首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gum arabic, a branched polysaccharide, was oxidized using periodate to generate reactive aldehyde groups on the biopolymer. Primaquine, an 8-aminoquinoline, was covalently coupled onto oxidized gum arabic via an imine bond and simultaneously fabricated into microspheres of less than 2 microm in size by heat denaturation in a reverse emulsion of 1:1 light paraffin oil and toluene stabilized by sorbitan sesquioleate as the surfactant. The covalent binding of primaquine to the polysaccharide using the clinically used water-soluble form of the drug primaquine phosphate was achieved in the presence of borate buffer of pH 11. Up to 35% of the drug could be bound to the polymer backbone depending on the concentration of the drug employed initially and the degree of oxidation of the polysaccharide. Interestingly, both the aliphatic and the hindered aromatic amino groups of primaquine were found to react with the aldehyde functions through Schiff base formation leading to cross-linking of the polysaccharide with the drug itself. In vitro release of the drug from microspheres into phosphate buffered saline (PBS, pH 7.4, 0.1 M) at 37 degrees C showed that the release of primaquine from the matrix was slow, although gradually increased with time. The maximum released was below 50% of the drug payload even after 10 days. Release into simulated gastric and intestinal fluids was faster compared to the release in PBS due to rapid hydrolysis of the Schiff's linkage in the gastric fluid. A possible reason for the poor hydrolytic susceptibility of the Schiff's linkage is suggested based on the unequal reactivity of the amino groups on primaquine and its relevance in possible therapeutic application of this polymer-drug conjugate discussed.  相似文献   

2.
A naturally occurring glycosaminoglycan such as chondroitin-6-sulfate was first converted in to its aldehyde derivative by periodate oxidation and used as a cross-linking agent for gelatin giving rise to a new class of hydrogels. Cross-linking was predominantly due to Schiff's base formation between the epsilon-amino groups of lysine or hydroxylysine side groups of gelatin and the aldehyde groups in oxidized chondroitin sulfate. The hydrogels were prepared from chondroitin sulfate with different degrees of oxidation and gelatin. They were characterized for degree of cross-linking, cross-linking density, equilibrium swelling, water vapor transmission rate, internal structure, and blood-compatibility. Degree of cross-linking of the gels determined by trinitrobenzene sulfonic acid assay showed that, the higher the degree of oxidation of the polysaccharide, the higher the degree of cross-linking. Examination of the internal structure by scanning electron microscopy showed that the hydrogels were highly porous in nature with interconnecting pores ranging from 50 to 200 mum. Equilibrium swelling showed that the gels retained about 90% water and did not undergo dehydration rapidly. The hydrogels were nontoxic and blood-compatible. Since an important phase of early wound healing has been shown to involve secretion of glycosaminoglycans such as chondroitin sulfate by fibroblasts which form a hydrophilic matrix suitable for remodeling during healing, this new class of hydrogels prepared from chondroitin sulfate and gelatin without employing any extraneous cross-linking agents are expected to have potential as wound dressing materials.  相似文献   

3.
The interaction of gum arabic, maltodextrin and pullulan with lipids in emulsion systems was investigated. Interfacial tension and interfacial viscosity measurements revealed that only gum arabic could adsorb and form a viscoelastic film at the oil-water interface. Good emulsifying activity was demonstrated for gum arabic, whereas fine emulsions could not be produced from the other polysaccharide solutions and oil. Frequency-dependent increases in the storage and loss moduli were observed for all the polysaccharide solutions. Such rheological behavior did not substantially change when maltodextrin and pullulan were mixed with oil to form emulsions. However, the frequency-dependence of the dynamic moduli disappeared in the gum arabic-stabilized emulsion, suggesting the formation of a network structure in which oil droplets could form junctions with gum arabic chains. The results on the inhibition of lipid oxidation by polysaccharides suggest that gum arabic protected lipids from the attack of lipoxygenase and free radicals by adsorbing at the oil droplet surface.  相似文献   

