首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We grew 2.4 m2 wheat canopies in a large growth chamber under high photosynthetic photon flux (1000 μmol m−2 s−1) and using two CO2 concentrations, 360 and 1200 μmol mol−1. Photosynthetically active radiation (400–700 nm) was attenuated slightly faster through canopies grown in 360μmol mol−1 than through canopies grown in 1200μmol mol−1, even though high-CO2 canopies attained larger leaf area indices. Tissue fractions were sampled from each 5-cm layer of the canopies. Leaf tissue sampled from the tops of canopies grown in 1200μmol mol−1 accumulated significantly more total non-structural carbohydrate, starch, fructan, sucrose, and glucose (p≤ 0.05) than for canopies grown in 360μmol mol−1. Non-structural carbohydrate did not significantly increase in the lower canopy layers of the elevated CO2 treatment. Elevated CO2 induced fructan synthesis in all leaf tissue fractions, but fructan formation was greatest in the uppermost leaf area. A moderate temperature reduction of 10 °C over 5d increased starch, fructan and glucose levels in canopies grown in 1200μmol mol−1, but concentrations of sucrose and fructose decreased slightly or remained unchanged. Those results may correspond with the use of fructosyl-residues and release of glucose when sucrose is consumed in fructan synthesis.  相似文献   

2.
Soybean plants (Glycine max (L.) Merr. c.v. Williams) were grown in CO2 controlled, natural-light growth chambers under one of four atmospheric CO2 concentrations ([CO2]): (1) 250 μmol mol–1 24 h d–1[250/250]; (2) 1000 μmol mol–1 24 h d–1[1000/1000]; (3) 250 μmol mol–1 during daylight hours and 1000 μmol mol–1 during night-time hours [250/1000] or (4) 1000 μmol mol–1 during daylight hours and 250 μmol mol–1 during night-time hours [1000/250]. During the vegetative growth phase few physiological differences were observed between plants exposed to a constant 24 h [CO2] (250/250 and 1000/1000) and those that were switched to a higher or lower [CO2] at night (250/1000 and 1000/250), suggesting that the primary physiological responses of plants to growth in elevated [CO2] is apparently a response to daytime [CO2] only. However, by the end of the reproductive growth phase, major differences were observed. Plants grown in the 1000/250 regime, when compared with those in the 1000/1000 regime, had significantly more leaf area and leaf mass, 27% more total plant dry mass, but only 18% of the fruit mass. After 12 weeks of growth these plants also had 19% higher respiration rates and 32% lower photosynthetic rates than the 1000/1000 plants. As a result the ratio of carbon gain to carbon loss was reduced significantly in the plants exposed to the reduced night-time [CO2]. Plants grown in the opposite switching environment, 250/1000 versus 250/250, showed no major differences in biomass accumulation or allocation with the exception of a significant increase in the amount of leaf mass per unit area. Physiologically, those plants exposed to elevated night-time [CO2] had 21% lower respiration rates, 14% lower photosynthetic rates and a significant increase in the ratio of carbon gain to carbon loss, again when compared with the 250/250 plants. Biochemical differences also were found. Ribulose-1,5-bisphosphate carboxylase/ oxygenase concentrations decreased in the 250/ 1000 treatment compared with the 250/250 plants, and phosphoenolpyruvate carboxylase activity decreased in the 1000/250 compared with the 1000/1000 plants. Glucose, fructose and to a lesser extent sucrose concentrations also were reduced in the 1000/250 treatment compared with the 1000/1000 plants. These results indicate that experimental protocols that do not maintain elevated CO2 levels 24 h d–1 can have significant effects on plant biomass, carbon allocation and physiology, at least for fast-growing annual crop plants. Furthermore, the results suggest some plant processes other than photosynthesis are sensitive to [CO2] and under ecologically relevant conditions, such as high night-time [CO2], whole plant carbon balance can be affected.  相似文献   

