首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Immunohistochemical studies have previously shown that both the chick brain and chick ciliary ganglion neurons contain a component which shares antigenic determinants with the main immunogenic region of the nicotinic acetylcholine receptor from electric organ and skeletal muscle. Here we describe the purification and initial characterization of this putative neuronal acetylcholine receptor. The component was purified by monoclonal antibody affinity chromatography. The solubilized component sediments on sucrose gradients as a species slightly larger than Torpedo acetylcholine receptor monomers. It was affinity labeled with bromo[3H]acetylcholine. Labeling was prevented by carbachol, but not by alpha-bungarotoxin. Two subunits could be detected in the affinity-purified component, apparent molecular weights 48 000 and 59 000. The 48 000 molecular weight subunit was bound both by a monoclonal antibody directed against the main immunogenic region of electric organ and skeletal muscle acetylcholine receptor and by antisera raised against the alpha subunit of Torpedo receptor. Evidence suggests that there are two alpha subunits in the brain component. Antisera from rats immunized with the purified brain component exhibited little or no cross-reactivity with Torpedo electric organ or chick muscle acetylcholine receptor. One antiserum did, however, specifically bind to all four subunits of Torpedo receptor. Experiments to be described elsewhere (J. Stollberg et al., unpublished results) show that antisera to the purified brain component specifically inhibit the electrophysiological function of acetylcholine receptors in chick ciliary ganglion neurons without inhibiting the function of acetylcholine receptors in chick muscle cells. All of these properties suggest that this component is a neuronal nicotinic acetylcholine receptor with limited structural homology to muscle nicotinic acetylcholine receptor.  相似文献   

2.
3.
We have used the calmodulin antagonists, trifluoperazine (TFP) and calmidazolium, to study the potential role of this protein in the movement of acetylcholine receptors (AChRs) to and from the myotube membrane, as well as in the formation of clusters of AChRs within the plasma membrane. Neither calmidazolium (up to 10(-6) M) nor TFP (10(-5) M) inhibited receptor degradation or the incorporation of new receptors (12 to 24 h). In addition, neither drug blocked the increased synthesis of receptors induced by chick brain extract, nor significantly affected AChR clusters already in the plane of the membrane at the time of drug addition. However, both drugs blocked new receptor clusters (induced by a basement membrane extract from Torpedo electric organ) from forming. These results indicate that receptors can move to and from the cell membrane in a calmodulin-independent fashion, but movement in the plane of the membrane to form a cluster requires the participation of calmodulin.  相似文献   

4.
5.
Some properties of acetylcholine receptors in human cultured myotubes   总被引:1,自引:0,他引:1  
The distribution and single channel properties of acetylcholine (ACh) receptors in human myotubes grown in tissue culture have been examined. Radioautography of myotubes labelled with [125I]alpha-bungarotoxin showed that ACh receptors are distributed uniformly over the myotube surface at a density of 3.9 +/- 0.5 receptors per square micrometre. Accumulations of ACh receptors (hot spots) were found rarely. The conductance and kinetics of ACh-activated channels were investigated with the patch-clamp technique. Cell-attached membrane patches were used in all experiments. A single channel conductance in the range 40-45 pS was calculated. No sublevels of conductance (substates) of the activated channel were observed. The distribution of channel open-times varied with ACh concentration. With 100 nM ACh, the distribution was best fitted by the sum of two exponentials, whereas with 1 microM ACh a single exponential could be fitted. The mean channel open-time at the myotube resting potential (ca. -70 mV, 22 degrees C) was 8.2 ms. The distribution of channel closed-times was complex at all concentrations of ACh studied (100 nM to 10 microM). With desensitizing doses of ACh (10 microM), channel openings occurred in obvious bursts; each burst usually appeared as part of a 'cluster' of bursts. Both burst duration and mean interval between bursts increased with membrane hyperpolarization. Individual channel open-times and burst durations showed similar voltage dependence (e-fold increase per 80 mV hyperpolarization), whereas both the channel closed-times within a burst and the number of openings per burst were independent of membrane potential.  相似文献   