4.
In the present work, guar gum microspheres containing methotrexate (MTX) were prepared and characterized for local release of drug in the colon, which is a prerequisite for the effective treatment of colorectal cancer. Guar gum microspheres were prepared by the emulsification method using glutaraldehyde as a cross-linking agent. Surface morphological characteristics were investigated using scanning electron microscopy. Particle size, shape, and surface morphology were significantly affected by guar gum concentration, glutaral dehyde concentration, emulsifier concentration (Span 80), stirring rate, stirring time, and operating temperature. MTX-loaded microspheres demonstrated high entrapment efficiency (75.7%). The in vitro drug release was investigated using a US Pharmacopeia paddle type (type II) dissolution rate test apparatus in different media (phosphate-buffered saline [PBS], gastrointestinal fluid of different pH, and rat cecal content release medium), which was found to be affected by a change to the guar gum concentration and glutaraldehyde concentration. The drug release in PBS (pH 7.4) and simulated gastric fluids followed a similar pattern and had a similar release rate, while a significant increase in percent cumulative drug release (91.0%) was observed in the medium containing rat cecal content. In in vivo studies, guar gum microspheres delivered most of their drug load (79.0%) to the colon, whereas plain drug suspensions could deliver only 23% of their total dose to the target site. Guar gum microspheres showed adequate potential in achieving local release of drug in in vitro release studies, and this finding was further endorsed with in vivo studies. Published: September 8, 2006  相似文献   

5.
Linoleic acid was encapsulated with a soluble soybean polysaccharide, gum arabic, or a mixture of both together with maltodextrin, and the oxidation process of the encapsulated acid was measured at 37 degrees C and at a relative humidity of 12%. The soybean polysaccharide was more effective for encapsulating the acid and suppressing the oxidation of the encapsulated acid than gum arabic. A mixture of the soybean polysaccharide and maltodextrin was also effective for this purpose when the weight fraction of the polysaccharide was equal to or greater than 0.75.  相似文献   

6.
The purpose of this research was to investigate novel particulate carrier system such as solid lipid nanoparticles (SLN) for topical application of vitamin A palmitate and to study its beneficial effects on skin. Topical gels enriched with SLN of vitamin A were prepared. The solid lipid nanoparticulate dispersion was prepared using high-pressure homogenization technique and was incorporated into polymeric gels of Carbopol, Pemulen, Lutrol, and Xanthan gum for convenient application. The nanoparticulate dispersion and its gels were evaluated for various parameters such as particle size, in vitro drug release, in vitro penetration, in vivo skin hydration, and skin irritation. The solid lipid nanoparticulate dispersion showed mean particle size of 350 nm. Differential scanning calorimetry studies revealed no drugexcipient incompatibility. In vitro release profile of vitamin A palmitate from nanoparticulate dispersion and its gel showed prolonged drug release up to 24 hours, which could be owing to embedment of drug in the solid lipid core. In vitro penetration studies showed almost 2 times higher drug concentration in the skin with lipid nanoparticle-enriched gel as compared with conventional gel, thus indicating better localization of the drug in the skin. In vivo skin hydration studies in albino rats revealed increase in the thickness of the stratum corneum with improved skin hydration. The developed formulation was nonirritant to the skin with no erythema or edema and had primary irritation index of 0.00. Thus it can be concluded that SLN represents a promising particulate carrier having controlled drug release, improved skin hydration, and potential to localize the drug in the skin with no skin irritation.  相似文献   

7.
Hyun H  Kim YH  Song IB  Lee JW  Kim MS  Khang G  Park K  Lee HB 《Biomacromolecules》2007,8(4):1093-1100
An MPEG-PCL diblock copolymer was synthesized as an in situ gel carrier, and its phase transition behavior in aqueous solutions was examined. For comparison, aqueous solutions of Pluronic F-127, a widely used injectable gel-forming solution, were also studied. Both MPEG-PCL copolymer and Pluronic aqueous solutions were sols at room temperature. As the temperature was increased above room temperature, the diblock copolymer and Pluronic solutions underwent a sol-to-gel phase transition, which manifested as an increase in viscosity indicative of the formation of a gel. All of the copolymer solutions became gels at body temperature, although the gel viscosity increased with the increasing concentration of the MPEG-PCL diblock copolymer in the solution. In in vitro experiments, in which the gels were exposed to PBS, the MPEG-PCL gels maintained their structural integrity for more than 28 days, whereas the Pluronic gel disappeared within 2 days. The same results were observed when the polymer solutions were subcutaneously injected into rats. The MPEG-PCL gels maintained their structural integrity longer than 30 days, while the Pluronic gel could not be observed after 2 days. The ability of the gels as drug carriers was studied by measuring the release of fluorescein isothiocyanate-labeled bovine serum albumin (BSA-FITC) from MPEG-PCL diblock copolymer gels in vitro as well as in vivo. In vitro, BSA release was sustained above 20 days, with a greater release at lower diblock copolymer concentration; by contrast, Pluronic gels exhibited almost complete release of BSA-FITC within 1 day. When the BSA-FITC-loaded diblock copolymer and Pluronic solutions were subcutaneously injected into rats, they immediately transformed into a gel. In vivo, sustained release of BSA-FITC over 30 days was observed from the MPEG-PCL gel, whereas BSA-FITC release from the Pluronic gel ceased within 3 days. Collectively, the present findings show that MPEG-PCL diblock copolymer solutions are thermo-responsive and maintain their structural integrity under physiological conditions, indicating that they are suitable for use as injectable drug carriers.  相似文献   