3.
Leaf gas-exchange and chemical composition were investigated in seedlings of Quercus suber L. grown for 21 months either at elevated (700 μmol mol–1) or normal (350 μmol mol–1) ambient atmospheric CO2 concentrations, [CO2], in a sandy nutrient-poor soil with either ‘high’ N (0.3 mol N m–3 in the irrigation solution) or with ‘low’ N (0.05 mol N m–3) and with a constant suboptimal concentration of the other macro- and micronutrients. Although elevated [CO2] yielded the greatest total plant biomass in ‘high’ nitrogen treatment, it resulted in lower leaf nutrient concentrations in all cases, independent of the nutrient addition regime, and in greater nonstructural carbohydrate concentrations. By contrast, nitrogen treatment did not affect foliar N concentrations, but resulted in lower phosphorus concentrations, suggesting that under lower N, P use-efficiency in foliar biomass production was lower. Phosphorus deficiency was evident in all treatments, as photosynthesis became CO2 insensitive at intercellular CO2 concentrations larger than ≈ 300 μmol mol–1, and net assimilation rates measured at an ambient [CO2] of 350 μmol mol–1 or at 700 μmol mol–1 were not significantly different. Moreover, there was a positive correlation of foliar P with maximum Rubisco (Ribulose-1,5-bisphosphate carboxylase/oxygenase) carboxylase activity (Vcmax), which potentially limits photosynthesis at low [CO2], and the capacities of photosynthetic electron transport (Jmax) and phosphate utilization (Pmax), which are potentially limiting at high [CO2]. None of these potential limits was correlated with foliar nitrogen concentration, indicating that photosynthetic N use-efficiency was directly dependent on foliar P availability. Though the tendencies were towards lower capacities of potential limitations of photosynthesis in high [CO2] grown specimens, the effects were statistically insignificant, because of (i) large within-treatment variability related to foliar P, and (ii) small decreases in P/N ratio with increasing [CO2], resulting in balanced changes in other foliar compounds potentially limiting carbon acquisition. The results of the current study indicate that under P-deficiency, the down-regulation of excess biochemical capacities proceeds in a similar manner in leaves grown under normal and elevated [CO2], and also that foliar P/N ratios for optimum photosynthesis are likely to increase with increasing growth CO2 concentrations. Symbols: A, net assimilation rate (μmol m–2 s–1); Amax, light-saturated A (μmol m–2 s–1); α, initial quantum yield at saturating [CO2] and for an incident Q (mol mol–1); [CO2], atmospheric CO2 concentration (μmol mol–1); Ci, intercellular CO2 concentration (μmol mol–1); Ca, CO2 concentration in the gas-exchange cuvette (μmol mol–1); FB, fraction of leaf N in ‘photoenergetics’; FL, fraction of leaf N in light harvesting; FR, fraction of leaf N in Rubisco; Γ*, CO2 compensation concentration in the absence of Rd (μmol mol–1); Jmax*, capacity for photosynthetic electron transport; Jmc, capacity for photosynthetic electron transport per unit cytochrome f (mol e[mol cyt f]–1 s–1); Kc, Michaelis-Menten constant for carboxylation (μmol mol–1); Ko, Michaelis-Menten constant for oxygenation (mmol mol–1); MA, leaf dry mass per area (g m–2); O, intercellular oxygen concentration (mmol mol–1); [Pi], concentration of inorganic phosphate (mM); Pmax*, capacity for phosphate utilization; Q, photosynthetically active quantum flux density (μmol m–2 s–1); Rd*, day respiration (CO2 evolution from nonphotorespiratory processes continuing in the light); Rubisco, ribulose-1,5-bisphosphate carboxylase/oxygenase; RUBP, ribulose-1,5-bisphosphate; Tl, leaf temperature (°C); UTPU*, rate of triose phosphate utilization; Vcmax*, maximum Rubisco carboxylase activity; Vcr, specific activity of Rubisco (μmol CO2[g Rubisco]–1 s–1] *given in either μmol m–2 s–1 or in μmol g–1 s–1 as described in the text.  相似文献   

4.
The role of photorespiration in the foliar assimilation of nitrate (NO3) and carbon dioxide (CO2) was investigated by measuring net CO2 assimilation, net oxygen (O2) evolution, and chlorophyll fluorescence in tomato leaves (Lycopersicon esculentum). The plants were grown under ambient CO2 with ammonium nitrate (NH4NO3) as the nitrogen source, and then exposed to a CO2 concentration of either 360 or 700 µmol mol?1, an O2 concentration of 21 or 2%, and either NO3 or NH4+ as the sole nitrogen source. The elevated CO2 concentration stimulated net CO2 assimilation under 21% O2 for both nitrogen treatments, but not under 2% O2. Under ambient CO2 and O2 conditions (i.e. 360 µmol mol?1 CO2, 21% O2), plants that received NO3 had 11–13% higher rates of net O2 evolution and electron transport rate (estimated from chlorophyll fluorescence) than plants that received NH4+. Differences in net O2 evolution and electron transport rate due to the nitrogen source were not observed at the elevated CO2 concentration for the 21% O2 treatment or at either CO2 level for the 2% O2 treatment. The assimilatory quotient (AQ) from gas exchange, the ratio of net CO2 assimilation to net O2 evolution, indicated more NO3 assimilation under ambient CO2 and O2 conditions than under the other treatments. When the AQ was derived from gross O2 evolution rates estimated from chlorophyll fluorescence, no differences could be detected between the nitrogen treatments. The results suggest that short‐term exposure to elevated atmospheric CO2 decreases NO3 assimilation in tomato, and that photorespiration may help to support NO3 assimilation.  相似文献   

