首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural products from plants such as flavonoids are potential drugs to overcome multidrug resistance (MDR) in cancer treatments. However, their modes of action are still unclear. In this study, the effects of quercetin on mitochondrial membrane potential (DeltaPsim) change as well as quercetin's ability to induce apoptosis and inhibit Pgp-mediated efflux of 99mTc-MIBI in K562/adr cells were investigated. Quercetin exhibits cytotoxicity against erythroleukemic cells: IC50 are 11.0 +/- 2.0 micromol/L and 5.0 +/- 0.4 micromol/L for K562 and K562/adr, respectively. Quercetin induces cell death via apoptosis in both K562 and K562/adr cells and does not inhibit Pgp-mediated efflux of 99mTc-MIBI. Quercetin (10 micromol/L, 3 h) and etoposide (100 micromol/L, 24 h) induce similar levels of apoptosis in K562 and K562/adr cells. Quercetin induces an increase followed by a decrease in |DeltaPsim| value depending on its concentration. A decrease in the |DeltaPsim| value is associated with an increase in the percentage of early apoptotic cells. It is clearly shown that quercetin results in a spontaneous DeltaPsim change during apoptotic induction. Therefore, quercetin is potentially an apoptotic-inducing agent, which reacts at the mitochondrial level.  相似文献   

2.
There has been considerable interest in recent years in the anti-tumor activities of flavonoids. Quercetin, a ubiquitous bioactive flavonoid, can inhibit proliferation and induce apoptosis in a variety of cancer cells. However, the precise molecular mechanism by which quercetin induces apoptosis in cancer cells is poorly understood. The present study was undertaken to examine the effect of quercetin on cell viability and to determine its underlying mechanism in human glioma cells. Quercetin resulted in loss of cell viability in a dose- and time-dependent manner and the decrease in cell viability was mainly attributed to cell death. Quercetin did not increase reactive oxygen species (ROS) generation and the quercetin-induced cell death was also not affected by antioxidants, suggesting that ROS generation is not involved in loss of cell viability. Western blot analysis showed that quercetin treatment caused rapid reduction in phosphorylation of extracellular signal-regulated kinase (ERK) and Akt. Transient transfection with constitutively active forms of MEK and Akt protected against the quercetin-induced loss of cell viability. Quercetin-induced depolarization of mitochondrial membrane potential. Caspase activity was stimulated by quercetin and caspase inhibitors prevented the quercetin-induced loss of cell viability. Quercetin resulted in a decrease in expression of survivin, antiapoptotic proteins. Taken together, these findings suggest that quercetin results in human glioma cell death through caspase-dependent mechanisms involving down-regulation of ERK, Akt, and survivin.  相似文献   

3.
Quercetin, a flavonoid found in various foodstuffs, has antioxidant properties and increases glutathione (GSH) levels and antioxidant enzyme function. Considerable attention has been focused on increasing the intracellular GSH levels in many diseases, including Alzheimer's disease (AD). Amyloid beta-peptide [Abeta(1-42)], elevated in AD brain, is associated with oxidative stress and neurotoxicity. We aimed to investigate the protective effects of quercetin on Abeta(1-42)-induced oxidative cell toxicity in cultured neurons in the present study. Decreased cell survival in neuronal cultures treated with Abeta(1-42) correlated with increased free radical production measured by dichlorofluorescein fluorescence and an increase in protein oxidation (protein carbonyl, 3-nitrotyrosine) and lipid peroxidation (protein-bound 4-hydroxy-2-nonenal). Pretreatment of primary hippocampal cultures with quercetin significantly attenuated Abeta(1-42)-induced cytotoxicity, protein oxidation, lipid peroxidation and apoptosis. A dose-response study suggested that quercetin showed protective effects against Abeta(1-42) toxicity by modulating oxidative stress at lower doses, but higher doses were not only non-neuroprotective but also toxic. These findings provide motivation to test the hypothesis that quercetin may provide a promising approach for the treatment of AD and other oxidative-stress-related neurodegenerative diseases.  相似文献   