8.
The aim of the present work was to investigate the preparation of polyelectrolyte hydrogel as potential drug carrier for antibacterial Ciprofloxacin drug (CFX), intended for controlled release formulation. Hydrogel of N-trimehtyl chitosan (TMC)/sodium carboxymethyl xanthan gum (CMXG) was prepared and ciprofloxacin was employed as a model drug to investigate the loading and release performance of the prepared hydrogel. FTIR, DSC, TGA and SEM analysis were used to characterize the TMC/CMXG hydrogel and its CFX loaded hydrogel. The results showed that the ciprofloxacin was successfully incorporated and released from the prepared hydrogel without the loss of structural integrity or the change in its functionality. The encapsulation efficiency of CFX within the prepared hydrogel was found to be increased with increasing the concentration of drug reaching about 93.8 ± 2.1% with concentration of CFX 250 µg/ml. It was shown also that the drug is entrapped within the gel without significant interaction as confirmed from FTIR spectra and DSC analysis. In vitro release study in phosphate buffer saline (PBS), indicated the steady rise in cumulative drug release with the highest release amount, reaching about 96.1 ± 1.8% up to 150 min, whereby the gel with high drug loading efficiency (3.52 ± 0.07%) displayed faster and higher release rate than that of gel containing a smaller amount of drug (0.44 ± 0.01%). The release kinetics of loaded drug followed zero-order kinetics. CFX drug loaded hydrogel showed high activity against the gram positive and gram negative bacterial strains due to the successful released of CFX from the CFX loaded hydrogel into the tested bacterial strains with the highest diameter of inhibition zone against Escherichia coli (67.0 ± 1.0) as compared to reference antibiotic, Gentamicin (28 ± 0.5). Cytotoxicity of the prepared hydrogel was examined in vitro using lung human normal cell lines and showed the highest cell viability (97 ± 0.5%) at concentration up to 50 µg/ml. Consequently, TMC/CMXG hydrogel can be proposed as new controlled release drug delivery system.  相似文献   

9.
Gel samples forming at 37 degrees C in the solutions containing tropocollagen and various polysaccharides were examined by electron microscopy. Contracting gel clots formed in the solutions containing chondroitin sulfate, proteoglycine from the tracheal cartilage, gum arabic. Electron microscopy showed such clots to be permeated with collagen fibrillae with transverse striations and a period of 640 A. An association between the density of the forming gel and the nature of the polysaccharide component is discussed. Gel forming in the solutions containing tropocollagen and various polysaccharides is regarded as a model of the connective tissue intercellular substance.  相似文献   

10.
The effect of locust bean gum, a galactomannan, with different molecular weights on the microstructure and viscoelastic properties of heat-induced whey protein gels has been studied using confocal laser scanning microscopy and small-deformation rheology. The results obtained clearly showed that differences in the molecular weight of the polysaccharide have a significant influence on the gel microstructure. Homogeneous mixtures and phase-separated systems, with dispersed droplet and bicontinuous morphologies, were observed by changing the polysaccharide/protein ratio and/or the molecular weight. At 11% whey protein, below the gelation threshold of the protein alone, the presence of the nongelling polysaccharide induces gelation to occur. At higher protein concentration, the main effect of the polysaccharide was a re-enforcement of the gel. However, at the higher molecular weight and concentration of the nongelling polymer, the protein network starts to lose elastic perfection, probably due to the formation of bicontinuous structures with lower connectivity.  相似文献   