5.
For most of the past 250 000 years, atmospheric CO2 has been 30–50% lower than the current level of 360 μmol CO2 mol–1 air. Although the effects of CO2 on plant performance are well recognized, the effects of low CO2 in combination with abiotic stress remain poorly understood. In this study, a growth chamber experiment using a two-by-two factorial design of CO2 (380 μmol mol–1, 200 μmol mol–1) and temperature (25/20 °C day/night, 36/29 °C) was conducted to evaluate the interactive effects of CO2 and temperature variation on growth, tissue chemistry and leaf gas exchange of Phaseolus vulgaris. Relative to plants grown at 380 μmol mol–1 and 25/20 °C, whole plant biomass was 36% less at 380 μmol mol–1× 36/29 °C, and 37% less at 200 μmol mol–1× 25/20 °C. Most significantly, growth at 200 μmol mol–1× 36/29 °C resulted in 77% less biomass relative to plants grown at 380 μmol mol–1× 25/20 °C. The net CO2 assimilation rate of leaves grown in 200 μmol mol–1× 25/20 °C was 40% lower than in leaves from 380 μmol mol–1× 25/20 °C, but similar to leaves in 200 μmol mol–1× 36/29 °C. The leaves produced in low CO2 and high temperature respired at a rate that was double that of leaves from the 380μmol mol–1× 25/20 °C treatment. Despite this, there was little evidence that leaves at low CO2 and high temperature were carbohydrate deficient, because soluble sugars, starch and total non-structural carbohydrates of leaves from the 200μmol mol–1× 36/29 °C treatment were not significantly different in leaves from the 380μmol mol–1× 25/20 °C treatment. Similarly, there was no significant difference in percentage root carbon, leaf chlorophyll and leaf/root nitrogen between the low CO2× high temperature treatment and ambient CO2 controls. Decreased plant growth was correlated with neither leaf gas exchange nor tissue chemistry. Rather, leaf and root growth were the most affected responses, declining in equivalent proportions as total biomass production. Because of this close association, the mechanisms controlling leaf and root growth appear to have the greatest control over the response to heat stress and CO2 reduction in P. vulgaris.  相似文献   

6.
The main goal of this study was to test the effect of [CO2] on C and N management in different plant organs (shoots, roots and nodules) and its implication in the responsiveness of exclusively N2-fixing and NO3-fed plants. For this purpose, exclusively N2-fixing and NO3-fed (10 mM) pea (Pisum sativum L.) plants were exposed to elevated [CO2] (1000 μmol mol−1 versus 360 μmol mol−1 CO2). Gas exchange analyses, together with carbohydrate, nitrogen, total soluble proteins and amino acids were determined in leaves, roots and nodules. The data obtained revealed that although exposure to elevated [CO2] increased total dry mass (DM) in both N treatments, photosynthetic activity was down-regulated in NO3-fed plants, whereas N2-fixing plants were capable of maintaining enhanced photosynthetic rates under elevated [CO2]. In the case of N2-fixing plants, the enhanced C sink strength of nodules enabled the avoidance of harmful leaf carbohydrate build up. On the other hand, in NO3-fed plants, elevated [CO2] caused a large increase in sucrose and starch. The increase in root DM did not contribute to stimulation of C sinks in these plants. Although N2 fixation matched plant N requirements with the consequent increase in photosynthetic rates, in NO3-fed plants, exposure to elevated [CO2] negatively affected N assimilation with the consequent photosynthetic down-regulation.  相似文献   

7.
Our previous work indicated that salinity caused a shift in the predominant site of nitrate reduction and assimilation from the shoot to the root in tomato plants. In the present work we tested whether an enhanced supply of dissolved inorganic carbon (DIC, CO2+ HCO3) to the root solution could increase anaplerotic provision of carbon compounds for the increased nitrogen assimilation in the root of salinity-stressed Lycopersicon esculentum (L.) Mill. cv. F144. The seedlings were grown in hydroponic culture with 0 or 100mM NaCl and aeration of the root solution with either ambient or CO2-enriched air (5000 μmol mol?1). The salinity-treated plants accumulated more dry weight and higher total N when the roots were supplied with CO2-enriched aeration than when aerated with ambient air. Plants grown with salinity and enriched DIC also had higher rates of NO?3 uptake and translocated more NO?3 and reduced N in the xylem sap than did equivalent plants grown with ambient DIC. Incorporation of DIC was measured by supplying a 1 -h pulse of H14CO?3 to the roots followed by extraction with 80% ethanol. Enriched DIC increased root incorporation of DIC 10-fold in both salinized and non-salinized plants. In salinity-stressed plants, the products of dissolved inorganic 14C were preferentially diverted into amino acid synthesis to a greater extent than in non-salinized plants in which label was accumulated in organic acids. It was concluded that enriched DIC can increase the supply of N and anaplerotic carbon for amino acid synthesis in roots of salinized plants. Thus enriched DIC could relieve the limitation of carbon supply for ammonium assimilation and thus ameliorate the influence of salinity on NO?3 uptake and assimilation as well as on plant growth.  相似文献   

