共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Role of the catabolite activator protein in the maltose regulon of Escherichia coli. 总被引:4,自引:20,他引:4 下载免费PDF全文
C Chapon 《Journal of bacteriology》1982,150(2):722-729
The maltose regulon consists of three operons controlled by a positive regulatory gene, malT. Deletions of the gene crp were introduced into strains which carried a malT-lacZ hybrid gene. From the observed reduction in beta-galactosidase activity it was concluded that the expression of malT-lacZ, and therefore of malT, is controlled by the catabolite activator protein (CAP), the product of the gene crp. Mutations were obtained which allowed a malT-lacZ hybrid gene to be expressed at a high level even in the absence of CAP. These mutations were shown to be located in or close to the promoter of the malT gene and were called malTp. The malTp mutations were transferred in the cis position to a wild-type malT gene. In the resulting strains, the expression of two of the maltose operons, malEFG and malK-lamB, still required the action of CAP, whereas that of the third operon, malPQ, was CAP independent. Therefore, in wild-type cells, CAP appears to control malPQ expression mainly, if not solely, by regulating the concentration of MalT protein in the cell. On the other hand, it controls the other two operons more stringently, both by regulating malT expression and by a more direct action, probably exerted in the promoters of these operons. 相似文献
8.
9.
10.
The ability of short-chain sugars to cause oxidative stress has been examined using glycolaldehyde as the simplest sugar. Short-chain sugars autoxidize in air, producing superoxide and alpha,beta-dicarbonyls. In Escherichia coli the soxRS regulon mediates an oxidative stress response, which protects the cell against both superoxide-generating agents and nitric oxide. In superoxide dismutase-deficient E. coli mutants, glycolaldehyde induces fumarase C and nitroreductase A, which are regulated as members of the soxRS regulon. A mutational defect in soxRS eliminates that induction. This establishes that glycolaldehyde can cause induction of this defensive regulon. This effect of glycolaldehyde was oxygen-dependent, was not shown by glyoxal, and was not seen in the superoxide dismutase-replete parental strain, and it was abolished by a cell-permeable SOD mimetic. All of these suggest that superoxide radicals produced by the oxidation of glycolaldehyde played a key role in the induction. 相似文献
11.
12.
Chun Hua Li Yong Xiao Yang Ji Guo Su Bin Liu Jian Jun Tan Xiao Yi Zhang Cun Xin Wang 《Biopolymers》2014,101(7):758-768
The maltose transporter from Escherichia coli is one of the ATP‐binding cassette (ABC) transporters that utilize the energy from ATP hydrolysis to translocate substrates across cellular membranes. Until 2011, three crystal structures have been determined for maltose transporter at different states in the process of transportation. Here, based on these crystal structures, the allosteric pathway from the resting state (inward‐facing) to the catalytic intermediate state (outward‐facing) is studied by applying an adaptive anisotropic network model. The results suggest that the allosteric transitions proceed in a coupled way. The closing of the nucleotide‐binding domains occurs first, and subsequently this conformational change is propagated to the transmembrane domains (TMD) via the EAA and EAS loops, and then to the maltose‐binding protein, which facilitates the translocation of the maltose. It is also found that there exist nonrigid‐body and asymmetric movements in the TMD. The cytoplasmic gate may only play the role of allosteric propagation during the transition from the pretranslocation to outward‐facing states. In addition, the results show that the movment of the helical subdomain towards the RecA‐like subdomain mainly occurs in the earlier stages of the transition. These results can provide some insights into the understanding of the mechanism of ABC transporters. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 758–768, 2014. 相似文献
13.
The activities of the Escherichia coli MalK protein in maltose transport, regulation, and inducer exclusion can be separated by mutations 总被引:5,自引:12,他引:5 下载免费PDF全文
The maltose regulon consists of several genes encoding proteins involved in the uptake and utilization of maltose and maltodextrins. Five proteins make up a periplasmic binding-protein-dependent active transport system. One of these proteins, MalK, contains an ATP-binding site and is thought to couple the hydrolysis of ATP to the accumulation of substrate. Beside its function in transport, MalK has two additional roles: (i) it negatively regulates mal regulon expression and (ii) it serves as the target for regulation of transport activity by enzyme IIIGlc of the phosphotransferase system. To determine whether the three functions of MalK are separable, we have isolated and characterized three classes of malK mutations. The first type (class I) exhibited constitutive mal gene expression but still allowed normal transport of maltose; the second type (class II) lacked the ability to transport maltose but retained the ability to repress the mal genes. Class I mutations were localized in the last third of the gene, at amino acids 267 (Trp to Gly) and 346 (Gly to Ser). Mutations of class II were found at the positions 137 (Gly to Ala), 140 (delta Gln Arg), and 158 (Asp to Asn). These mutations are near or within the region of MalK that exhibits extensive homology to the B site of an ATP-binding fold. In addition, site-directed mutagenesis was used to add or remove one amino acid in the A site of the ATP-binding fold. Plasmids carrying these mutations also behaved as class II mutants. The third class of malK mutations resulted in resistance to the enzyme IIIGlc-mediated inhibitory effects of alpha-methylglucoside. These mutations did not interfere with the regulatory function of MalK. One of these mutations (exchanging a serine at position 282 for leucine) is located in a short stretch of amino acids that exhibits homology to a sequence in the Escherichia coli Lac permease in which alpha-methylglucoside-resistant mutations have been found. 相似文献
14.
