首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The stable isotope ratios of nitrogen were measured in the mysid,Neomysis intermedia, together with various biogenic materials in a eutrophic lake, Lake Kasumigaura, in Japan throughout a year of 1984/85. The mysid, particulate organic matter (POM, mostly phytoplankton), and zooplankton showed a clear seasonal change in 15N with high values in spring and fall, but the surface bottom mud did not. A year to year variation as well as seasonal change in 15N was found in the mysid. The annual averages of 15N of each material collected in 1984/85 are as follows: surface bottom mud, 6.3 (range: 5.7–6.9); POM, 7.9 (5.8–11.8); large sized mysid, 11.6 (7.7–14.3); zooplankton, 12.5 (10.0–16.4); prawn, 13.2 (9.9–15.4); goby, 15.1 (13.8–16.7). The degree of15N enrichment by the mysid was determined as 3.2 by the laboratory rearing experiments. The apparent parallel relationship between the POM and the mysid in the temporal patterns of 15N with about 3 difference suggests the POM (mostly phytoplankton) as a possible food source ofN. intermedia in this lake through the year.  相似文献   

2.
The littoral benthos of 18 lakes in Alberta and Saskatchewan ranging in salinity from 3 to 126 (g1–1 TDS) were investigated twice, in the spring and in the summer of 1986. Multiple Ekman dredge samples were taken at water depths of about 0.5, 1.0 and 2 metres in each transect. Two to three transects were used in each lake according to its estimated limnological diversity for a total of 114 stations. A total of 76 species was present varying from 29–31 species in the three lakes of lowest salinity (means of 3.1–5.55) to only 2 species in lakes exceeding 100. Species richness decreased rapidly in salinities greater than 15.Biomass maximum mean of 10.91 g m–2 dry weight (maximum 63.0 g m–2) occurred in culturally eutrophic Humboldt Lake (3.1) but one third as great in other low salinity lakes. However, biomass again increased to about 4.5 gm–2 in two lakes of 15 As the salinity increased still further biomass declined steadily until a minimum of 0.0212 g m–2 was recorded in most saline Aroma Lake (mean 119). Summer biomass (11 lakes) was greater than spring biomass (4 lakes) because some groups such as amphipods, corixids and ostracods became more abundant in summer. Wet weight biomass averaged 15.8 of dry weight biomass.Seasonality (spring or summer), sediment texture and organic matter content, water depth, pH, salinity (TDS) and the presence of aquatic plants ( plant cover) were considered in the matrix involving species dry weight biomass at each of 117 stations. TWINSPAN classification of the samples yielded a dendrogram with 18 indicator species. Successive dichotomies divided these indicator species into four main lake groups based on salinity, i.e., Group I: 3–10 (Gammarus, Glyptotendipes I, Chironomus cf. plumosus), Group II: 10–38%. (Hyalella, Enallagma,Bezzia), Group III: 38–63 (Hygrotus salinarius, Cricotopus ornatus), Group IV: >63 (Dolichopodidae, Ephydra hians). Each of these main groups was subdivided into smaller groups of lakes based on factors such as pH, seasonality (spring or summer species dominance), organic matter and plant cover. Depth of samples played no apparent role.  相似文献   

3.
This study assessed if mature leaves of Laguncularia racemosa were able to demonstrate salt secretion, and if the magnitude of secretion was a function of soil salinity. Thus, salinity influence on the osmolality of leaf tissue, xylem sap and leaf secretion was assessed in field and glasshouse experiments. As salinity increased, solutes were accumulated in sufficient quantity to decrease osmotic potential over the whole range of water potential. In the field, xylem osmolality (mol m–3) increased with salinity from 32.4±2.9 at 17 to 38.2±0.6 at 28. Similarly, in the glasshouse, xylem sap osmolality (mol m–3) increased from 33.4±1.8 (15) to 40.6±1.5 (30). Changes in Na+ concentration explained about 51–58% of increase in xylem osmolality. Rates of secretion (mmol m–2 day–1) in the field increased from 0.80±0.12 (17) to 1.16±0.14 (28), and in the glasshouse the secretion increased from 0.73±0.07 (15) to 1.25±0.07 (30). The Na+ accounted for 40–53% of total secretion. This study presented evidence of the capability of mature leaves of L. racemosa to secrete salt for the first time, and that the rates of secretion were enhanced as soil salinity increased.  相似文献   