8.
Over time, the relative effects of elevated [CO2] on the aboveground photosynthesis, growth and development of rice (Oryza sativa L.) are likely to be changed with increasing duration of CO2 exposure, but the resultant effects on rice belowground responses remain to be evaluated. To investigate the impacts of elevated [CO2] on seasonal changes in root growth, morphology and physiology of rice, a free‐air CO2 enrichment (FACE) experiment was performed at Wuxi, Jiangsu, China, in 2002–2003. A japonica cultivar with large panicle was exposed to two [CO2] (ambient [CO2], 370 μmol mol−1; elevated [CO2], 570 μmol mol−1) at three levels of nitrogen (N): low (LN, 15 g N m−2), medium (MN, 25 g N m−2) and high N (HN, 35 g N m−2). Elevated [CO2] increased cumulative root volume, root dry weight, adventitious root length and adventitious root number at all developmental stages by 25–71%, which was mainly associated with increased root growth rate during early growth period (EGP) and lower rate of root senescence during late growth period (LGP), while a slight inhibition of root growth rate occurred during middle growth period (MGP). For individual adventitious roots, elevated [CO2] increased average length, volume, diameter and dry weight early in the season, but the effects gradually disappeared in subsequent stages. Total surface area and active adsorption area per unit root dry weight reached their maxima 10 days earlier in FACE vs. ambient plants, but both of them together with root oxidation ability per unit root dry weight declined with elevated [CO2] during MGP and LGP, the decline being larger during MGP than LGP. The CO2‐induced decreases in specific root activities during MGP and LGP were associated with a larger amount of root accumulation during EGP and lower N concentration and higher C/N ratio in roots during MGP and LGP in FACE vs. ambient plants. The results suggest that most of the CO2‐induced increases in shoot growth of rice are similarly associated with increased root growth.  相似文献   

9.
Measurements of net fluxes of CO2 and O2 from leaves and chlorophyll a fluorescence were used to determine the role of mitochondrial respiration during nitrate (NO3) assimilation in both a C3 (wheat) and a C4 (maize) plant. Changes in the assimilatory quotient (net CO2 consumed over net O2 evolved) when the nitrogen source was shifted from NO3 to NH4+AQ) provided a measure of shoot NO3 assimilation. According to this measure, elevated CO2 inhibited NO3 assimilation in wheat but not maize. Net O2 exchange under ambient CO2 concentrations increased in wheat plants receiving NO3 instead of NH4+, but gross O2 evolution from the photosynthetic apparatus (JO2) was insensitive to nitrogen source. Therefore, O2 consumption within wheat photosynthetic tissue (ΔΟ2), the difference between JO2 and net O2 exchange, decreased during NO3 assimilation. In maize, NO3 assimilation was insensitive to changes in intercellular CO2 concentration (Ci); nonetheless, ΔΟ2 at low Ci values was significantly higher in NO3‐fed than in NH4+‐fed plants. Changes in O2 consumption during NO3 assimilation may involve one or more of the following processes: (a) Mehler ascorbate peroxidase (MAP) reactions; (b) photorespiration; or (c) mitochondrial respiration. The data presented here indicates that in wheat, the last process, mitochondrial respiration, is decreased during NO3 assimilation. In maize, NO3 assimilation appears to stimulate mitochondrial respiration when photosynthetic rates are limiting.  相似文献   

