首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
聚合酶链反应(polymerase chain reaction, PCR)是分子生物学领域的一项具有划时代意义的技术,但定量PCR产物或测定能生成焦磷酸的酶活性仍需要新技术的发展。本文提供了一种PCR产物定性及定量检测方法(Color PCR kit)及其用途;该方法通过焦磷酸(pyrophosphate,PPi)显色测定PCR的副产物PPi。利用试剂盒中的试剂与PPi反应,最终生成物为甲暨(formazan),呈红色。根据显色现象(红色)判断PCR的阳性结果,由目测实现PCR的定性检测;或通过测定490 nm 处的吸光度值定量检测PCR过程中生成的副产物PPi的含量,定量检测PCR 产物的生成量;目测情况下Color PCR kit可检测到2.5 ng水平的PCR产物,用紫外分光光度计可检测到低限为1 pg;Color PCR kit法比琼脂糖凝胶电泳检测法(低限为4 ng)灵敏。Color PCR kit还可用于连接酶和转移酶活性的测定。  相似文献   

2.
A new spectrophotometric method for quantitation of acetyl-CoA synthetase (ACAS) activity is developed. It has been applied for ACAS assay in the liver tissues of a woodchuck model of hepatitis virus-induced hepatocellular carcinoma (HCC). The assay is based on the established pyrophosphate (PPi) detection system. ACAS activity is indexed by the amount of PPi, the product of ACAS reaction system of activated form of acetate (acetyl-CoA) with ACAS catalysis. PPi is determined quantitatively as the amount of chromophore formed with molybdate reagent, 1-amino-2-naphthol-4-sulfonic acid in bisulfite and 2-mercaptoethanol. PPi reacts with molybdate reagent to produce phosphomolybdate and PPi-molybdate complexes. 2-mercaptoethanol is responsible for color formation which has the peak absorbance at 580 nm. This method was sensitive from 1 to 20 nmol of PPi in a 380-mul sample (1-cm cuvette). A ten-fold excess of Pi did not interfere with the determination of PPi. To study the major metabolic pathways of imaging tracer [1-(11)C]-acetate in tumors for detection of HCC by Positron Emission Tomography (PET), the activity of one of the key enzymes involved in acetate or [1-(11)C]-acetate metabolism, ACAS was assayed by this newly developed assay in the tissue samples of woodchuck HCCs. A significant increase of ACAS activity was observed in the liver tissues of woodchuck HCCs as compared with neighboring regions surrounding the tumors (P<0.05). The respective ACAS activities in the subcellular locations were also significantly higher in HCCs than in the surrounding tissues (P<0.05) (total soluble fraction: 876.61+/-34.64 vs. 361.62+/-49.97 mU/g tissue; cytoplasmic fraction: 1122.02+/-112.39 vs. 732.32+/-84.44 mU/g tissue; organelle content: 815.79+/-100.77 vs. 547.91+/-97.05 mU/ g tissue; sedimentable fragment: 251.92+/-51.56 vs. 90.94+/-18.98 mU/ g tissue). The finding suggests an increase in ACAS activity in the liver cancer of woodchuck models of HCC as compared to that in the normal woodchuck liver. The developed assay is rapid, simple and accurate and is suitable for the investigation of ACAS activity under physiologic and pathophysiologic conditions.  相似文献   

3.
A sensitive method for the analysis of inorganic pyrophosphate (PPi) which utilizes the enzymes ATP sulfurylase and firefly luciferase is described. The assay is based on continuous monitoring of the ATP formed in the ATP sulfurylase reaction using purified firefly luciferase. The assay can be completed in less than 2 s and is not affected by inorganic phosphate. The method has been used for continuous monitoring of formation of PPi in Rhodospirillum rubrum chromatophores. The assay is extremely sensitive, the linear range of the assay being 1 X 10(-9) - 5 X 10(-7) M PPi. It is suitable for routine applications. It is also possible to use the method for determination of low amounts of adenosine 5'-phosphosulfate.  相似文献   