4.
Stable carbon (13C) and nitrogen (15N) isotopes were used to elucidate primary food sources and trophic relationships of organisms in Khung Krabaen Bay and adjacent offshore waters. The three separate sampling sites were mangroves, inner bay and offshore. The 13C values of mangrove leaves were –28.2 to –29.4, seagrass –10.5, macroalgae –14.9 to –18.2, plankton –20.0 to –21.8, benthic detritus –15.1 to –26.3, invertebrates –16.5 to –26.0, and fishes –13.4 to –26.3. The 15N values of mangrove leaves were 4.3 to 5.7, seagrass 4.3, macroalgae 2.2 to 4.4, plankton 5.7 to 6.4 , benthic detritus 5.1 to 5.3, invertebrates 7.2 to 12.2 , and fishes 6.3 to 15.9. The primary producers had distinct 13C values. The 13C values of animals collected from mangroves were more negative than those of animals collected far from shore. The primary carbon sources that support food webs clearly depended on location. The contribution of mangroves to food webs was confined only to mangroves, but a mixture of macroalgae and plankton was a major carbon source for organisms in the inner bay area. Offshore organisms clearly derived their carbon through the planktonic food web. The 15N values of consumers were enriched by 3–4 relative to their diets. The 15N data suggests that some of aquatic animals had capacity to change their feeding habits according to places and availability of foods and as a result, individuals of the same species could be assigned to different trophic levels at different places.  相似文献   

5.
R. H. Britton 《Hydrobiologia》1985,122(3):219-230
The life cycle and annual production of Hydrobia acuta was studied in a hypersaline lagoon (s = 39 in summer), forming a part of solar salt works. Quantitative random samples were taken at regular intervals over a period of 15 months using a corer, and snails collected were counted and measured. Weight and biomass was calculated from a length-weight relationship and from measurements of ash content. H. acuta was a strictly annual species in the study lagoon. Recruitment takes place over a brief period in May and June, after which the breeding population dies. Growth of the new generation was slow during summer, probably due to the unfavourably high salinity. A period of rapid growth took place in autumn coinciding with a drop in salinity caused by rainfall. In winter Hydrobia hibernated by burrowing deeply into the sediment. Growth recommenced in spring when the lagoon was reflooded, but by this time the number of survivors was low.The maximum density of snails was 6 000 m–2 and maximum biomass 500 mg organic dry wt · m–2. Annual cohort production was estimated as 786 mg organic dry wt · m–2 · a–1. These figures are low compared to other studies on hydrobiid snails, and for production in inland waters, but the value for annual P/B = 4.5 is typical for a univoltine species. The relevance of the results to foraging by wading birds (the main consumers), is discussed.  相似文献   

6.
Despite theories of large-scale movement and assimilation of carbon in estuaries, recent evidence suggests that in some estuaries much more limited exchange occurs. We measured the fine-scale movement and assimilation of carbon by resident macroinvertebrates between adjacent saltmarsh and mangrove habitats in an Australian estuary using 13C analysis of animals at different distances into adjacent patches of habitat. 13C values of crabs (Parasesarma erythrodactyla –15.7 ± 0.1, Australoplax tridentata –14.7 ± 0.1) and slugs (Onchidina australis –16.2 ± 0.3) in saltmarsh closely matched that of the salt couch grass Sporobolus virginicus (–15.5 ± 0.1). In mangroves, 13C values of crabs (P. erythrodactyla –22.0 ± 0.2, A. tridentata –19.2 ± 0.3) and slugs (–19.7 ± 0.3) were enriched relative to those of mangroves (–27.9 ± 0.2) but were more similar to those of microphytobenthos (–23.7 ± 0.3). The 13C values of animals across the saltmarsh-mangrove interface fitted a sigmoidal curve, with a transition zone of rapidly changing values at the saltmarsh-mangrove boundary. The width of this transition indicated that the movement and assimilation of carbon is limited to between 5 and 7 m. The 13C values of crabs and slugs, especially those in saltmarsh habitat, clearly indicate that the movement and assimilation of carbon between adjacent saltmarsh and mangrove habitat is restricted to just a few metres, although some contribution from unmeasured sources elsewhere in the estuary is possible. Such evidence demonstrating the extent of carbon movement and assimilation by animals in estuarine habitats is useful in determining the spatial arrangement of habitats needed in marine protected areas to capture food web processes.  相似文献   