10.
Spring wheat cv. Minaret was grown to maturity under three carbon dioxide (CO2) and two ozone (O3) concentrations in open-top chambers (OTC). Green leaf area index (LAI) was increased by elevated CO2 under ambient O3 conditions as a direct result of increases in tillering, rather than individual leaf areas. Yellow LAI was also greater in the 550 and 680 μmol mol–1 CO2 treatments than in the chambered ambient control; individual leaves on the main shoot senesced more rapidly under 550 μmol mol–1 CO2, but senescence was delayed at 680 μmol mol–1 CO2. Fractional light interception (f) during the vegetative period was up to 26% greater under 680 μmol mol–1 CO2 than in the control treatment, but seasonal accumulated intercepted radiation was only increased by 8%. As a result of greater carbon assimilation during canopy development, plants grown under elevated CO2 were taller at anthesis and stem and ear biomass were 27 and 16% greater than in control plants. At maturity, yield was 30% greater in the 680 μmol mol–1 CO2 treatment, due to a combination of increases in the number of ears per m–2, grain number per ear and individual grain weight (IGW). Exposure to a seasonal mean (7 h d–1) of 84 nmol mol–1 O3 under ambient CO2 decreased green LAI and increased yellow LAI, thereby reducing both f and accumulated intercepted radiation by ≈ 16%. Individual leaves senesced completely 7–28 days earlier than in control plants. At anthesis, the plants were shorter than controls and exhibited reductions in stem and ear biomass of 15 and 23%. Grain yield at maturity was decreased by 30% due to a combination of reductions in ear number m–2, the numbers of grains per spikelet and per ear and IGW. The presence of elevated CO2 reduced the rate of O3-induced leaf senescence and resulted in the maintenance of a higher green LAI during vegetative growth under ambient CO2 conditions. Grain yields at maturity were nevertheless lower than those obtained in the corresponding elevated CO2 treatments in the absence of elevated O3. Thus, although the presence of elevated CO2 reduced the damaging impact of ozone on radiation interception and vegetative growth, substantial yield losses were nevertheless induced. These data suggest that spring wheat may be susceptible to O3-induced injury during anthesis irrespective of the atmospheric CO2 concentration. Possible deleterious mechanisms operating through effects on pollen viability, seed set and the duration of grain filling are discussed.  相似文献   

11.
Small birch plants were grown for up to 80 d in a climate chamber at varied relative addition rates of nitrogen in culture solution, and at ambient (350 μmol mol-1) or elevated (700 μmol mol-1) concentrations of CO2. The relative addition rate of nitrogen controlled relative growth rate accurately and independently of CO2 concentration at sub-optimum levels. During free access to nutrients, relative growth rate was higher at elevated CO2. Higher values of relative growth rate and net assimilation rate were associated with higher values of plant N-concentration. At all N-supply rates, elevated CO2 resulted in higher values of net assimilation rate, whereas leaf weight ratio was independent of CO2. Specific leaf area (and leaf area ratio) was less at higher CO2 and at lower rates of N-supply. Lower values of specific leaf area were partly because of starch accumulation. Nitrogen productivity (growth rate per unit plant nitrogen) was higher at elevated CO2. At sub-optimal N-supply, the higher net assimilation rate at elevated CO2 was offset by a lower leaf area ratio. Carbon dioxide did not affect root/shoot ratio, but a higher fraction of plant dry weight was found in roots at lower N-supply. In the treatment with lowest N-supply, five times as much root length was produced per amount of plant nitrogen in comparison with optimum plants. The specific fine root length at all N-supplies was greater at elevated CO2. These responses of the root system to lower N-supply and elevated CO2 may have a considerable bearing on the acquisition of nutrients in depleted soils at elevated CO2. The advantage of maintaining steady-state nutrition in small plants while investigating the effects of elevated CO2 on growth is emphasized.  相似文献   

12.
Branches of 22-year-old loblolly pine (Pinus taeda, L.) trees growing in a plantation were exposed to ambient CO2, ambient + 165 μmol mol?1 CO2 or ambient + 330 μmol mol?1 CO2 concentrations in combination with ambient or ambient + 2°C air temperatures for 3 years. Field measurements in the third year indicated that net carbon assimilation was enhanced in the elevated CO2 treatments in all seasons. On the basis of A/Ci, curves, there was no indication of photosynthetic down-regulation. Branch growth and leaf area also increased significantly in the elevated CO2 treatments. The imposed 2°C increase in air temperature only had slight effects on net assimilation and growth. Compared with the ambient CO2 treatment, rates of net assimilation were ~1·6 times greater in the ambient + 165 μmol mol?1 CO2 treatment and 2·2 times greater in the ambient + 330 μmol mol?1 CO2 treatment. These ratios did not change appreciably in measurements made in all four seasons even though mean ambient air temperatures during the measurement periods ranged from 12·6 to 28·2°C. This indicated that the effect of elevated CO2 concentrations on net assimilation under field conditions was primarily additive. The results also indicated that the effect of elevated CO2 (+ 165 or + 330 μmol mol?1) was much greater than the effect of a 2°C increase in air temperature on net assimilation and growth in this species.  相似文献   