4.
TRAIL apoptosis is enhanced by quercetin through Akt dephosphorylation   总被引:4,自引:0,他引:4  
TNF-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapy that preferentially induces apoptosis in cancer cells. However, many neoplasms are resistant to TRAIL by mechanisms that are poorly understood. Here we demonstrated that human prostate cancer cells, but not normal prostate cells, are dramatically sensitized to TRAIL-induced apoptosis and caspase activation by quercetin. Quercetin, a ubiquitous bioactive plant flavonoid, has been shown to inhibit the proliferation of cancer cells. We have shown that quercetin can potentiate TRAIL-induced apoptotic death. Human prostate adenocarcinoma DU-145 and LNCaP cells were treated with various concentrations of TRAIL (10-200 ng/ml) and/or quercetin (10-200 microM) for 4 h. Quercetin, which caused no cytotoxicity by itself, promoted TRAIL-induced apoptosis. The TRAIL-mediated activation of caspase, and PARP (poly(ADP-ribose) polymerase) cleavage were both enhanced by quercetin. Western blot analysis showed that combined treatment with TRAIL and quercetin did not change the levels of TRAIL receptors (death receptors DR4 and DR5, and DcR2 (decoy receptor 2)) or anti-apoptotic proteins (FLICE-inhibitory protein (FLIP), inhibitor of apoptosis (IAP), and Bcl-2). However, quercetin promoted the dephosphorylation of Akt. Quercetin-induced potent inhibition of Akt phosphorylation. Taken together, the present studies suggest that quercetin enhances TRAIL-induced cytotoxicity by activating caspases and inhibiting phosphorylation of Akt.  相似文献   

5.
6.
Quercetin has been reported to have carcinogenic effects. However, both quercetin and luteolin have anti-cancer activity. To clarify the mechanism underlying the carcinogenic effects of quercetin, we compared DNA damage occurring during apoptosis induced by quercetin with that occuring during apoptosis induced by luteolin. Both quercetin and luteolin similarly induced DNA cleavage with subsequent DNA ladder formation, characteristics of apoptosis, in HL-60 cells. In HP 100 cells, an H2O2-resistant clone of HL-60 cells, the extent of DNA cleavage and DNA ladder formation induced by quercetin was less than that in HL-60 cells, whereas differences between the two cell types were minimal after treatment with luteolin. In addition, quercetin increased the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), an indicator of oxidative DNA damage, in HL-60 cells but not in HP 100 cells. Luteolin did not increase 8-oxodG formation, but inhibited topoisomerase II (topo II) activity of nuclear extract more strongly than quercetin and cleaved DNA by forming a luteolin-topo II-DNA ternary complex. These results suggest that quercetin induces H2O2-mediated DNA damage, resulting in apoptosis or mutations, whereas luteolin induces apoptosis via topo II-mediated DNA cleavage. The H2O2-mediated DNA damage may be related to the carcinogenic effects of quercetin.  相似文献   

7.
Quercetin is one of the naturally occurring dietary flavonol compounds. It is present abundantly in plants and has chemopreventive and anticancer effects. To investigate its anticancer mechanism, we examined the activity of quercetin against acute leukemia cell line, HL-60. Our results showed that quercetin inhibited cell proliferation and induced apoptosis in a time- and dose-dependent manner. Furthermore, quercetin down-regulated the expression of anti-apoptosis protein Bcl-2 and up-regulated the expression of pro-apoptosis protein Bax. Caspase-3 was also activated by quercetin, which started a caspase-3-depended mitochodrial pathway to induce apoptosis. It was also found that quercetin inhibited the expression of the cycloocygenase-2 (Cox-2) mRNA and Cox-2 protein. Taken together, these findings suggested that quercetin induces apoptosis in a caspase-3-dependent pathway by inhibiting Cox-2 expression and regulates the expression of downstream apoptotic components, including Bcl-2 and Bax. Quercetin can be a potent and promising medicine which might be safely used in leukemia therapy.  相似文献   

8.
9.
Quercetin is a kind of polyphenolic flavonoid compounds which has perfect antioxidant properties. However, quercetin is not available in many situations due to its poor bioavailability. In this work, the QAEs with better solubility and even stronger antioxidant properties were synthesized, through the esterification between quercetin and the chlorinated cinnamic acid or its derivatives, whose chlorination were achieved by using SOCl2. The protective effects of the QAEs were evaluated by the H2O2-induced apoptosis experiment in rat adrenal pheochromocytoma cells (PC12 cells) and its ability to remove ROS generated by oxidative stress. Compared with the original quercetin group, the QAEs groups showed much improved cell viability and capability of removing ROS, which means their higher bioavailability than the parent.  相似文献   