6.
Membrane properties of rat and chick myotubes in various stages of development were studied. Resting membrane potentials (Em) increased from -8 to -55 mV in both rat and chick as the myotubes developed from myoblasts to large multinucleated fibers. In the rat myotubes, this increase was not accompanied by significant changes in specific membrane resistivity or changes in Na+ and K+ ion distribution. Nor have we observed a significant electrogenic component to the resting Em of mature rat myotubes under normal circumstances. A progressive increase in the passive permeability of the membrane to K+ relative to Na+ ions has been observed which can account for the changes in Em with development. In contrast to the changes in the ionic selectivity of the membrane, we have found that the ionic selectivity of the ACh receptor of rat and chick myotubes remains constant during the same period of myotube development.  相似文献   

7.
Both microtubules and microfilaments have been implicated in the exocytotic and endocytotic transport of coated and smooth surfaced membrane vesicles. We have reexamined this question by using specific pharmacological agents to disrupt these filaments and assess the effect on the movement of acetylcholine receptor (AChR) containing membrane vesicles in embryonic chick myotubes. Myotube cultures treated with nocodazole (0.6 microgram/ml) or colcemid (0.5 microgram/ml) (to disrupt microtubules) show only a 20-25% decrease in the number of cell surface AChRs after 48 h. Addition of chick brain extract (CBE) to cultured myotubes causes a significant increase in the total number of cell surface AChRs (measured by [125I]alpha-bungarotoxin (alpha-BGT) binding), thus providing us with a way to manipulate receptor and transport vesicle populations. Cultures treated with CBE plus nocodazole or colcemid show a 1.7-fold increase in AChR number over drug treatment alone, the same increase seen in cultures treated with CBE alone, although the total number remains about 20-25% less than that seen in control cultures. In cultures treated with cytochalasin D (0.2 microgram/ml) or dihydrocytochalasin B (5.0 micrograms/ml) (to disrupt microfilaments), 35 and 65% decreases in cell surface AChR number were seen after 48 h. However, in cultures treated with CBE and cytochalasin D, the same total number of AChRs was found as in cultures treated with CBE alone. No significant effects were seen with any of these drugs on the receptor incorporation rate (the appearance of new alpha-BGT-binding sites) after 6 h. The half-life for AChRs in control cultures was 23.0 h. In cytochalasin D and dihydrocytochalasin B it was 21.9 and 19.0 h, respectively; with colcemid and nocodazole, it increased to 37.1 and 28.1 h. These results suggest that non-myofibrillar microfilament bundles are not involved in the movement of AChR-containing membrane vesicles; further, the small effects seen with microtubule inhibitors tend to rule out a major role for microtubules in this transport.  相似文献   

8.
The presence of muscarinic (M) acetylcholine receptors in the noninnervated chick amnion makes it possible to analyze their functioning with presynaptic effects excluded. The M receptors of the amnion mediating its contraction were identified by testing with selective antagonists: pirenzepine for M1, methoctramine for M2, 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) for M3, and tropicamide for M4 receptor subtype. All antagonists acted as competitive inhibitors of M-acetylcholine receptors. With respect to cholinolytic activity estimated from the response to carbacholine (CBC) (-logIC50), the antagonists could be arranged in the following series: 4-DAMP (8.29) > tropicamide (6.97) > pirenzepine (5.85) > methoctramine (5.63). In addition, the effect of forskolin (5 μM), activator of adenylate cyclase (AC), was unidirectional with ?-adrenergic agonists; it blocked CBC-induced contractile activity of the amnion, whereas phospholipase C (1.25 U/ml) stimulated this activity. These data suggest that CBC-or acetylcholine (ACh)-induced contractile activity of the amnion is mediated by M3 acetylcholine receptors. Evaluation of contractile response to ACh by the tonic component usually revealed one pool of M3 acetylcholine receptors. One pool was also revealed after treatment with 4-DAMP, with the Hill coefficient being increased (ACh, n = 1.07; ACh against the 4-DAMP background, n = 1.48). It is possible to detect two pools of M3-acetylcholine receptors on the basis of either phase-frequency or tonic response, i.e., independently of the test parameter.  相似文献   