7.
Summary The mean stable-carbon isotope ratios (13C) for polar bear (Ursus maritimus) tissues (bone collagen –15.7, muscle –17.7, fat –24.7) were close to those of the same tissues from ringed seals (Phoca hispida) (–16.2, –18.1, and –26.1, respectively), which feed exclusively from the marine food chain. The 13C values for 4 species of fruits to which polar bears have access when on land in summer ranged from –27.8 to –26.2, typical of terrestrial plants in the Arctic. An animal's 13C signature reflects closely the 13C signature of it's food. Accordingly, the amount of food that polar bears consume from terrestrial food webs appears negligible, even though some bears spend 1/3 or more of each year on land during the seasons of greatest primary productivity.  相似文献   

8.
We studied the effects of different salinities on plankton larvae of some polychaetes in the White Sea. It has been found that the salinity resistance of Alitta virens (Nereidae) increases during ontogenesis. Successful fertilization and further larval development in this species occur at the salinity of 22 to 34; embryos taken into the experiment at the stage of 32 blastomeres, trochophores, and early nektochaetes could survive and normally develop at the salinity of 16–32, 14–45, and 12–45 respectively. The rate of settling and metamorphosis in late nektochaetes of A. virens at normal or lowered (down to 14) salinity is dependent on temperature in the range of 5 to 23°C. It is found that the larvae of Harmothoe imbricata (Polynoidae) show the greatest salinity resistance at the stage of nektochaeta, whose lower limit of salinity is 14. Later larval stages of these species can survive in a wide range of salinity due to the development of a provisory nephridial system. The eurybionty of larvae of Spirorbis spirorbis ready for metamorphosis was higher than that in the larvae of Circeus spirillum (Spirorbidae). Under salinity reduced down to 10 the larvae of S. spirorbis die in 8–14 days, whereas more stenohaline larvae of C. spirillum die by the 3-rd day of the experiment. At water temperatures under 5°C the survival of S. spirorbis was the highest at three examined values of salinity, whereas C. spirillum showed the highest survival only under normal salinity.  相似文献   

9.
Carbon isotopic composition was used to assess the linkage between three different potential sources of energy and the community in the shallow coastal zone of Martel Inlet. Stable 13C ratios ranged from –28.7 for the zooplankton plus phytoplankton to –14.4 for the grazer Nacella concinna. Microphytobenthos (–16.7) was considerably more enriched in 13C than were suspended particulate matter (SPM) (–25.6) and macroalgal fragments (–23.6 and –21.1), indicating that stable carbon isotope analysis might be used to discern the relative contribution of these sources of primary production. There is a benthic-pelagic coupling between plankton, benthic suspensivores, the ophiuroid Ophionotus victoriae and the icefish Chaenocephalus aceratus. Benthic grazers such as N. concinna, deposit feeders such as Yoldia eightsi and the nematodes showed a tight coupling with the microphytobenthos and the sediment. Some omnivorous/depositivorous polychaetes, echinoids, amphipods and the fish Notothenia coriiceps showed values close to the ratios of the macroalgal fragments. Benthic carnivores and/or scavengers were generally enriched over suspensivores and depleted in relation to microphytobenthos grazers, showing a considerable overlap in 13C values throughout the food web, without any clear coupling with the primary sources of organic matter. The trophic web in the shallow zone of high benthic production and under seasonal ice cover in the Antarctic is more complex than it is in shelf areas, where SPM is the main food source. The soft-bottom community in the shallow zone of Martel Inlet is enriched in 13C due to the significant input of carbon from the microphytobenthos and macroalgal fragments.  相似文献   