4.
The kinetics of interaction of PPi and its diphosphonic analog, methylenediphosphonic acid (MDPA), with nucleoside triphosphates, DNA and Mg2+ binding sites of DNA-dependent RNA polymerase II from calf thymus was investigated. The values of apparent Km in the NTP polymerization reaction for ATP and CTP equal to 2.7 X 10(-4) and 1.8 X 10(-4) M, respectively, were determined. It was shown that MDPA and PPi competitively inhibited the RNA polymerase reaction with respect to nucleoside triphosphate. The inhibition constants (Ki) of ATP and CTP incorporation for MDPA were 2.2 X 10(-4) and 3.3 X 10(-4) M, respectively, while those of the nucleoside triphosphate incorporation for PPi were equal to 1.4 X 10(-4) and 2.0 X 10(-4) M, respectively. MDPA and PPi were incompetitive inhibitors of template (DNA) and Mn2+. A possible mechanism of inhibition of the RNA polymerase reaction by MDPA is proposed.  相似文献   

5.
Liu Q  Sommer SS 《BioTechniques》2000,29(5):1072-6, 1078, 1080 passim
To measure mutation load or to detect minimal residual disease, a robust method for identifying one mutant allele in the range of 10(6)-10(9) wild-type alleles would be advantageous. Herein, we present evidence that pyrophosphorolysis-activated polymerization (PAP) has the potential to provide a highly specific and robust method of allele-specific amplification if DNA polymerases with higher pyrophosphorolysis activity can be found or engineered. In PAP, pyrophosphorolysis and polymerization by DNA polymerase are coupled serially by utilizing a pyrophosphorolysis-activatable oligonucleotide (P*). P*, which is an allele-specific oligonucleotide with a dideoxynucleotide at the 3' terminus, can be activated by pyrophosphorolysis to remove the 3' terminal dideoxynucleotide in the presence of pyrophosphate (PPi) and the complementary strand of the allelic template; then the activated P* can be extended by DNA polymerization. Specificity results from both pyrophosphorolysis and polymerization because significant nonspecific amplification requires the combination of mismatch pyrophosphorolysis and misincorporation by the DNA polymerase, which is an extremely rare event. Proof of principle has been achieved with a polymorphic site within the human D1 dopamine receptor gene. The effects of the dideoxyoligonucleotide sequences, DNA polymerases, PPi concentrations, allele-specific templates, pH and dNTP concentrations were examined.  相似文献   

6.
A quantitative bioluminescence assay for rapid and sensitive microRNA (miRNA) expression analysis was developed. The assay uses miRNA directly as a primer for binding to a circular single-stranded DNA template, followed by rolling circle amplification. The detection of inorganic pyrophosphate (PPi) molecules released during the DNA polymerization and amplification process is performed by a multi-enzyme system. PPi is converted to ATP by ATP-sulfurylase, which provides energy for luciferase to oxidize luciferin and produce light. Experimental results show that the assay has a dynamic range exceeding three orders of magnitude and the ability to discriminate miRNAs with high-homology sequences. Quantification of nine miRNAs in human heart tissues demonstrated high cross-platform consistency between this assay and the TaqMan real-time polymerase chain reaction (PCR) assay with R(2)=0.941. The assay requires fewer reagents, can be performed at an isothermal condition without thermal cycling, and is capable of detecting miRNAs in less than 1h. Compared with the real-time PCR and microarray-based detection methods, this assay provides a simpler, faster, and less expensive platform for miRNA quantification in life science research, drug discovery, and clinical diagnosis.  相似文献   

7.
We have developed a high-sensitivity assay for measurement of inorganic pyrophosphate (PPi) in adenosine 5'-triphosphate (ATP)-contaminated samples. The assay is based on time-resolved measurements of the luminescence kinetics and implements multiple enzymes to convert PPi to ATP that is, in turn, utilized to produce light and to hydrolyze PPi for measurement of the steady state background luminescence. A theoretical model for describing luminescence kinetics and optimizing composition of the assay detection mixture is presented. We found that the model is in excellent agreement with the experimental results. We have developed and evaluated two algorithms for PPi measurement from luminescence kinetics acquired from ATP-contaminated samples. The first algorithm is considered to be the method of choice for analysis of long, i.e., 3-5 min, kinetics. The activity of enzymes is controlled during the experiment; the sensitivity of PPi detection is about 7 pg/ml or 15 pM of PPi in ATP-contaminated samples. The second algorithm is designed for analysis of short, i.e., less than 1-min, luminescence kinetics. It has about 20 pM PPi detection sensitivity and may be the better choice for assays in microplate format, where a short measurement time is required. The PPi assay is primarily developed for RNA expression analysis, but it also can be used in various applications that require high-sensitivity PPi detection in ATP-contaminated samples.  相似文献   

