-producing clones in the absence of APC and exogenous IL-4, independently of effects on proliferation. When single CD4(+) lymph node cells from C57BL/6 mice were cultured with immobilized anti-CD3epsilon mAb and IL-2, 65-85% formed clones over 12-14 days. Coimmobilization of mAb to CD4, CD11a, and/or CD28 increased the size of these clones but each exerted different effects on their cytokine profiles. Most clones produced IFN-gamma and/or IL-3 regardless of the coactivating mAb. However, whereas 0-6% of clones obtained with mAb to CD11a or CD28 produced IL-4, 10-40% of those coactivated with anti-CD4 mAb were IL-4 producers. A similar response was observed among CD4(+) cells from BALB/c mice. Most IL-4-producing clones were derived from CD4(+) cells of naive (CD44(low) or CD62L(high)) phenotype and the great majority coproduced IFN-gamma and IL-3. The effect of anti-CD4 mAb on IL-4 synthesis could be dissociated from effects on clone size since anti-CD4 and anti-CD11a mAb stimulated formation of clones of similar size which differed markedly in IL-4 production. Engagement of CD3 and CD4 in the presence of IL-2 is therefore sufficient to induce a substantial proportion of naive CD4(+) T cells to form IL-4-producing clones in the absence of other exogenous signals, including IL-4 itself.  相似文献   

10.
The glucocorticoid-induced TNF receptor (GITR), which is a member of the TNF receptor family, is expressed preferentially at high levels on CD25+CD4+ regulatory T cells and plays a key role in the peripheral tolerance that is mediated by these cells. GITR is also expressed on conventional CD4+ and CD8+ T cells, and its expression is enhanced rapidly after activation. In this report we show that the GITR provides a potent costimulatory signal to both CD25+ and CD25- CD4+ T cells. GITR-mediated stimulation induced by anti-GITR mAb DTA-1 or GITR ligand transfectants efficiently augmented the proliferation of both CD25-CD4+ and CD25+CD4+ T cells under the limited dose of anti-CD3 stimulation. The augmentation of T cell activation was further confirmed by the enhanced cell cycle progression; early induction of the activation Ags, CD69 and CD25; cytokine production, such as IL-2, IFN-gamma, IL-4, and IL-10; anti-CD3-induced redirected cytotoxicity; and intracellular signaling, assessed by translocation of NF-kappaB components. GITR costimulation showed a potent ability to produce high amounts of IL-10, which resulted in counter-regulation of the enhanced proliferative responses. Our results highlight evidence that GITR acts as a potent and unique costimulator for an early CD4+ T cell activation.  相似文献   

11.
The presence of Leishmania amazonensis ecto-nucleoside triphosphate triphosphohydrolase activities was demonstrated using antibodies against different NTPDase members by Western blotting, flow cytometry, and immunoelectron microscopy analysis. Living promastigote cells sequentially hydrolyzed the ATP molecule generating ADP, AMP, and adenosine, indicating that this surface enzyme may play a role in the salvage of purines from the extracellular medium. The L. amazonensis ecto-NTPDase activities were insensitive to Triton X-100, but they were enhanced by divalent cations, such as Mg(2+). In addition, the ecto-NTPDase activities decreased with time for 96 h when promastigotes were grown in vitro. On the other hand, these activities increased considerably when measured in living amastigote forms. Furthermore, the treatment with adenosine, a mediator of several relevant biological phenomena, induced a decrease in the reactivity with anti-CD39 antibody, raised against mammalian E-NTPDase, probably because of down regulation in the L. amazonensis ecto-NTPDase expression. Also, adenosine and anti-NTPDase antibodies induced a significant diminishing in the interaction between promastigotes of L. amazonensis and mouse peritoneal macrophages.  相似文献   