10.
The link between climate-driven river runoff and sole fishery yields observed in the Gulf of Lions (NW Mediterranean) was analysed using carbon- and nitrogen stable isotopes along the flatfish food webs. Off the Rhone River, the main terrestrial (river POM) and marine (seawater POM) sources of carbon differed in 13C (–26.11 and –22.36, respectively). Surface sediment and suspended POM in plume water exhibited low 13C (–24.38 and –24.70, respectively) that differed more from the seawater POM than from river POM, demonstrating the dominance of terrestrial material in those carbon pools. Benthic invertebrates showed a wide range in 15N (mean 4.30 to 9.77) and 13C (mean –23.81 to –18.47), suggesting different trophic levels, diets and organic sources. Among the macroinvertebrates, the surface (mean 13C –23.71) and subsurface (mean 13C –23.81) deposit-feeding polychaetes were particularly 13C depleted, indicating that their carbon was mainly derived from terrestrial material. In flatfish, 15N (mean 9.42 to 10.93) and 13C (mean –19.95 to –17.69) varied among species, indicating differences in food source and terrestrial POM use. A significant negative correlation was observed between the percentage by weight of polychaetes in the diet and the 13C of flatfish white muscle. Solea solea (the main polychaete feeder) had the lowest mean 13C, Arnoglossus laterna and Buglossidium luteum (crustacean, mollusc and polychaete feeders) had intermediate values, and Solea impar (mollusc feeder) and Citharus linguatula (crustacean and fish feeder) exhibited the highest 13C. Two different benthic food webs were thus identified off the Rhone River, one based on marine planktonic carbon and the other on the terrestrial POM carried by the river. Deposit-feeding polychaetes were responsible for the main transfer of terrestrial POM to upper trophic levels, linking sole population dynamics to river runoff fluctuations.  相似文献   

11.
Two types of deposit-feeding polychaetes, Neanthes japonica and Notomastus sp., and their surrounding sediments were collected from the Nanakita River Estuary and a small brackish lagoon (Gamõ Lagoon) in northeastern Japan. The samples were examined using stable isotope analysis to assess the site specific feeding mode of the animals and their trophic status. N. japonica is a surface deposit-feeder and Notomastus sp. is a subsurface deposit-feeder. In the estuary, the sedimentary 5N tended to become isotopically heavier from the upper estuary (2.0 3.9) to the river mouth (4.3 6.2), while sedimentary organic 13C constant value (–26.8 –24.4, average –25.6) throughout the river estuary. The 13C values of N. japonica were similar to those of the surrounding sediment in the upper estuary, whereas in the lower estuary, N. japonica had a heavier 13C value than the surrounding sediment. The 13C and dg 15N values indicated that the carbon, but not the nitrogen, of N. japonica was derived from upland plants in the upper estuary. In the lower estuary, a significant fraction of carbon of N. japonica was derived from phytoplankton. Notomastus sp. exhibited heavier 13C values than the surrounding surface sediment throughout the estuary and had heavier 13C values than N. japonica in the same location. These results suggest selective utilization of sedimentary carbon by those animals following bacterial processing and subsequent fractionation. The difference in 15N between sedimentary organics and corresponding polychaetes was 5 ± 1 and rather higher than 3.4 ± 1.1 expected for normal trophic effects in other animals.  相似文献   

12.
Ratios of 13C/12C and 15N/14N were measured in dissolved inorganic carbon (DIC), marginal vegetation, benthic macrodetritus (diameter > 1 mm) and selected invertebrate consumers in the Gamtoos estuary, South Africa to: (1) trace the provenance of benthic detrital deposits, and (2) determine the extent to which three abundant species of macroinvertebrates utilise this resource. DIC was strongly depleted in 13C with average 13C values (–9.5±0.5) being typical of limnetic waters. Benthic detrital particles (13C–24.1±0.3) originated mainly from marginal vegetation (13C–25.7±0.3), but their slightly elevated carbon ratio suggests additional input from 13C-rich sources-possibly C4 plants cultivated on the floodplain. Populations of the fossorial ghost shrimp Callianassa kraussi, the bentho-pelagic amphipod Grandidierella lignorum and the epifaunal crab Hymenosoma robiculare together account for 96% of total benthic biomass in the upper regions of this estuary. Marked differences in trophic niches were evident among these three consumer species. Ghost shrimp (13C –32.5±0.3) foraged by filter-feeding on fine suspended particulate organic matter (13C–31.2±0.5). Amphipods (13C–28.0±0.6) utilised some benthic detritus but fed mainly on suspended material. Only the relatively rare crabs (13C–23.8±1.5) appeared to utilise benthic detrital particles to any significant extent. In the benthic consumer community of the upper Gamtoos estuary, suspension feeders make up 98% of biomass and thus clearly dominate over deposit feeders. This can be traced to the low contribution of higher plants (c. 13%) to overall carbon production, and detritus originating from macrophytes is consequently relatively unimportant in supporting invertebrate secondary production in this particular system.  相似文献   