The malZ gene of Escherichia coli, a member of the maltose regulon, encodes a maltodextrin glucosidase 总被引:7,自引:0,他引:7
We have characterized a maltodextrin glucosidase, previously described as a maltose-inducible, cytoplasmic enzyme that cleaves p-nitrophenyl-alpha-maltoside in Escherichia coli. The gene encoding the enzyme activity, referred to as malZ, is located at 9.3 min on the chromosomal map. We cloned the gene in a high copy number vector and purified the enzyme. It is a monomer, with an apparent molecular weight of 65,000. The enzyme degrades maltodextrins, ranging from maltotriose to maltoheptaose, to shorter oligosaccharides, the final hydrolysis products being maltose and glucose. We measured the kinetic parameters, Km and Vmax, for the hydrolysis to glucose of the five different substrates. The binding of the substrate is enhanced by increasing the number of glucosyl residues in the maltodextrin. In contrast, the maximum rate of hydrolysis (Vmax) is fastest for maltotriose. To study the mode of action of the enzyme, we quantitatively measured the amount of free glucose liberated from the different maltodextrin substrates after a long incubation. More glucose is liberated from the long dextrins, as compared to the shorter ones, showing that the primary hydrolysis product was glucose, not maltose. Furthermore, [14C]maltotriose, specifically labeled at the reducing end, was hydrolyzed to [14C]glucose and unlabeled maltose. These data demonstrate that the malZ gene product is a maltodextrin glucosidase, liberating glucose from the reducing end of malto-oligosaccharides. The nucleotide sequence of malZ and the deduced amino acid sequence showed that malZ encodes a protein with a molecular weight of 68,960. Homology to glucosidases, alpha-amylases, and pullulanases were observed. Conserved regions thought to represent active sites in dextrin hydrolases were found in the MalZ protein. 相似文献
15.
16.
17.
Summary Four genes, nagR, A, B and E, clustered in the nag locus of Escherichia coli K12 and Klebsiella pneumoniae, were cloned and physically mapped, and the corresponding gene products involved in amino sugar metabolism identified. Expression of the nag genes was also analysed using a series of lacZ fusions. In both bacteria, the genes are arranged in two divergent operons and controlled by a common NagR repressor. The corresponding gene nagR was found to map in the first operon together with the promoter proximal gene nagB, encoding the enzyme d-glucosamine isomerase (deaminase) (NagB) and the middle gene nagA, coding for N-acetyl-glucosamine deacetylase (NagA). Polar mutations in nagB and nagA prevent the efficient expression of nagR and cause constitutive expression of all nag genes. This includes the gene nagE encoding Enzyme IINag of the phosphoenolpyruvate-dependent carbohydrate phosphotransferase system (PTS), encoded in the second divergently transcribed operon. No further gene is found in this operon which in both organisms is directly adjacent to the gene glnS. It is interesting that the NagR repressor also affects the mannose PTS (genes manX, Y, Z), the second transport system involved in amino sugar uptake and phosphorylation. 相似文献
18.
David J. Sherman Suguru Okuda William A. Denny Daniel Kahne 《Bioorganic & medicinal chemistry》2013,21(16):4846-4851
The presence of lipopolysaccharide (LPS) in the outer leaflet of the outer membrane (OM) of Gram-negative bacteria creates a permeability barrier that prevents the entry of most currently available antibiotics. The seven lipopolysaccharide transport (Lpt) proteins involved in transporting and assembling this glycolipid are essential for growth and division in Escherichia coli; therefore, inhibiting their functions leads to cell death. LptB, the ATPase that provides energy for LPS transport and assembly, forms a complex with three other inner membrane (IM) components, LptC, F, and G. We demonstrate that inhibitors of pure LptB can also inhibit the full IM complex, LptBFGC, purified in detergent. We also compare inhibition of LptB and the LptBFGC complex with the antibiotic activity of these compounds. Our long-term goal is to develop tools to study inhibitors of LPS biogenesis that could serve as potentiators by disrupting the OM permeability barrier, facilitating entry of clinically used antibiotics not normally used to treat Gram-negative infections, or that can serve as antibiotics themselves. 相似文献
19.
SufC is an ATPase component of the SUF machinery, which is involved in the biosynthesis of Fe-S clusters. To gain insight into the function of this protein, we have determined the crystal structure of Escherichia coli SufC at 2.5A resolution. Despite the similarity of the overall structure with ABC-ATPases (nucleotide-binding domains of ABC transporters), some key differences were observed. Glu171, an invariant residue involved in ATP hydrolysis, is rotated away from the nucleotide-binding pocket to form a SufC-specific salt bridge with Lys152. Due to this salt bridge, D-loop that follows Glu171 is flipped out to the molecular surface, which may sterically inhibit the formation of an active dimer. Thus, the salt bridge may play a critical role in regulating ATPase activity and preventing wasteful ATP hydrolysis. Furthermore, SufC has a unique Q-loop structure on its surface, which may form a binding site for its partner proteins, SufB and/or SufD. 相似文献