13.
The interactive effects of increased carbon dioxide (CO2) concentration and ultraviolet-B (UV-B, 280–320 nm) radiation on Acacia karroo Hayne, a C3 tree, and Themeda triandra Forsk., a C4 grass, were investigated. We tested the hypothesis that A. karroo would show greater CO2-induced growth stimulation than T. triandra, which would partially explain current encroachment of A. karroo into C4 grasslands, but that increased UV-B could mitigate this advantage. Seedlings were grown in open-top chambers in a greenhouse in ambient (360 μmol mol-1) and elevated (650 μmol mol-1) CO2, combined with ambient (1.56 to 8.66 kJ m-2 day-1) or increased (2.22 to 11.93 kJ m-2 day-1) biologically effective (weighted) UV-B irradiances. After 30 weeks, elevated CO2 had no effect on biomass of A. karroo, despite increased net CO2 assimilation rates. Interaction between UV-B and CO2 on stomatal conductance was found, with conductances decreasing only where elevated CO2 and UV-B were supplied separately. Increases in water use efficiencies, foliar starch concentrations, root nodule numbers and total nodule mass were measured in elevated CO2. Elevated UV-B caused only an increase in foliar carbon concentrations. In T. triandra, net CO2 assimilation rates were unaffected in elevated CO2, but stomatal conductances and foliar nitrogen concentrations decreased, and water use efficiencies increased. Biomass of all vegetative fractions, particularly leaf sheaths, was increased in elevated CO2. and was accompanied by increased leaf blade lengths and individual leaf and leaf sheath masses. However, tiller numbers were reduced in elevated CO2. Significantly moderating effects of elevated UV-B were apparent only in individual masses of leaf blades and sheaths, and in total sheath and shoot biomass. The direct CO2-induced growth responses of the species therefore do not support the hypothesis of CO2-driven woody encroachment of C4 grasslands. Rather, differential changes in resource use efficiency between grass and woody species, or morphological responses of grass species, could alter the competitive balance. Increased UV-B radiation is unlikely to substantially alter the CO2 response of these species.  相似文献   

14.
The effects of varying nitrogen supply on canopy leaf area, response of leaf net photosynthesis (An) to quantum flux density (Q), and fruit yields of kiwifruit vines (Actinidia deliciosa var. deliciosa) were examined in a two-year field experiment. Vines were grown with 0, 250 or 750 kg N ha?1 year?1. The responses to nitrogen supply were compared with responses to shade, to examine the impact of reduced carbon assimilation on canopy leaf area and fruit yields. Nitrogen supply did not affect significantly any of the measured variables during the first season of the experiment. In the second season, canopy leaf area was reduced significantly where nitrogen supply was limited. The quantum efficiency of photosynthesis (φq) increased from 0. 03 mol CO2 mol?1 Q soon after leaf emergence to more than 0. 05 mol CO2 mol?1 Q during the middle of the growing season. The quantum saturated rate of An (Asat) also increased during the season, from 7–10 μmol CO2 m?2 s?1 soon after leaf emergence, to 15–20 (μmol CO2 m?2 s?1 during the middle of the growing season. φq and Asat increased significantly with nitrogen supply at all measurement times during the second season. For vines with high nitrogen, fruit yields in both seasons were similar, averaging 3. 05 kg m?2. Fruit yields in the second season were reduced significantly where nitrogen supply was limited, due to reduced fruit numbers. The relative effects of reduced leaf area and reduced leaf photosynthesis for carbon assimilation by nitrogen deficient vines were examined using a mathematical model of canopy photosynthesis for kiwifruit vines. Simulations of canopy photosynthesis indicated that effects on leaf area and on leaf photosynthesis were of similar importance in the overall effects of nitrogen deficiency on carbon assimilation. The effects of nitrogen supply on fruit numbers (i. e. flower development) preceded the measured effects on carbon assimilation, indicating that the nitrogen supply affected carbon partitioning to reserves in the first season.  相似文献   

15.
Cycads were a dominant plant functional type during the Mesozoic Era when atmospheric carbon dioxide [CO2] greatly exceeded current conditions. Cycads, now rare and endangered, are slow‐growing perennial gymnosperms that develop carbon‐rich structural biomass, such as sclerophyllous leaves, dense stems and massive reproductive cones. Is cycad carbon partitioning to specific organs a constraint of their high [CO2] evolutionary history (CO2 legacy hypothesis, CLH)? To explore changes in cycad growth, carbon partitioning and assimilation responses that could be expected during the CO2 depletion of the Cenozoic Era, individuals of the cycad species Encephalartos villosus plants were grown at four CO2 levels: 400, 550, 750 and 1000 μmol mol?1. The CLH predicts that cycad biomass and growth rates would increase in elevated [CO2] due to increased net assimilation rates, and that carbon‐dense structures would provide sufficient carbohydrate sinks to prevent photosynthetic down‐regulation even under super‐ambient [CO2] of 1000 μmol mol?1. Both hypotheses were confirmed, though the latter less strongly. Plant relative growth rates increased 23% and biomass accumulation increased 65% in 1000 μmol mol?1relative to 400 μmol mol?1 treatment groups. Mean net assimilation rates increased 130% at 1000 μmol mol?1 relative to 400 μmol mol?1 CO2, though there was some down‐regulation of maximum rate of carboxylation (Vcmax). Assimilation rates, relative growth rates, biomass and mean leaf sugar content were linearly related to [CO2] over the entire experimental range. Photosynthesis appears to be regulated by stomata at low CO2 levels and by non‐stomatal (i.e. biochemical limitations) at greater concentrations. In general, our results suggest that growth and physiological performance of cycads have been severely compromised by declining [CO2] during the Cenozoic Era, possibly contributing to the current rare and endangered status of this functional type.  相似文献   