13.
The study deals with a comparative analysis of the relative abundances of the carbon isotopes 12C and 13C in the metabolites and biomass of the Burkholderia sp. BS3702 and Pseudomonas putida BS202-p strains capable of utilizing aliphatic (n-hexadecane) and aromatic (naphthalene) hydrocarbons as sources of carbon and energy. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of Burkholderia sp. BS3702 on n-hexadecane (13C = –44.6 ± 0.2) were characterized by the values of 13CCO 2 = –50.2 ± 0.4, 13Cbiom = –46.6 ± 0.4, and 13Cexo = –41.5 ± 0.4, respectively. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of the same bacterial strain on naphthalene (13C = –21 ± 0.4) were characterized by the isotope effects 13CCO 2 = –24.1 ± 0.4, 13Cbiom = –19.2 ± 0.4, and 13Cexo = –19.1 ± 0.4, respectively. The possibility of using the isotope composition of metabolic carbon dioxide for the rapid monitoring of the microbial degradation of petroleum hydrocarbons in the environment is discussed.  相似文献   

14.
A bloom of the unicellular green alga Dunaliella parva (up to 15 000 cells m1–1) developed in the upper 5 m of the water column of the Dead Sea in May-June 1992. This was the first mass development of Dunaliella observed in the lake since 1980, when another bloom was reported (up to 8800 cells m1–1). For a bloom of Dunaliella to develop in the Dead Sea, two conditions must be fulfilled: the salinity of the upper water layers must become sufficiently low as a result of dilution with rain floods, and phosphate must be available. During the period 1983–1991 the lake was holomictic, hardly any dilution with rainwater occurred, and no Dunaliella cells were observed. Heavy rain floods in the winter of 1991–1992 caused a new stratification, in which the upper 5 m of the water column became diluted to about 70% of their former salinity. Measurements of the isotopic composition of inorganic carbon in the upper water layer during the bloom (13C = 5.1) indicate a strong fractionation when compared with the estimated –3.4 prior to the bloom. The particulate organic carbon formed was highly enriched in light carbon isotopes ( 13 C = – 13.5). The algal bloom rapidly declined during the months June–July, probably as a result of the formation of resting stages, which sank to the bloom. A smaller secondary bloom (up to 1850 cells m1–1) developed between 6 and 10 m depth at the end of the summer. Salinity values at this deep chlorophyll maximum were much beyond those conductive for the growth of Dunaliella, and the factors responsible for the development of this bloom are still unclear.  相似文献   