12.
It has been demonstrated in our previous work that, in the human skin-grafting model, the expression of costimulatory molecule B7H1 (PD-L1) by keratinocytes plays an essential role in inducing local tolerance via activation of IL-10-secreting T cells. This study further analyzes the role of B7H1 in differentiation of type 1 T regulatory (Tr1) cells and explores underlying mechanisms. Mouse fusion protein B7H1-Ig is used, together with immobilized anti-CD3 mAb, to costimulate the purified naive CD4+ T cells. B7H1-Ig-treated CD4+ T cells were found to activate a characteristic Tr1 population possessing a CD4+ CD25- Foxp3- CD45RBlow phenotype. These regulatory T cells strongly inhibited the Th1-dominated MLR by secretion of IL-10 and TGF-beta. Moreover, B7H1-treated Tr1 cells also resulted in suppressed clinical scores and demyelination when adoptively transferred into mice with experimental allergic encephalomyelitis. Furthermore, analysis of the cytokine profile indicated that there were two differential reaction patterns during the B7H1-Ig-induced Tr1 development. These two patterns were characterized by activation of IFN-gammaR+ IL-10R- Th1 and IFN-gammaR+ IL-10R+ Tr1 cells, respectively. Secretion of IFN-gamma by Th1 and the expression of IFN-gammaR on Tr1 were critical for further Tr1 differentiation, as demonstrated by mAb blocking and by analysis in IFN-gamma(-/-) mice. In conclusion, B7H1 is capable of inducing Tr1 differentiation from naive CD4+ T cells by coactivation in an IFN-gamma- or Th1-dependent manner. Our study may shed some light upon the clinical usage of B7H1 as a therapeutic reagent for induction of tolerance.  相似文献   

13.
T cells that recognize nucleoproteins are required for the production of anti-dsDNA Abs involved in lupus development. SmD1 83-119 (a D1 protein of the Smith (Sm) proteins, part of small nuclear ribonucleoprotein) was recently shown to provide T cell help to anti-dsDNA Abs in the NZB/NZW model of lupus. Using this model in the present study, we showed that high dose tolerance to SmD1 (600-1000 microg i.v. of SmD1(83-119) peptide/mo) delays the production of autoantibodies, postpones the onset of lupus nephritis as confirmed by histology, and prolongs survival. Tolerance to SmD1 83-119 was adoptively transferred by CD90+ T cells, which also reduce T cell help for autoreactive B cells in vitro. One week after SmD1 83-119 tolerance induction in prenephritic mice, we detected cytokine changes in cultures of CD90+ T and B220+ B cells with decreased IFN-gamma and IL-4 expression and an increase in TGFbeta. Increased frequencies of regulatory IFN-gamma+ and IL10+ CD4+ T cells were later detected. Such regulatory IL-10+/IFN-gamma+ type 1 regulatory T cells prevented autoantibody generation and anti-CD3-induced proliferation of naive T cells. In conclusion, these results indicate that SmD1 83-119 peptide may play a dominant role in the activation of helper and regulatory T cells that influence autoantibody generation and murine lupus.  相似文献   

14.
Female B10.S mice are highly resistant to proteolipid protein (PLP) 139-151-induced experimental autoimmune encephalomyelitis (EAE) and depletion of PLP 139-151-reactive CD4+CD25+ regulatory T (Treg) cells can slightly increase their EAE susceptibility. Although male B10.S mice are moderately susceptible to EAE, we report that depletion of Treg cells in male B10.S mice before immunization with PLP 139-151 renders them highly susceptible to severe EAE with more CNS neutrophil infiltrates than nondepleted controls. Increased susceptibility is associated with an enhanced PLP 139-151-specific T cell response and greater production of IFN-gamma, IL-6, and IL-17. Male CD4+CD25- effector cells depleted of Treg cells proliferate to a greater degree than those from females in response to either anti-CD3 or PLP 139-151. These data suggest that because of their capacity to regulate potent autoaggressive effector cells, Treg cells partly contribute to the resistance to autoimmunity in the male mice.  相似文献   

15.
Telomeres are DNA-protein complexes that protect linear chromosomes from degradation and fusions. Telomeric DNA is repetitive and G-rich, and protrudes towards the end of the chromosomes as 3'G-overhangs. In Leishmania spp., sequences adjacent to telomeres comprise the Leishmania conserved telomere associated sequences (LCTAS) that are around 100 bp long and contain two conserved sequence elements (CSB1 and CSB2), in addition to non-conserved sequences. The aim of this work was to study the genomic organization of Leishmania (Leishmania) amazonensis telomeric/subtelomeric sequences. Leishmania amazonensis chromosomes were separated in a single Pulsed Field Gel Electrophoresis (PFGE) gel as 25 ethidium bromide-stained bands. All of the bands hybridized with the telomeric probe (5'-TTAGGG-3')3 and with probes generated from the conserved subtelomeric elements (CSB1, CSB2). Terminal restriction fragments (TRF) of L. amazonensis chromosomes were analyzed by hybridizing restriction digested genomic DNA and chromosomal DNA separated in 2D-PFGE with the telomeric probe. The L. amazonensis TRF was estimated to be approximately 3.3 kb long and the telomeres were polymorphic and ranged in size from 0.2 to 1.0 kb. Afa I restriction sites within the conserved CSB1 elements released the telomeres from the rest of the chromosome. Bal 31-sensitive analysis confirmed the presence of terminal Afa I restriction sites and served to differentiate telomeric fragments from interstitial internal sequences. The size of the L. amazonensis 3' G-overhang was estimated by non-denaturing Southern blotting to be approximately 12 nt long. Using similar approaches, the subtelomeric domains CSB1 and CSB2 were found to be present in a low copy number compared to telomeres and were organized in blocks of 0.3-1.5 kb flanked by Hinf I and Hae III restriction sites. A model for the organization of L. amazonensis chromosomal ends is provided.  相似文献   