9.
Purification of the muscarinic acetylcholine receptor from porcine brain   总被引:6,自引:0,他引:6  
The muscarinic acetylcholine receptor of porcine cerebrum has been purified to apparent homogeneity by affinity chromatography, with conjugated 3-(2'-aminobenzhydryloxy)tropane (ABT) as described previously (Haga, K., and Haga, T. (1983) J. Biol. Chem. 258, 13575-13579). In a single step purification using 900 ml of digitonin/cholate-solubilized preparations and 300 ml of the ABT-agarose gel, we obtained, in a yield of 10-15%, more than 250 pmol of muscarinic receptors which bind [3H]N-methylscopolamine with a specific activity of 1,000-5,000 pmol/mg of protein (1,000-5,000-fold purification). The muscarinic receptors eluted from the ABT-agarose gel with 0.1 mM atropine were adsorbed to hydroxylapatite and then recovered as a concentrated solution. Muscarinic receptors were further purified by rechromatography with the same gel or by gel permeation high pressure liquid chromatography. The amino acid composition of the purified receptor was determined, and the specific activity of the purified preparation was estimated to be 13,100 pmol/mg of protein on the basis of amino acid composition. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified receptors with or without radioiodination revealed a single, major band with an apparent Mr of 70,000 either by silver staining or radioautogram. The major band corresponded to the band which specifically bound [3H]propylbenzylcholine mustard (irreversible muscarinic ligand). The purified receptor showed essentially the same specificity for muscarinic ligands as unpurified receptors.  相似文献   

10.
11.
Muscle from the electric eel Electrophorus electricus contains acetylcholine receptors at 50 times the concentration of normal mammalian muscle and fully one-tenth the concentration of receptors in its electric organ tissue. Receptor is organized much more diffusely over the surface of Electrophorus muscle cells than is the case in normally innervated mammalian skeletal muscle. Receptor was purified from Electrophorus muscle by affinity chromatography on cobra toxin-agarose and found to contain subunits which correspond immunochemically to the alpha, beta, gamma, and delta subunits of receptor from electric organ tissue of Torpedo californica. Receptor purified from Electrophorus muscle appears virtually identical with receptor purified from Electrophorus electric organ tissue.  相似文献   

12.
Sulfation is an important conjugation pathway in deactivating thyroid hormones, keeping the proper hormonal balance, and increasing the rate of thyroid hormone metabolism. We have identified, cloned, and characterized a sulfotransferase (SULT) that is capable of thyroid hormone conjugation in the dog. This enzyme, designated cSULT1B1, displays a strong identity (>84%) to the human ST1B2 enzyme. However, cSULT1B1 displays less identity, about 73%, to mouse and rat orthologs. In addition, the canine enzyme is three amino acids shorter than the rodent ones but has the same length as the human ortholog, 296 amino acids. The bacterial expressed and partial purified cSULT1B1 enzyme sulfates p-nitrophenol and 1-naphtol, but not dopamine. The thyroid hormones 3,3'-diiodothyronine and 3,5,3'-triiodothyronine are efficiently sulfated. 3,3',5'-Triiodothyronine is sulfated to lesser degree while sulfation of 3,5'-diiodothyronine and 3,3',5,5'-tetraiodothyronine cannot be detected. The cSULT1B1 is found in the colon (highest level), kidney and small intestine in dogs, but surprisingly not in the male dog liver although low levels of immunoreactivity were detected in the female dog liver. The male dog expresses more of SULT1B1 enzyme in the lower part of the small intestine while the female dog displays an opposite pattern of expression. These results describe the cloning and characterization of a canine thyroid hormone sulfating enzyme that is more closely related to the human ortholog than to the rodent thyroid sulfating enzymes.  相似文献   