15.
Tate  Amanda W.  Hershey  Anne E. 《Hydrobiologia》2003,499(1-3):13-23
Carbon and nitrogen stable isotopic data from the primary producers in mangrove ecosystems are needed to investigate trophic links and biogeochemical cycling. Compared with other mangrove species (e.g. Rhizophora mangle) very few measurements have been conducted on the white mangrove, Laguncularia racemosa. The carbon and nitrogen stable isotopic and elemental compositions of L. racemosa were analyzed and compared from Florida and Belize. 13C values of L. racemosa from Florida (mean = –26.4) were slightly higher than those from Twin Cays, Belize (mean = -27.4), which may be due to higher salinity in some parts of the Florida site. There was no difference between the 15N values from L. racemosa from these two sites (Florida mean = 0.6; Belize mean = 0.3), which are indicative of nitrogen derived from nitrogen fixation in a planktonic marine system. However, higher 15N values from L. racemosa at Man of War Cay in Belize (11.4 and 12.3), which is fertilized by roosting marine birds (14.0), illustrate that L. racemosa can sensitively reflect alternative nitrogen sources. Although the isotopic data could not distinguish between Avicennia germinans, R. mangle and L. racemosa in Belize the L. racemosa had considerably higher C/N ratios (46.5 – 116.1) compared with the Florida samples (42.2 – 76.0) or the other mangrove species. Unlike some previous findings from R. mangle, substrate characteristics (e.g. salinity, NH4 +, and H2S) were not related to the isotopic or elemental composition of L. racemosa. 13C, 15N and C/N were analyzed for ecosystem components from L. racemosa habitats at Twin Cays, including other plants (e.g. R. mangle, A. germinans and seagrass), detritus, microbial mats and sediments. Results from mass-balance calculations show that mangrove detritus composes very little of the sediment, which is principally composed of microbial biomass (80 – 90%). Detritus at some sites is also influenced by sources other than that from L. racemosa, including seagrass leaves.  相似文献   

16.
Choi  Woo-Jung  Lee  Sang-Mo  Ro  Hee-Myong  Kim  Kyoung-Cheol  Yoo  Sun-Ho 《Plant and Soil》2002,245(2):223-232
To investigate the effect of inorganic fertilizer and composted manure amendments on the N isotope composition (delta 15N) of crop and soil, maize (Zea mays L.) was cultivated under greenhouse conditions for 30, 40, 50, 60, and 70 days. Composted pig manure (delta 15N= +13.9) and urea (-2.3) were applied at 0 and 0 kg N ha–1 (C0U0), 0 and 150 kg N ha–1 (C0U2), 150 and 0 kg N ha–1 (C2U0), and 75 and 75 kg N ha–1 (C1U1), respectively. The delta 15N of total soil-N was not affected by both amendments, but delta 15N of NH+ 4 and NO 3 provided some information on the N isotope fractionation in soil. During the early growth stage, significant differences (P < 0.05) in delta 15N among maize subjected to different treatments were observed. After 30 days of growth, the delta 15N values of maize were +6.6 for C0U0, +1.1 for C0U2, +7.7 for C2U0, and +4.5 for C1U1. However, effects of urea and composted manure application on maize delta 15N progressively decreased with increasing growth period, probably due to isotope fractionation accompanying N losses and increased uptake of soil-derived N by maize. After 70 days of growth, delta 15N of leaves and grains of maize amended with composted pig manure were significantly (P < 0.05) higher than those with urea. The temporal variations in delta 15N of maize amended with urea and composted manure indicate that plant delta 15N is generally not a good tracer for N sources applied to field. Our data can be used in validation of delta 15N fractionation models in relation to N source inputs.  相似文献   