16.
T cell-mediated immunity is critical in resistance against Leishmania parasites, and T cell activation requires signals provided by costimulatory molecules. Herein we evaluated the role of costimulatory molecules on cytokine production and T cell surface molecule expression by peripheral blood mononuclear cells (PBMC) from cutaneous leishmaniasis (CL) patients. PBMC from CL patients were stimulated with soluble Leishmania antigen (SLA, 10 microg/ml), in the presence or absence of soluble CTLA4-Ig to block CD28-B7 interaction or in the presence or absence of anti-human CD40L to block CD40-CD40L interaction. Supernatants were harvested to evaluate tumor necrosis factor alpha (TNF-alpha), interleukin 10 (IL-10), transforming growth factor beta (TGF-beta) and interferon gamma (IFN-gamma) production by ELISA. Cells were harvested after 48 h of culture, stained for specific activation markers and analyzed by flow cytometry. Results show that the blockade of CD28-B7 interaction by CTLA4-Ig downmodulated IFN-gamma, IL-10, and TNF-alpha secretion by PBMC from CL patients. No alteration was detected on either TGF-beta production or the expression of CTLA44 or CD25 on CD4+ and CD8+ T cells. When the CD40-CD40L interaction was blockade using anti-CD40L, we did not observe changes in cytokine production or in surface molecule expression. The blockade of the CD28-B7 interactions by CTLA4-Ig also did not alter cytokine production in volunteers immunized against tetanus toxoid (TT). Taken together, these data suggest that the interaction of CTLA4 and CD28-B7 is a TGF-beta-independent mechanism that specifically downmodulates the immune response in cutaneous leishmaniasis patients.  相似文献   

17.
Regulatory T cells (Tregs) are implicated in immune tolerance and are variably dependent on IL-10 for in vivo function. Brief peritransplant treatment of multiple nonhuman primates (NHP) with anti-CD3 immunotoxin and deoxyspergualin has induced stable (5-10 years) rejection-free tolerance to MHC-mismatched allografts, which associated with sustained elevations in serum IL-10. In this study, we demonstrate that resting and activated PBMC from long-term tolerant NHP recipients are biased to secrete high levels of IL-10, compared with normal NHP PBMC. Although IL-10-producing CD4+ Tregs (type 1 regulatory cells (TR1)/IL-10 Tregs) were undetectable (<0.5%) in normal rhesus monkeys, 7.5 +/- 1.7% of circulating CD4+ T cells of tolerant rhesus recipients expressed IL-10. In addition to this >15-fold increase in Tr1/IL-10 Tregs, the tolerant monkeys exhibited a nearly 3-fold increase in CD4+CD25+ Tregs, 8.1 +/- 3.0% of CD4 T cells vs 2.8 +/- 1.4% in normal cohorts (p < 0.02). The frequency of CD4+CD25+IL-10+ cells was elevated 5-fold in tolerant vs normal NHP (1.8 +/- 0.9% vs 0.4 +/- 0.2%). Rhesus CD4+CD25+ Tregs exhibited a memory phenotype, and expressed high levels of Foxp3 and CTLA-4 compared with CD4+CD25- T cells. Also, NHP CD4+CD25+ Tregs proliferated poorly after activation and suppressed proliferation of CD4+CD25- effector T cells, exhibiting regulatory properties similar to rodent and human CD4+CD25+ Tregs. Of note, depletion of CD4+CD25+ Tregs restored indirect pathway antidonor responses in tolerant NHP. Our study demonstrates an expanded presence of Treg populations in tolerant NHP recipients, suggesting that these adaptations may be involved in maintenance of stable tolerance.  相似文献   