10.
Apoptosis of chondrocytes are the main initiator of osteoarthritis (OA) and can be explained by oxidative stress and endoplasmic reticulum (ER) stress, thus the pharmacological interventions aimed at inhibiting of these pathways may be a promising approach for the management of OA. Quercetin is a member of the flavonoid family and has antioxidant and anti-inflammatory properties in degenerative diseases. However, its effects and potential mechanisms on the pathological process of OA are not very clear. The present study aimed to investigate the protective effects of quercetin on OA and the underlying mechanisms. The tert-butyl hydroperoxide (TBHP)-stimulated rat chondrocytes and destabilization of the medial meniscus OA rat model was used to explore the protective effects of quercetin. Our results showed that quercetin treatment can attenuate oxidative stress, ER stress, and associated apoptosis. Moreover, quercetin inhibited ER stress through activating the sirtuin1/adenosine monophosphate-activated protein kinase (SIRT1/AMPK) signaling pathway. The protective effects of quercetin were also observed in OA rat model which is evidenced by abolished cartilage degeneration and decreased chondrocytes apoptosis in the knee joints. Our results suggested that quercetin is a promising treatment for OA.  相似文献   

11.
Quercetin has been reported to have carcinogenic effects. However, both quercetin and luteolin have anti-cancer activity. To clarify the mechanism underlying the carcinogenic effects of quercetin, we compared DNA damage occurring during apoptosis induced by quercetin with that occuring during apoptosis induced by luteolin. Both quercetin and luteolin similarly induced DNA cleavage with subsequent DNA ladder formation, characteristics of apoptosis, in HL-60 cells. In HP 100 cells, an H2O2-resistant clone of HL-60 cells, the extent of DNA cleavage and DNA ladder formation induced by quercetin was less than that in HL-60 cells, whereas differences between the two cell types were minimal after treatment with luteolin. In addition, quercetin increased the formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), an indicator of oxidative DNA damage, in HL-60 cells but not in HP 100 cells. Luteolin did not increase 8-oxodG formation, but inhibited topoisomerase II (topo II) activity of nuclear extract more strongly than quercetin and cleaved DNA by forming a luteolin-topo II-DNA ternary complex. These results suggest that quercetin induces H2O2-mediated DNA damage, resulting in apoptosis or mutations, whereas luteolin induces apoptosis via topo II-mediated DNA cleavage. The H2O2-mediated DNA damage may be related to the carcinogenic effects of quercetin.  相似文献   

12.
Quercetin is a natural flavonoid with well-established anti-proliferative activities against a variety of cancers. Telomerase inhibitor MST-312 also exhibits anti-proliferative effect on various cancer cells independent of its effect on telomere shortening. However, due to their low absorption and toxicity at higher doses, their clinical development is limited. In the present study, we examine the synergistic potential of their combination in cancer cells, which may result in a decrease in the therapeutic dosage of these compounds. We report that MST-312 and quercetin exhibit strong synergism in ovarian cancer cells with combination index range from 0.2 to 0.7. Co-treatment with MST-312 and quercetin upregulates the DNA damage and augments apoptosis when compared to treatment with either compound alone or a vehicle. We also examined the effect of these compounds on the proliferation of normal ovarian surface epithelial cells (OSEs). MST-312 has a cytoprotective impact in OSEs at lower dosages, but is inhibitory at higher doses. Quercetin did not affect the OSEs proliferation at low concentrations while at higher concentrations it is inhibitory. Notably, combination of MST-312 and quercetin had no discernible impact on OSEs. These observations have significant implications for future efforts towards maximizing efficacy in cancer therapeutics as this co-treatment specifically affects cancer cells and reduces the effective dosage of both the compounds.  相似文献   

13.
Quercetin is a very common flavonoid widely distributed in many plants. The flavonoid intake has been linked to the prevention of some human diseases including cancer. Quercetin inhibits heat shock protein expression and in this way triggers apoptosis of tumor cells. The present study was designed to investigate whether quercetin exerts cytotoxic activity against human colon adenocarcinoma cells. The studies have shown that quercetin alone and in combination with the heat shock can induce apoptosis and necrosis in vitro in human colon adenocarcinoma cells (LS 180). Relationships between heat shock proteins and quercetin in this phenomenon are discussed.  相似文献   