11.
A novel procedure for the in situ rapid chemical gelation of aqueous solutions of hyaluronan has been employed. In brief, water-soluble polysaccharide derivatives bearing side chains endowed with either azide or alkyne terminal functionality have been prepared. When the latter two types of derivatives are mixed together in aqueous solution they give rise to a 1,3-dipolar cycloaddition reaction resulting in fast gelation (in the presence of catalytic amounts of Cu(I)) at room temperature. Gel formation has been characterized rheologically and could also be followed qualitatively by means of IR spectroscopy. The resulting gels have been studied in terms of swelling properties and, in particular, NMR spectral features. Carrying out the gelation process in aqueous solutions of benzidamine and doxorubicin, respectively, the polysaccharide networks acted as drug reservoirs. The doxorubicin release resulted in well controllable acting upon the gels degree of cross-linking. Finally, formation of the click-gels using aqueous suspensions of Saccharomices cerevisiae yeast cells allowed the obtainment of scaffolds inside which cells were homogeneously distributed and smoothly adhered to the inner pores surfaces, according to SEM analysis. After 24 h about 60% of the entrapped cells exhibited proliferating activity. Click-gels prepared as detailed herein do have a number of positive features that make them, in perspective, materials of choice for drug release and tissue engineering manipulations.  相似文献   

12.
Rheological properties of binary (AgarGelA and AgarGelB) and ternary (AgarGelAB and GelABAgar) co-hydrogels of agar (polysaccharide) with gelatin A and gelatin B (proteins) were studied to investigate their differential viscoelastic behavior. Two sets of rheological experiments, isochronal temperature and isothermal frequency sweep, were performed and the storage modulii, G' was measured which could be correlated to the gel strengths. Two separate peaks at 70°C and 35°C, corresponding to melting temperatures of agar and gelatin gels respectively, were obtained when derivative of G' with respect to temperature, dG'/dT was plotted against temperature which clearly showed the presence of two separate networks of gelatin and agar interconnected to each other. The results revealed that AgarGelAB was the strongest and AgarGelA was the weakest gel among all the gels studied. In order to see the effect of gel microstructure on drug encapsulation and release behavior, a model drug salbutamol was encapsulated in various gel matrices and the release of the same was seen in phosphate buffer pH 7.4, in simulated gastric fluid pH 1.2 (SGF) and in simulated intestinal fluid pH 6.8 (SIF) media. The drug release behavior universally followed sigmoidal kinetics invariant of gel composition. It is concluded that the hydrogel microstructure influenced the release behavior and best release, in all the three media, could be found with binary gel, AgarGelB, and ternary gel, AgarGelAB. Finally, microstructure of these gels is proposed.  相似文献   

13.
Two sets of antibodies directed against different carbohydrate units of gum arabic were isolated from the sera of rabbits immunized intramuscularly with gum arabic and Freund's complete adjuvant. The isolation was effected by affinity chromatography on two columns attached in series and containing an absorbent of AH-Sepharose 4B with ligands of partially hydrolyzed gun arabic in the first column and an adsorbent of AH-Sepharose 4B with ligands of native gum arabic in the second column. The two populations of anti-gum arabic antibodies were obtained and have been designated as Set 1 and Set 2 on the basis of their mobilities on agar diffusion. The antibodies of Set 1 consisted of 4 isomeric antibodies and those of Set 2 consisted of 11 isomeric antibodies. Native gum arabic samples were oxidized with periodate or reduced with sodium borohydride and carbodiimide under standard conditions and the modified samples were totally inactive in the precipitin test. On the basis of methylation data and immunological results it was concluded that terminal disaccharide moieties of the gum having the structure beta-D-glucosyluronic acid-(1----6)-D-galactose and alpha-L-arabinofuranosyl-(1----4)-D-glucuronic acid were the immunodeterminant groups for Set 1 and Set 2 antibodies, respectively.  相似文献   