8.
A real-time, sensitive, and simple assay for detection and quantification of adenosine triphosphate sulfurylase (ATP:sulfate adenylytransferase, EC 2.7.7.4) activity has been developed. The method is based on detection of ATP generated in the ATP sulfurylase reaction between APS and PPi by the firefly luciferase system. For the Saccharomyces cerevisiae ATP sulfurylase, the concentrations of APS and PPi at the half-maximal rate were found to be about 0.5 and 7 microM, respectively. The assay is sensitive and yields linear response between 0.1 microU and 50 mU. The method can be used for monitoring and quantification of recombinant ATP sulfurylase activity in Escherichia coli lysate, as well as for detection of the activity during different purification procedures.  相似文献   

9.
The flaviviral RNA-dependent RNA polymerase (RdRp) is an attractive drug target. To discover new inhibitors of dengue virus RdRp, the authors have developed a fluorescence-based alkaline phosphatase-coupled polymerase assay (FAPA) for high-throughput screening (HTS). A modified nucleotide analogue (2'-[2-benzothiazoyl]-6'-hydroxybenzothiazole) conjugated adenosine triphosphate (BBT-ATP) and 3'UTR-U(30) RNA were used as substrates. After the polymerase reaction, treatment with alkaline phosphatase liberates the BBT fluorophore from the polymerase reaction by-product, BBT(PPi), which can be detected at excitation and emission wavelengths of 422 and 566 nm, respectively. The assay was evaluated by examining the time dependency, assay reagent effects, reaction kinetics, and signal stability and was validated with 3'dATP and an adenosine-nucleotide triphosphate inhibitor, giving IC(50) values of 0.13 μM and 0.01 μM, respectively. A pilot screen of a diverse compound library of 40,572 compounds at 20 μM demonstrated good performance with an average Z factor of 0.81. The versatility and robustness of FAPA were evaluated with another substrate system, BBT-GTP paired with 3'UTR-C(30) RNA. The FAPA method presented here can be readily adapted for other nucleotide-dependent enzymes that generate PPi.  相似文献   

10.
Rate-limiting steps in the DNA polymerase I reaction pathway   总被引:10,自引:0,他引:10  
The initial rates of incorporation of dTTP and thymidine 5'-O-(3-thiotriphosphate) (dTTP alpha S) into poly(dA) X oligo(dT) during template-directed synthesis by the large fragment of DNA polymerase I have been measured by using a rapid-quench technique. The rates were initially equal, indicating a nonrate-limiting chemical step. However, the rate of thionucleotide incorporation steadily diminished to 10% of its initial value as the number of consecutive dTMP alpha S residues in the primer strand increased. This anomalous behavior can be attributed to the helix instability inherent in phosphorothioate-containing duplexes. Positional isotope exchange experiments employing the labeled substrate [alpha-18O2]dATP have revealed negligible alpha, beta-bridging----beta-nonbridging isotope exchange in template-directed reactions of Escherichia coli DNA polymerase I (Pol I) both in the presence and in the absence of added inorganic pyrophosphate (PPi), suggesting rapid PPi release following the chemical step. These observations are consistent with a rate-limiting step that is tentatively assigned to a conformational change of the E X DNA X dNTP complex immediately preceding the chemical step. In addition, the substrate analogue (Sp)-dATP alpha S has been employed to examine the mechanism of the PPi exchange reaction catalyzed by Pol I. The net retention of configuration at the alpha-P is interpreted in terms of two consecutive inversion reactions, namely, 3'-hydroxyl attack, followed by PPi attack on the newly formed primer terminus. Kinetic analysis has revealed that while alpha-phosphorothioate substitution has no effect upon the initial rate of polymerization, it does attenuate the PPi exchange reaction by a factor of 15-18 fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A sensitive and simple method for real-time detection of inorganic pyrophosphatase (PPase) (EC 3.6.1.1) activity has been developed. The method is based on PPase-induced activation of the firefly luciferase activity in the presence of inorganic pyrophosphate (PPi). PPi inhibits the luciferase activity, but in the presence of PPase the luciferase activity is restored and the luminescence output increases. The assay yields linear responses between 8 and 500 mU. The detection limit was found to be 8 mU PPase. The method was used to detect the hydrolytic activity of PPases from Saccharomyces cerevisiae, Escherichia coli, and Bacillus stearothermophilus. As substrate for the luciferase, adenosine 5'-phosphosulfate can replace ATP, which is an advantage for detection of PPase activity in crude extracts containing ATP-hydrolyzing activities. The method can be used for kinetic and inhibition studies as well as for detection of PPase activity during different purification procedures.  相似文献   