14.
Cornea absorbs most of daily ultraviolet (UV) light. An excess of UV damages results in not only keratopathy and cataract but also maculopathy. It has been reported that thymosin beta-4 (Tbeta4) promotes wound healing, decreases inflammatory response and prevents apoptosis of corneal epithelial cells. However, it is not clear whether Tbeta4 protects UVB-induced corneal injury, particularly in corneal endothelial cells because of its non-proliferation in nature. The purpose of this study is to compare the protective effects of Tbeta4 on bovine corneal endothelial (BCE) cells from low- and high-dose UVB damage. In this study, 1 microg/ml of Tbeta4 was added to BCE cells 2 h before low (12.5 mj/cm2) or high dosage (100 mj/cm2) UVB exposure. Using a fluorogenic substrate cleavage assay, we found that Tbeta4 diminished the reactive oxygen species level in BCE cells elicited by UVB. However, the protection of viability by Tbeta4 could only be detected under low-dose UVB exposure. Moreover, both caspase-9 activity and annexin V/propidium iodine staining demonstrated that Tbeta4 only protected BCE cells from low-dose UVB-induced apoptosis but not high-dose UVB-induced necrosis. Together, Tbeta4 protected corneal endothelial cells from UVB-induced oxidative stress and apoptosis after low-dose UVB exposure. The results support further investigation towards topical use or anterior chamber injection of this small hydrophilic peptide in treating and preventing UVB-induced corneal endothelial damage.  相似文献   

15.
16.
Quercetin is a dietary flavonoid which exerts vasodilator, antiplatelet and antiproliferative effects and reduces blood pressure, oxidative status and end-organ damage in humans and animal models of systemic hypertension. We hypothesized that oral quercetin treatment might be protective in a rat model of pulmonary arterial hypertension. Three weeks after injection of monocrotaline, quercetin (10 mg/kg/d per os) or vehicle was administered for 10 days to adult Wistar rats. Quercetin significantly reduced mortality. In surviving animals, quercetin decreased pulmonary arterial pressure, right ventricular hypertrophy and muscularization of small pulmonary arteries. Classic biomarkers of pulmonary arterial hypertension such as the downregulated expression of lung BMPR2, Kv1.5, Kv2.1, upregulated survivin, endothelial dysfunction and hyperresponsiveness to 5-HT were unaffected by quercetin. Quercetin significantly restored the decrease in Kv currents, the upregulation of 5-HT2A receptors and reduced the Akt and S6 phosphorylation. In vitro, quercetin induced pulmonary artery vasodilator effects, inhibited pulmonary artery smooth muscle cell proliferation and induced apoptosis. In conclusion, quercetin is partially protective in this rat model of PAH. It delayed mortality by lowering PAP, RVH and vascular remodeling. Quercetin exerted effective vasodilator effects in isolated PA, inhibited cell proliferation and induced apoptosis in PASMCs. These effects were associated with decreased 5-HT2A receptor expression and Akt and S6 phosphorylation and partially restored Kv currents. Therefore, quercetin could be useful in the treatment of PAH.  相似文献   

17.
Novel catechin derivatives obtained from grape procyanidins and l-cysteine scavenge free radicals by hydrogen atom donation, rather than electron transfer, and reduce cell viability in A375 and M21 melanoma cells. In particular, 4beta-(S-cysteinyl)epicatechin 3-O-gallate has a free radical scavenging capacity as strong as that of tea (-)-epigallocatechin gallate and causes a significant S-phase cell-cycle arrest in both cell lines at doses higher than 100 microM. The other cysteinyl compounds do not affect normal cell cycle distribution. The gallate derivative also induces apoptosis in melanoma cells more strongly than the other derivatives and the parent (-)-epicatechin do. The gallate compound seems to trigger nuclear condensation and fragmentation, which is confirmed by DNA laddering. Interestingly, they do not induce apoptosis in keratinocytes (HaCaT).  相似文献   