18.
Different functions have been attributed to natural regulatory CD4+CD25+FOXP+ (Treg) cells during malaria infection. Herein, we assessed the role for Treg cells during infections with lethal (DS) and non-lethal (DK) Plasmodium chabaudi adami parasites, comparing the levels of parasitemia, inflammation and anaemia. Independent of parasite virulence, the population of splenic Treg cells expanded during infection, and the absolute numbers of activated CD69+ Treg cells were higher in DS-infected mice. In vivo depletion of CD25+ T cells, which eliminated 80% of CD4+FOXP3+CD25+ T cells and 60-70% of CD4+FOXP3+ T cells, significantly decreased the number of CD69+ Treg cells in mice with lethal malaria. As a result, higher parasite burden and morbidity were measured in the latter, whereas the kinetics of infection with non-lethal parasites remained unaffected. In the absence of Treg cells, parasite-specific IFN-gamma responses by CD4+ T cells increased significantly, both in mice with lethal and non-lethal infections, whereas IL-2 production was only stimulated in mice with non-lethal malaria. Following the depletion of CD25+ T cells, the production of IL-10 by CD90(-) cells was also enhanced in infected mice. Interestingly, a potent induction of TNF-alpha and IFN-gamma production by CD4+ and CD90(-) lymphocytes was measured in DS-infected mice, which also suffered severe anaemia earlier than non-depleted infected controls. Taken together, our data suggest that the expansion and activation of natural Treg cells represent a counter-regulatory response to the overwhelming inflammation associated with lethal P.c. adami. This response to infection involves TH1 lymphocytes as well as cells from the innate immune system.  相似文献   

19.
In order to simulate the natural long term parasitisms which may occur in mammals infected with Leishmania, cutaneous leishmaniases due to Leishmania major or Leishmania amazonensis were induced using a model based on the inoculation of 10-1000 metacyclic promastigotes into the ear dermis of BALB/c mice. The final outcome of these parasitisms was dependent upon the number of inoculated parasites. Only some of the mice inoculated with ten parasites displayed cutaneous lesions, whereas most mice infected with 100 metacyclics and all mice infected with 1000 metacyclics developed progressive lesions. We found, using the latter experimental conditions, that the onset of the pathology was associated with: (a) parasite multiplication in the inoculation site and the draining lymph node correlating with an increase of the lymph node cell number, especially in L. major-infected mice; and (b) the detection of lymph node cells, at least in part CD4(+) T lymphocytes, able to produce high levels of interferon-gamma, interleukin (IL)-4, IL-10 and IL-13. Thereafter, mice infected by L. major harboured few parasites in the ear and had a 100-fold reduction in lymph node parasite load between 23 and 40 weeks post-inoculation. In contrast, the parasite loads of L. amazonensis-infected mice remained stable in the ear and increased in nodes during the same period of time. Only L. major-infected mice that exhibited cutaneous lesions in the primary site were resistant to the re-inoculation of 1000 metacyclic promastigotes, whereas all L. amazonensis-primary infected mice remained susceptible to a second homologous challenge. These results are the first to document that a status of resistance to re-infection, referred to concomitant immunity, is coupled to the development of primary progressive lesions in L. major-infected BALB/c mice. Such a protective status is absent in L. amazonensis-infected BALB/c mice.  相似文献   

20.
Regulatory NK cells suppress antigen-specific T cell responses   总被引:1,自引:0,他引:1  
The immune system has a variety of regulatory/suppressive processes, which are decisive for the development of a healthy or an allergic immune response to allergens. NK1 and NK2 subsets have been demonstrated to display counterregulatory and provocative roles in immune responses, similar to Th1 and Th2 cells. T regulatory cells suppressing both Th1 and Th2 responses have been the focus of intensive research during the last decade. In this study, we aimed to investigate regulatory NK cells in humans, by characterization of NK cell subsets according to their IL-10 secretion property. Freshly purified IL-10-secreting NK cells expressed up to 40-fold increase in IL-10, but not in the FoxP3 and TGF-beta mRNAs. PHA and IL-2 stimulation as well as vitamin D3/dexamethasone and anti-CD2/CD16 mAbs are demonstrated to induce IL-10 expression in NK cells. The effect of IL-10+ NK cells on Ag-specific T cell proliferation has been examined in bee venom major allergen, phospholipase A2- and purified protein derivative of Mycobecterium bovis-induced T cell proliferation. IL-10+ NK cells significantly suppressed both allergen/Ag-induced T cell proliferation and secretion of IL-13 and IFN-gamma, particularly due to secreted IL-10 as demonstrated by blocking of the IL-10 receptor. These results demonstrate that a distinct small fraction of NK cells display regulatory functions in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号