12.
The importance of DNA polymerases in biology and biotechnology, and their recognition as potential therapeutic targets, drives development of methods for deriving kinetic characteristics of polymerases and their propensity to perform polynucleotide synthesis over modified DNA templates. Among various polymerases, translesion synthesis (TLS) polymerases enable cells to avoid the cytotoxic stalling of replicative DNA polymerases at chemotherapy-induced DNA lesions, thereby leading to drug resistance. Identification of TLS inhibitors to overcome drug-resistance necessitates the development of appropriate high-throughput assays. Since polymerase-mediated DNA synthesis involves the release of inorganic pyrophosphate (PPi), we established a universal and fast method for monitoring the progress of DNA polymerases based on the quantification of PPi with a fluorescence-based assay that we coupled to in vitro primer extension reactions. The established assay has a nanomolar detection limit in PPi and enables the evaluation of single nucleotide incorporation and DNA synthesis progression kinetics. The results demonstrated that the developed assay is a reliable method for monitoring TLS and identifying nucleoside and nucleotide-based TLS inhibitors.  相似文献   

13.
14.
Techniques that provide strong signal amplification are useful in diagnostic applications, especially in detecting low concentrations of non-amplifiable target molecules. A versatile and strong signal amplification method based on activities of a DNA polymerase to generate high concentrations of pyrophosphate (PPi) is described. The generation of PPi is catalyzed by nucleotide extension and excision activities of a DNA polymerase on an oligonucleotide cassette. The signal is generated upon enzymatic conversion of PPi to ATP and ATP levels subsequently detected with firefly luciferase. Bioluminesence produced by an oligonucleotide cassette consisting of just two polymerase reaction sites is sufficient to detect them at low attomole levels. The attachment of a large number of these oligonucleotide cassettes to DNA dendrimers enabled the detection of such polyvalent substrate molecules at low zeptomole (10–21 mol) concentrations. The extent of signal amplification obtained with dendrimer substrates is comparable to exponential target amplifications provided by nucleic acid amplification methods. The attachment of such PPi-generating dendritic DNA platforms to ligands that mediate target recognition would potentially permit detection of extremely low concentrations of analytes in diagnostic assays.  相似文献   

15.
Kinetic mechanism of DNA polymerase I (Klenow)   总被引:12,自引:0,他引:12  
The minimal kinetic scheme for DNA polymerization catalyzed by the Klenow fragment of DNA polymerase I (KF) from Escherichia coli has been determined with short DNA oligomers of defined sequence. A key feature of this scheme is a minimal two-step sequence that interconverts the ternary KF.DNAn.dNTP and KF.DNAn+1.PPi complexes. The rate is not limited by the actual polymerization but by a separate step, possibly important in ensuring fidelity [Mizrahi, V., Henrie, R. N., Marlier, J. F., Johnson, K. A., & Benkovic, S. J. (1985) Biochemistry 24, 4010-4018]. Evidence for this sequence is supplied by the observation of biphasic kinetics in single-turnover pyrophosphorolysis experiments (the microscopic reverse of polymerization). Data analysis then provides an estimate of the internal equilibrium constant. The dissociations of DNA, dNTP, and PPi from the various binary and ternary complexes were measured by partitioning (isotope-trapping) experiments. The rate constant for DNA dissociation from KF is sequence dependent and is rate limiting during nonprocessive DNA synthesis. The combination of single-turnover (both directions) and isotope-trapping experiments provides sufficient information to permit a quantitative evaluation of the kinetic scheme for specific DNA sequences.  相似文献   

16.
During the past 50 years, in vitro measurement of DNA polymerase activity has become an essential molecular biology tool. Traditional methods used to measure DNA polymerase activity in vitro are undesirable due to the usage of radionucleotides. Fluorescence-based DNA polymerase assays have been developed; however, they also suffer from various limitations. Herein we present a rapid, highly sensitive and quantitative assay capable of measuring DNA polymerase extension activity from purified enzymes or directly from microbial lysates. When tested with purified DNA polymerase, the assay detected as little as 2 × 10(-11)U of enzyme (~ 50 molecules), while demonstrating excellent linearity (R(2)=0.992). The assay was also able to detect endogenous DNA polymerase extension activity down to less than 10 colony forming units (cfu) of input Gram-positive or Gram-negative bacteria when coupled to bead mill lysis while maintaining an R(2)=0.999. Furthermore, preliminary evidence presented here suggests that DNA polymerase extension activity is an indicator of microbial viability, as demonstrated by the reproducibly strong concordance between assay signal and bacterial colony formation. Together, the innovative methodology described here represents a significant advancement toward sensitive detection of potentially any microorganism containing active DNA polymerase within a given sample matrix.  相似文献   