16.
Two cultivars of spring wheat (Triticum aestivum L. cvs. Alexandria and Hanno) and three cultivars of winter wheat (cvs. Riband, Mercia and Haven) were grown at two concentrations of CO2 [ambient (355 pmol mol?1) and elevated (708 μmol mol?1)] under two O3 regimes [clean air (< 5 nmol mol?1 O3) and polluted air (15 nmol mol?1 O3 at night rising to a midday maximum of 75 nmol mol?1)] in a phytotron at the University of Newcastle-upon-Tyne. Between the two-leaf stage and anthesis, measurements of leaf gas-exchange, non-structural carbohydrate content, visible O3 damage, growth, dry matter partitioning, yield components and root development were made in order to examine responses to elevated CO2 and/or O3. Growth at elevated CO2 resulted in a sustained increase in the rate of CO2 assimilation, but after roughly 6 weeks' exposure there was evidence of a slight decline in the photosynthetic rate (c.-15%) measured under growth conditions which was most pronounced in the winter cultivars. Enhanced rates of CO2 assimilation were accompanied by a decrease in stomatal conductance which improved the instantaneous water use efficiency of individual leaves. CO2 enrichment stimulated shoot and root growth to an equivalent extent, and increased tillering and yield components, however, non-structural carbohydrates still accumulated in source leaves. In contrast, long-term exposure to O3 resulted in a decreased CO2 assimilation rate (c. -13%), partial stomatal closure, and the accumulation of fructan and starch in leaves in the light. These effects were manifested in decreased rates of shoot and root growth, with root growth more severely affected than shoot growth. In the combined treatment growth of O3-treated plants was enhanced by elevated CO2, but there was little evidence that CO2 enrichment afforded additional protection against O3 damage. The reduction in growth induced by O3 at elevated CO2 was similar to that induced by O3 at ambient CO2 despite additive effects of the individual gases on stomatal conductance that would be expected to reduce the O3 flux by 20%, and also CO2-induced increases in the provision of substrates for detoxification and repair processes. These observations suggest that CO2 enrichment may render plants more susceptible to O3 damage at the cellular level. Possible mechanisms are discussed.  相似文献   

17.
Potato plants (Solanum tuberosum L. cv. Bintje) were grown to maturity in open-top chambers under three carbon dioxide (CO2; ambient and 24 h d−1 seasonal mean concentrations of 550 and 680 μmol mol−1) and two ozone levels (O3; ambient and an 8 h d−1 seasonal mean of 50 nmol mol−1). Chlorophyll content, photosynthetic characteristics, and stomatal responses were determined to test the hypothesis that elevated atmospheric CO2 may alleviate the damaging influence of O3 by reducing uptake by the leaves. Elevated O3 had no detectable effect on photosynthetic characteristics, leaf conductance, or chlorophyll content, but did reduce SPAD values for leaf 15, the youngest leaf examined. Elevated CO2 also reduced SPAD values for leaf 15, but not for older leaves; destructive analysis confirmed that chlorophyll content was decreased. Leaf conductance was generally reduced by elevated CO2, and declined with time in the youngest leaves examined, as did assimilation rate (A). A generally increased under elevated CO2, particularly in the older leaves during the latter stages of the season, thereby increasing instantaneous transpiration efficiency. Exposure to elevated CO2 and/or O3 had no detectable effect on dark-adapted fluorescence, although the values decreased with time. Analysis of the relationships between assimilation rate and intercellular CO2 concentration and photosynthetically active photon flux density showed there was initially little treatment effect on CO2-saturated assimilation rates for leaf 15. However, the values for plants grown under 550 μmol mol−1 CO2 were subsequently greater than in the ambient and 680 μmol mol−1 treatments, although the beneficial influence of the former treatment declined sharply towards the end of the season. Light-saturated assimilation was consistently greater under elevated CO2, but decreased with time in all treatments. The values decreased sharply when leaves grown under elevated CO2 were measured under ambient CO2, but increased when leaves grown under ambient CO2 were examined under elevated CO2. The results obtained indicate that, although elevated CO2 initially increased assimilation and growth, these beneficial effects were not necessarily sustained to maturity as a result of photosynthetic acclimation and the induction of earlier senescence.  相似文献   