13.
The binding and assembly of clathrin triskelions on vesicle membranes seem to be mediated by certain assembly polypeptides (Keen, J.H., Willingham, M.C., and Pastau, I.H. (1979) Cell 16, 303-312). These assembly polypeptides were further purified into two distinct complexes using hydroxylapatite chromatography. Peak 1 consists of two major bands of 98 and 112 kDa, two minor bands of 103 and 118 kDa, and a polypeptide of 46 kDa. Peak 2 consists of one major band of 100 kDa, two minor bands of 103 and 115 kDa, and a polypeptide of 50 kDa. Both complexes have a native molecular mass of 290 kDa as determined by gel filtration. Each 290-kDa complex contains two polypeptides of 98-118/100-115 kDa and two polypeptides of 46/50 kDa. The 46-kDa polypeptide is not phosphorylated, whereas the 50-kDa polypeptide is. Both peaks contain 50-kDa kinase-like activity. Time courses of the 50-kDa phosphorylation show that the activity in peak 1 saturates much faster than the activity in peak 2; there may be two 50-kDa kinase activities in coated vesicles. A kinase that phosphorylates the polypeptides in 98-118-kDa group is present in peak 1 but not in peak 2. Both peaks assemble clathrin triskelions into cages under conditions in which the clathrin alone would not assemble. Both rotary shadowed and negatively stained preparations of these reassembled cages as well as the purified complexes were examined by electron microscopy. Thus, two complexes have been identified that differ in their polypeptide composition and kinase activities, but are similar in their ability to assemble clathrin triskelions into cages.  相似文献   

14.
A calcium and calmodulin-dependent protein kinase has been purified from rat brain. It was monitored during the purification by its ability to phosphorylate the synaptic vesicle-associated protein, synapsin I. A 300-fold purification was sufficient to produce kinase that is 90-95% pure as determined by scans of stained sodium dodecyl sulfate-polyacrylamide gels and has a specific activity of 2.9 mumol of 32P transferred per min/mg of protein. Thus, the kinase is a relatively abundant brain enzyme, perhaps comprising as much as 0.3% of the total brain protein. The Stokes radius (95 A) and sedimentation coefficient (16.4 S) of the kinase indicate a holoenzyme molecular weight of approximately 650,000. The holoenzyme is composed of three subunits as judged by their co-migration with kinase activity during the purification steps and co-precipitation with kinase activity by a specific anti-kinase monoclonal antibody. The three subunits have molecular weights of 50,000, 58,000, and 60,000, and have been termed alpha, beta', and beta, respectively. The alpha- and beta-subunits are distinct peptides, however, beta' may have been generated from beta by proteolysis. All three of these subunits bind calmodulin in the presence of calcium and are autophosphorylated under conditions in which the kinase is active. The subunits are present in a ratio of about 3 alpha-subunits to 1 beta/beta'-subunit. We therefore postulate that the 650,000-Da holoenzyme consists of approximately 9 alpha-subunits and 3 beta/beta'-subunits. The abundance of this calmodulin-dependent protein kinase indicates that its activation is likely to be an important biochemical response to increases in calcium ion concentration in neuronal tissue.  相似文献   

15.
An endogenous brain ligand which competes with [3H]-flunitrazepam for the binding to benzodiazepine receptor has been isolated and purified to homogeneity. The purification procedures involve the extraction of the endogenous ligand by homogenizing the brain tissue in water containing various protease inhibitors followed by filtration through a PM 10 membrane (exclusion limit: 10,000-dalton), column chromatographies on Sephadex G-50, Bio-Rad P2 and a series of C18 reverse phase HPLC columns. The purified endogenous ligand was eluted as a single and symmetrical peak monitored at either 220 or 280 nm. Furthermore, the ligand activity coincided with the absorption peak. The purified endogenous ligand is thermostable, insensitive to various peptidases and proteolytic enzymes, resistant to DNAse, RNAse, and carbohydrate enzyme e.g. neuraminidase (EC 3.2.1.18) and acid treatment. It has a major absorption peak at 220 nm and a minor one at 313 nm. The endogenous ligand appears to be quite specific since it only inhibits the binding of ligand to the central type benzodiazepine receptor but not to other receptors, e.g. peripheral type benzodiazepine receptor, 1-adrenoceptor, 2-adrenoceptor, -adrenoceptor and muscarinic cholinergic receptor. Furthermore, the inhibition of the receptor binding by the endogenous ligand is enhanced by GABA suggesting that the endogenous ligand is a benzodiazepine receptor agonist. The structure of the endogenous ligand is unknown.Special issue dedicated to Dr. Elling Kvamme  相似文献   