14.
Polysaccharide hydrogels have become increasingly studied as matrices in soft tissue engineering because of their known cytocompatibility. In this work cross-linkable dextran methacrylates and hyaluronan methacrylate were synthesized and their transformation into stable hydrogels was studied. The in vitro degradation behaviour of the formed hydrogels could be controlled by the polysaccharide structure and the cross-linking density. Under in vitro conditions, the formed gels had no cytotoxic effects against fibroblasts, but cells could adhere only inefficiently in long term experiments. The use of composite gels improved the adherence of cells. Different scaffold architectures were studied including porous structures and perforated gel layers. Selected hydrogels were examined in an in vivo pilot study using a rabbit model to evaluate their biocompatibility, stability and degradation. No signs of inflammation were seen and with prolonged duration the material was degraded and lacunas were formed by immigrating or ingrowing cells. Optimizing their mechanical properties, the formed hydrogels represent promising candidates as matrices for soft tissue reconstruction.  相似文献   

15.
The objective of the study is to compare the different formulations prepared by using gum, grafted gum and hydrogel of katira as a carrier for colon-specific drug delivery using in vitro methods with and without enzymes. Katira gum is naturally occurring polysaccharides containing mainly l-rhamnose and d-galactose sugar unit and small percent of d-galactouronic acid. Compared to grafted gum and hydrogel, all proportions of katira gum protect the drug from being released completely in the physiological environment of the stomach and small intestine. In vitro release studies in enzymes (Pectinex Ultra SP-L having galactouronidase activity) have demonstrated the susceptibility of katira gum to the colonic bacterial enzyme (galactouronidase activity from Pectinex Ultra SP-L) with a consequent drug release. It illustrates that katira gum, a natural polysaccharide may be suitable as a carrier for colon targeting.  相似文献   

16.
Qi W  Fong C  Lamport DT 《Plant physiology》1991,96(3):848-855
Separation of the wound exudate from Acacia senegal (L.) Willd., “gum arabic,” on a preparative Superose-6 column gave two major fractions: a high molecular weight gum arabic glycoprotein (GAGP) containing about 90% carbohydrate and a lower molecular weight heterogenous gum arabic polysaccharide fraction. Hydrogen fluoride-deglycosylation of GAGP gave a large (~400 residue) hydroxyproline-rich polypeptide backbone (dGAGP). Alkaline hydrolysis of GAGP showed that most of the carbohydrate was attached to the polypeptide backbone as small (~30 residue) hydroxyproline (Hyp)-polysaccharide substituents. After partial acid hydrolysis of the Hyp-polysaccharide fraction we identified O-galactosylhydroxyproline as the glycopeptide linkage, identical with that of hydroxyproline-rich arabinogalactan-proteins (AGPs). However, unlike the acidic alanine-rich AGPs, GAGP is basic and notably deficient in alanine. Thus, while the GAGP polypeptide backbone more closely resembles that of the Hyp-rich cell wall protein extensin, the GAGP polysaccharide sidechains resemble AGPs. Possibly all three proteins comprise a phylogenetically related extensin superfamily of extended rod-like macromolecules. The “wattle-blossom” model for AGP and gum arabic predicts a few large polysaccharide substituents along the polypeptide backbone of a spheroidal macromolecule. On the contrary, our data imply a rodlike molecule with numerous small polysaccharide substituents (attached to 24% of the Hyp residues), regularly arranged along a highly periodic polypeptide backbone based, hypothetically, on a 10 to 12 residue repetitive peptide motif. Thus, a simple statistical model of the gum arabic glycoprotein predicts a repeating polysaccharide-peptide subunit of about 7 kilodaltons. The small polysaccharide substituents will maximize intramolecular hydrogen bonding if aligned along the long axis of the molecule, forming in effect a twisted hairy rope. Electron micrographs of rotary shadowed GAGP molecules support that prediction and may also explain how such apparently large molecules can exit the cell by endwise reptation through the small pores of the primary cell wall.  相似文献   