18.
A free-air CO2 enrichment (FACE) system was designed to permit the experimental exposure of tall vegetation such as stands of forest trees to elevated atmospheric CO2 concentrations ([CO2]a) without enclosures that alter tree microenvironment. We describe a prototype FACE system currently in operation in forest plots in a maturing loblolly pine (Pinus taeda L.) stand in North Carolina, USA. The system uses feedback control technology to control [CO2] in a 26 m diameter forest plot that is over 10 m tall, while monitoring the 3D plot volume to characterize the whole-stand CO2 regime achieved during enrichment. In the second summer season of operation of the FACE system, atmospheric CO2 enrichment was conducted in the forest during all daylight hours for 96.7% of the scheduled running time from 23 May to 14 October with a preset target [CO2] of 550 μmol mol–1, ≈ 200 μmol mol–1 above ambient [CO2]. The system provided spatial and temporal control of [CO2] similar to that reported for open-top chambers over trees, but without enclosing the vegetation. The daily average daytime [CO2] within the upper forest canopy at the centre of the FACE plot was 552 ± 9 μmol mol–1 (mean ± SD). The FACE system maintained 1-minute average [CO2] to within ± 110 μmol mol–1 of the target [CO2] for 92% of the operating time. Deviations of [CO2] outside of this range were short-lived (most lasting < 60 s) and rare, with fewer than 4 excursion events of a minute or longer per day. Acceptable spatial control of [CO2] by the system was achieved, with over 90% of the entire canopy volume within ± 10% of the target [CO2] over the exposure season. CO2 consumption by the FACE system was much higher than for open-top chambers on an absolute basis, but similar to that of open-top chambers and branch bag chambers on a per unit volume basis. CO2 consumption by the FACE system was strongly related to windspeed, averaging 50 g CO2 m–3 h–1 for the stand for an average windspeed of 1.5 m s–1 during summer. The [CO2] control results show that the free-air approach is a tractable way to study long-term and short-term alterations in trace gases, even within entire tall forest ecosystems. The FACE approach permits the study of a wide range of forest stand and ecosystem processes under manipulated [CO2]a that were previously impossible or intractable to study in true forest ecosystems.  相似文献   

19.
The effects of atmospheric CO2 enrichment and root restriction on photosynthetic characteristics and growth of banana (Musa sp. AAA cv. Gros Michel) plants were investigated. Plants were grown aeroponically in root chambers in controlled environment glasshouse rooms at CO2 concentrations of 350 or 1 000 μmol CO2 mol-1. At each CO2 concentration, plants were grown in large (2001) root chambers that did not restrict root growth or in small (20 1) root chambers that restricted root growth. Plants grown at 350 μmol CO2 mol-1 generally had a higher carboxylation efficiency than plants grown at 1 000 μmol CO2 mol-1 although actual net CO2 assimilation (A) was higher at the higher ambient CO2 concentration due to increased intercellular CO2 concentrations (Ci resulting from CO2 enrichment. Thus, plants grown at 1 000 μmol CO2 mol-1 accumulated more leaf area and dry weight than plants grown at 350 μmol CO2 mol-1. Plants grown in the large root chambers were more photosynthetically efficient than plants grown in the small root chambers. At 350 μmol CO2 mol-1, leaf area and dry weights of plant organs were generally greater for plants in the large root chambers compared to those in the small root chambers. Atmospheric CO2 enrichment may have compensated for the effects of root restriction on plant growth since at 1 000 μmol CO2 mol-1 there was generally no effect of root chamber size on plant dry weight.  相似文献   

20.
This study examines the extent to which the predicted CO2‐protective effects on the inhibition of growth, impairment of photosynthesis and nutrient imbalance caused by saline stress are mediated by an effective adaptation of the endogenous plant hormonal balance. Therefore, sweet pepper plants (Capsicum annuum, cv. Ciclón) were grown at ambient or elevated [CO2] (400 or 800 µmol mol–1) with a nutrient solution containing 0 or 80 mM NaCl. The results show that, under saline conditions, elevated [CO2] increased plant dry weight, leaf area, leaf relative water content and net photosynthesis compared with ambient [CO2], whilst the maximum potential quantum efficiency of photosystem II was not modified. In salt‐stressed plants, elevated [CO2] increased leaf NO3 concentration and reduced Cl concentration. Salinity stress induced ABA accumulation in the leaves but it was reduced in the roots at high [CO2], being correlated with the stomatal response. Under non‐stressed conditions, IAA was dramatically reduced in the roots when high [CO2] was applied, which resulted in greater root DW and root respiration. Additionally, the observed high CK concentration in the roots (especially tZR) could prevent downregulation of photosynthesis at high [CO2], as the N level in the leaves was increased compared with the ambient [CO2], under salt‐stress conditions. These results demonstrate that the hormonal balance was altered by the [CO2], which resulted in significant changes at the growth, gas exchange and nutritional levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号