18.
Vitamin C and flavonoids, polyphenols with uncertain function, are abundant in fruits and vegetables. We postulated that flavonoids have a novel regulatory action of delaying or inhibiting absorption of vitamin C and glucose, which are structurally similar. From six structural classes of flavonoids, at least 12 compounds were chosen for studies. We investigated the effects of selected flavonoids on the intestinal vitamin C transporter SVCT1(h) by transfecting and overexpressing SVCT1(h) in Chinese hamster ovary cells. Flavonoids reversibly inhibited vitamin C transport in transfected cells with IC(50) values of 10-50 microm, concentrations expected to have physiologic consequences. The most potent inhibitor class was flavonols, of which quercetin is most abundant in foods. Because Chinese hamster ovary cells have endogenous vitamin C transport, we expressed SVCT1(h) in Xenopus laevis oocytes to study the mechanism of transport inhibition. Quercetin was a reversible and non-competitive inhibitor of ascorbate transport; K(i) 17.8 microm. Quercetin was a potent non-competitive inhibitor of GLUT2 expressed in Xenopus oocytes; K(i) 22.8 microm. When diabetic rats were administered glucose with quercetin, hyperglycemia was significantly decreased compared with administration of glucose alone. Quercetin also significantly decreased ascorbate absorption in normal rats given ascorbate plus quercetin compared with rats given ascorbate alone. Quercetin was a specific transport inhibitor, because it did not inhibit intestinal sugar transporters GLUT5 and SGLT1 that were injected and expressed in Xenopus oocytes. Quercetin inhibited but was not transported by SVCT1(h). Considered together, these data show that flavonoids modulate vitamin C and glucose transport by their respective intestinal transporters and suggest a new function for flavonoids.  相似文献   

19.
UVB irradiation of human skin is known to induce pathophysiological processes as oxidative stress and inflammation. HaCaT keratinocytes represent a well-established in vitro model system to investigate the influence of UVB irradiation on cell cultures. It was the aim of these investigations to study the effects of moderate UVB doses on cellular and mitochondrial integrity of HaCaT keratinocytes, biomarkers of oxidative stress and antioxidant protection by superoxide dismutases. F2-isoprostane concentrations were UVB dose-dependently enhanced reaching a plateau at 50 mJ/cm2. Cell viability was reduced and apoptosis was enhanced with increasing UVB doses. The activities of the respiratory chain complexes were practically not altered at lower UVB doses, up to 50 mJ/cm2, whereas remarkable decreases, also for the levels of cardiolipin species, were seen at 100 mJ/cm2. As an adaptive response to the enhanced oxidative stress, protein levels of MnSOD increased about 3-fold at 50 mJ/cm2 and decreased at higher doses. From the data it can be concluded that keratinocytes are sufficiently protected at low UVB doses, whereas higher doses lead to irreversible cell damage.  相似文献   

20.
Progression of prostate cancer is facilitated by growth factors that activate critical signaling cascades thereby promote prostate cancer cell growth, survival, and migration. To investigate the effect of quercetin on insulin-like growth factor signaling and apoptosis in androgen independent prostate cancer cells (PC-3), IGF-IR, PI-3K, p-Akt, Akt, cyclin D1, Bad, cytochrome c, PARP, caspases-9 and 10 protein levels were assessed by western blot analysis. Mitochondrial membrane potency was detected by rhodamine-123 staining. Quercetin induced caspase-3 activity assay was performed for activation of apoptosis. Further, RT-PCR was also performed for Bad, IGF-I, II, IR, and IGFBP-3 mRNA expression. Quercetin significantly increases the proapoptotic mRNA levels of Bad, IGFBP-3 and protein levels of Bad, cytochrome C, cleaved caspase-9, caspase-10, cleaved PARP and caspase-3 activity in PC-3 cells. IGF-IRβ, PI3K, p-Akt, and cyclin D1 protein expression and mRNA levels of IGF-I, II and IGF-IR were decreased significantly. Further, treatment with PI3K inhibitor (LY294002) and quercetin showed decreased p-Akt levels. Apoptosis is confirmed by loss of mitochondrial membrane potential in quercetin treated PC-3 cells. This study suggests that quercetin decreases the survival of androgen independent prostate cancer cells by modulating the expression of insulin-like growth factors (IGF) system components, signaling molecules and induces apoptosis, which could be very useful for the androgen independent prostate cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号