16.
A procedure is described for the purification of the calcium-binding protein (CaBP) from the chorioallantoic membrane of the chick embryo. With this scheme, a 180- to 200-fold purification was achieved with a 40% yield. Characterization of the CaBP revealed that its properties differ from those of previously studied calcium-binding proteins. The CaBP has a molecular weight of 95,000 to 100,000 and appears to be composed of four subunits of identical molecular weight (22,000 to 25,000). The CaBP is a basic protein as indicated by its high electrophoretic mobility under acidic conditions and its relatively high isoelectric point of 8.06. The calcium-binding activity of the CaBP is sulfhydryl dependent and highly specific for calcium ions (10 high affinity sites, ka = 2.35 X 10(7) m-1; 100 to 120 low affinity sites, ka = 2.00 X 10(5) M-1). Amino acid analysis indicated that the CaBP contains 2 to 10 residues of a modified amino acid, gamma-carboxyglutamate (gamma-CGlu). The presence of gamma-CGlu residues suggested that vitamin K may be involved in the expression of the CaBP in the chorioallantoic membrane.  相似文献   

17.
Lectin activity was found in tarsometatarsal skin of chick embryo. It was specific for beta-linked galactosyl residues and required a thiol-reducing agent for hemagglutination activity. The lectin was extracted from dermis and epidermis (skin) with lactose and purified to apparent homogeneity by affinity chromatography on asialofetuin-Sepharose. Examination of their biochemical properties showed that although dermis and epidermis develop from different origins, they contain the same lectin. The apparent subunit Mr of lectin was 14000 and its isoelectric point was 7.0. Under non-dissociating conditions, the lectin exists mainly as a dimer. Radioimmunoassay showed that this skin-type lectin is present in many tissues including skin, muscle, bone, eye, heart, liver and brain at various developmental stages. A wide distribution and a marked change in its content during development strongly suggest that the lectin might have a fundamental role in cellular function, embryonic development and tissue differentiation.  相似文献   

18.
We have directly observed the redistribution of acetylcholine receptors (AChR) on the surface of cultured myobutbes, induced by a soluble brain extract. The AChR were fluorescently labeled with rhodamine-conjugated α-bungarotoxin and viewed under low incident illumination with a video image intensification system. The results of our sequential observations indicate that AChR aggregates can be assembled rapidly (30–120 min) from mobile, diffuse AChR. This assembly was characterized by the initial formation of microaggregates (<1 μm diameter) that increased in number and coalesced or grew to form larger aggregates. The redistribution of fluorescently labeled AChR was completely inhibited by illumination of cells at levels used for conventional fluorescence micrography and could be observed only by using low light levels.  相似文献   

19.
A novel peroxidase isolated from a local chick pea (Cicer arietinum L.) cultivar (Balksar 2000) was purified by means of ammonium sulfate precipitation, DEAE-cellulose chromatography and two runs on gel filtration. The purified enzyme has a specific activity of 2045 U/mg with 17 % activity recovery. The molecular mass of the enzyme was estimated to be 39 kDa by SDS-polyacrylamide gel electrophoresis. Optimum pH and temperature of the enzyme were 5.5 and 45 degrees C respectively. The thermal denaturation of local chick pea peroxidase was studied in aqueous solution at temperatures ranging from 45 degrees C to 65 degrees C. The temperature of 50% inactivation of the enzyme was found to be 68 degrees C. The enthalpy (DeltaH*) and free energy (DeltaG*) of thermal denaturation of chick pea peroxidase were 101.4 and 103.4 k J/mol respectively at 65 degrees C.Metals like Zn2+, Mn2+, Hg2+, Co2+ and Al3+ slightly inhibited the peroxidase activity while Ca2+, Mg2+ and Ba2+ have no effect on enzyme activity. The high specific activity and thermal stability make chick pea peroxidase an alternative to horseradish peroxidase (HRP) in various applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号