17.
Addition of gum arabic (average Mr≈450 kDa; 0.5–2.0 wt%) to solutions of low methoxy pectin (DE 31; 2.0 wt%; pH≈2.9–3.0) with stoichiometric Ca2+ caused massive increases in G′ and G″ in the pre-gel state at 90 °C (attributed to segregative interactions promoting formation of calcium-mediated ‘egg-box’ junctions between pectin chains) but had little effect on the gels formed on cooling to 5 °C. This is in marked contrast to the behaviour of other polymeric cosolutes studied in the investigations reported in the two preceding papers, which caused large reductions in gel moduli (attributed to excessive association of calcium pectinate into large aggregated bundles); the difference is tentatively ascribed to strengthening of the calcium pectinate network by divalent counterions to the uronate residues in gum arabic. When the complication of cation exchange was eliminated by extensive dialysis of gum arabic against 100 mM Na+ and use of the final dialysate in preparation of mixtures with calcium pectinate, massive increases in G′ and G″ at high temperature were again observed, but with accompanying reductions in moduli at low temperature, which, at gum arabic concentrations above 1.0 wt%, arose from collapse of the developing calcium pectinate network during cooling. The tentative conclusion from this work, and from the two preceding papers, is that enthalpically unfavourable (segregative) interactions between low methoxy pectin and polymeric cosolutes can be relieved in two ways: (i) Ca2+-mediated self-association of pectin into compact ordered assemblies which occupy less of the total volume, and (ii) conformational rearrangement of the cosolute molecules to minimise segmental interactions with pectin; conformational rearrangement is inhibited by chain stiffness and by branching; thus polymeric cosolute molecules of limited flexibility are more effective in promoting self-association of pectin than more flexible molecules of comparable size, and branched molecules are more effective than linear chains of comparable stiffness.  相似文献   

18.
The proteins of sarcoplasmic reticulum were cross-linked by rapid oxidation of thiol groups with I2. About two-thirds of the thiols were oxidized without any significant cross-linking, implying an extensive formation of intramolecular disulphide bonds. When the thiols were completely oxidized at room temperature a series of oligomers containing up to five molecules were observed, as well as large aggregates which were excluded from the gels. Complete oxidation at -10 degrees C left most of the ATPase (adenosine triphosphatase) as monomer. Similar results were obtained when copper-phenanthroline complexes or dimethyl suberimidate were used as cross-linking reagents. We conclude that most of the cross-linked species arise by linking of randomly colliding ATPase molecules which are present in the membrane at very high concentration.  相似文献   

19.
Murakami S  Aoki N 《Biomacromolecules》2006,7(7):2122-2127
Novel bio-based hydrogels were prepared by cross-linking of microbial poly(gamma-glutamic acid) (PGA) with saccharides such as glucose, maltotriose, and cyclodextrin (CD) in the presence of water-soluble carbodiimide in dimethyl sulfoxide (DMSO) by one-pot synthesis at 25 degrees C for 24 h. The degradation of the gels in alkaline solution (pH 9) at 37 degrees C was also investigated. The PGA gels cross-linked with various neutral saccharides were obtained in relatively high recovery yields by use of a base like 4,4-(dimethylamino)pyridine. The PGA gel cross-linked by glucose showed the highest water absorption of 3000 g/g. The PGA gels cross-linked by CDs showed higher water absorption than those cross-linked by the corresponding linear saccharides. It was revealed that the water absorption of the PGA gel was affected by the cross-linker content and also the structure of cross-linkers as they had an effect on the cross-linking density of the PGA gel. The PGA gels were hydrolyzed under alkaline condition (pH 9) at 37 degrees C. The degradation rate was higher when the cross-linker content of the gel was lower.  相似文献   

20.
The objective of the study was to develop guar gum matrix tablets for oral controlled release of water-soluble diltiazem hydrochloride. Matrix tablets of diltiazem hydrochloride, using various viscosity grades of guar gum in 2 proportions, were prepared by wet granulation method and subjected to in vitro drug release studies. Diltiazem hydrochloride matrix tablets containing either 30% wt/wt lowviscosity (LM1), 40% wt/wt medium-viscosity (MM2), or 50% wt/wt high-viscosity (HM2) guar gum showed controlled release. The drug release from all guar gum matrix tablets followed first-order kinetics via Fickian-diffusion. Further, the results of in vitro drug release studies in simulated gastrointestinal and colonic fluids showed that HM2 tablets provided controlled release comparable with marketed sustained release diltiazem hydrochloride tablets (D-SR tablets). Guar gum matrix tablets HM2 showed no change in physical appearance, drug content, or in dissolution pattern after storage at 40°C/relative humidity 75% for 6 months. When subjectd to in vivo pharmacokinetic evaluation in healthy volunteers, the HM2 tablets provided a slow and prolonged drug release when compared with D-SR tablets. Based on the results of in vitro and in vivo studies it was concluded that that guar gum matrix tablets provided oral controlled release of water-soluble diltiazem hydrochloride. Published: June 30, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号