17.
Inorganic pyrophosphate (PPi) is a product of the polymerization reaction catalyzed by DNA- and RNA-polymerases. We have synthesized a number of novel non-hydrolysable PPi analogues, some of them have demonstrated inhibition of polymerization reaction catalyzed by hepatitis C virus RNA-dependent RNA-polymerase (NS5B). A new pharmacophore has been developed based on non-hydrolysable methylene-diphosphonate backbone. Structure-activity relationship analysis of 12 bisphosphonates is presented and structural features crucial for the ability of molecule to inhibit NS5B polymerase activity are ascertained.  相似文献   

18.
Protein farnesyltransferase and protein geranylgeranyltransferase type I catalyze the transfer of a 15- and a 20-carbon prenyl group, respectively, from a prenyl diphosphate to a cysteine residue at the carboxyl terminus of target proteins, with the concomitant release of diphosphate. Common substrates include oncogenic Ras proteins, which are implicated in up to 30% of all human cancers, making prenyltransferases a viable target for chemotherapeutic drugs. A coupled assay has been developed to measure the rate constant of diphosphate (PPi) dissociation during the prenyltransferase reaction under both single and multiple turnover conditions. In this assay, the PPi group produced in the prenyltransferase reaction is rapidly cleaved by inorganic pyrophosphatase to form phosphate (Pi), which is then bound by a coumarin-labeled phosphate binding protein from Escherichia coli, resulting in a fluorescence increase. The observed rate constant for PPi release is equal to the rate constant of prenylation of the peptide, as measured by other assays, so that this nonradioactive assay can be used to measure prenyltransferase activity under either single or multiple turnover conditions. This assay can be adapted for high-throughput screening for potential prenyltransferase substrates and inhibitors.  相似文献   

19.
A thermostable DNA polymerase which possesses an associated 3'-to-5' exonuclease (proofreading) activity has been isolated from the hyperthermophilic archaebacterium, Pyrococcus furiosus (Pfu). To test its fidelity, we have utilized a genetic assay that directly measures DNA polymerase fidelity in vitro during the polymerase chain reaction (PCR). Our results indicate that PCR performed with the DNA polymerase purified from P. furiosus yields amplification products containing less than 10% of the number of mutations obtained from similar amplifications performed with Taq DNA polymerase. The PCR fidelity assay is based on the amplification and cloning of lacI, lacO and lacZ alpha gene sequences (lacIOZ alpha) using either Pfu or Taq DNA polymerase. Certain mutations within the lacI gene inactivate the Lac repressor protein and permit the expression of beta Gal. When plated on a chromogenic substrate, these LacI- mutants exhibit a blue-plaque phenotype. These studies demonstrate that the error rate per nucleotide induced in the 182 known detectable sites of the lacI gene was 1.6 x 10(-6) for Pfu DNA polymerase, a greater than tenfold improvement over the 2.0 x 10(-5) error rate for Taq DNA polymerase, after approx. 10(5)-fold amplification.  相似文献   

20.
A method is described for determination of inorganic pyrophosphate (PPi) in cell culture medium and in rabbit articular chondrocytes grown in the presence of radioactive orthophosphate (32Pi). Intra- and extracellular 32PPi formed was measured using high-performance liquid chromatographic (HPLC) separation of the PPi from orthophosphate (Pi) and other phosphate-containing compounds. The chromatographic separation on a weak anion-exchange column is based on the extent to which various phosphate compounds form complexes with Mg2+ at low pH and the rate at which such formation occurs. These complexes are eluted more readily than the uncomplexed compounds. Best results were obtained using a simultaneous gradient of Mg2+ ions and ionic strength. In this case separation of small amounts of PPi from a large excess of Pi was possible without prior removal of Pi or extraction of the PPi fraction. The assay is also useful for measurement of inorganic pyrophosphatase activity. The sensitivity of the assay depends on the specific activity of the added 32Pi and on the culture conditions, but is comparable with the most sensitive of the enzymatic assays. Sample preparation, particularly deproteinization, proved to be of importance. The losses of PPi which occur during procedures of this sort due to hydrolysis and coprecipitation were quantitated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号