17.
Zusammenfassung Enchytraeus albidus aus dem Anwurf mariner Algen an der Kieler Förde (Ostsee) erträgt als Nahrung die folgenden dort vorkommenden Pflanzen (Reihenfolge mit abnehmender Verträglichkeit): Fucus — Grünalgen —Seegras (Zostera) — Rotalgen (Delesseria). Diese Reihenfolge gilt für Nahrungsaufnahme, Fortpflanzungsrate und Überlebensdauer.Mit zunehmender Fäulnis des Nahrungssubstrates steigt die Zahl der Tiere, die aus ihm fliehen. Ihre Anzahl wird außerdem bestimmt durch den Salzgehalt des Substrates: Von 15–45 ist sie proportional der Substratsalinität. Bei 60 ist die Aktivität der Tiere bereits stark eingeschränkt.Bei Fucus-Nahrung ertragen auf Sand gehaltene Tiere eine Salinität von 60–70 länger als 4 Wochen, auf Filtrierpapier dagegen nur 50 für durchschnittlich 1 Woche. Die obere Fortpflanzungsgrenze liegt bei 40 Salzgehalt im Substrat. Bei 5 werden die meisten Kokons abgelegt. Die Sterblichkeit im Kokon ist bei 15 am geringsten. Auf den Substratsalinitäten 0–15 ist die Entwicklungsdauer im Kokon signifikant kürzer als auf Substraten von 30 und 40. Enchytraeus hat sich als Rückwanderer zum Meer mit einer sekundär erweiterten Poikilosmotie an den neuen Lebensraum angepaßt. Er kann eine Binnenkonzentration entsprechend etwa 72 längere Zeit ertragen. Auf niedrigen Salzgehalten besitzt er eine ausgeprägte Hypertonieregulation.
Summary Enchytraeus albidus was fed with Fucus, green algae, Zostera marina and Delesseria. Judging from absorption of food, rate of reproduction and duration of life, the animals preferred the plants in the sequence given above.As the putrefaction of a Fucus substrate advances, more and more enchytraeids leave it. A changing salinity of the substrate also influences the number of emigrating worms, increasing it from 15–45, but decreasing it towards 60. Fed with Fucus E. albidus tolerates a salinity of 60–70 on sand for more than 4 weeks, on filter paper only 50 for about one week.Reproduction is possible at salinities up to 40. Cocoon production is most frequent at 5. The mortality of young worms within the cocoons is lowest at 15. The incubation period is significantly shorter at salinities of 0–15 than at 30 and 40.As a terrestrial immigrant to the seashore Enchytraeus albidus secondarily enlarged its range of poikilosmosis, tolerating a concentration of 72 in its coelomic fluid for some time. At low salinities it maintains a remarkable degree of hyperosmosis.
  相似文献   

18.
Three species of microalgae commonly used in mariculture —Isochrysis sp. (clone T.ISO) Parke,Pavlova lutheri (Droop) Green andNannochloropsis oculata (Droop) Green — were grown in batch and semicontinuous modes to compare their biochemical composition and production rates.In batch mode, logarithmic-phase cultures of all species had high levels of protein (25.2 to 41.1) and low levels of carbohydrate (7.1 to 10.3) and lipid (8.8 to 14.9). At stationary phase, cultures ofIsochrysis sp. (clone T.ISO) andN. oculata contained significantly less protein (21.8 and 20.3, respectively), all species contained more carbohydrate (14.8 to 30.6), andP. lutheri contained more lipid (16.6). In semi-continuous mode, cultures maintained at late logarithmic-phase contained more carbohydrate,Isochrysis sp. (clone T.ISO) contained less protein, andP. lutheri more lipid than logarithmic-phase batch cultures of the same species. Neither growth phase nor harvest regime affected the amino acid composition of the microalgae significantly. However, the concentration of proline inN. oculata was higher in batch cultures in logarithmic phase (9.4), than in either semi-continuous cultures in logarithmic phase (5.8 to 7.9) or batch cultures in stationary phase (5.6 to 5.9).The production rates from batch and semi-continuous logarithmic-phase cultures were not significantly different for any of the species, and there were only minor differences in the production rates of the species (range 12.4 to 17.1 mg algae dry weight 1–1 d–1). The different culture and harvest regimes produced significant differences in the proportions of protein and carbohydrate in the microalgae. Which regime is chosen for culturing these microalgae as food will depend on the nutritional requirements of the animal species being fed.  相似文献   

19.
We analysed the stable isotope composition of emitted N2O in a one-year field experiment (June 1998 to April 1999) in unfertilized controls, and after adding nitrogen by applying slurry or mineral N (calcium ammonium nitrate). Emitted N2O was analysed every 2–4 weeks, with additional daily sampling for 10 days after each fertilizer application. In supplementary soil incubations, the isotopic composition of N2O was measured under defined conditions, favouring either denitrification or nitrification. Soil incubated for 48 h under conditions favouring nitrification emitted very little N2O (0.024 mol gdw –1) and still produced N2O from denitrification. Under denitrifying incubation conditions, much more N2O was formed (0.91 mol gdw –1 after 48 h). The isotope ratios of N2O emitted from denitrification stabilized at 15N = –40.8 ± 5.7 and 18O = 2.7 ± 6.3. In the field experiment, the N2O isotope data showed no clear seasonal trends or treatment effects. Annual means weighted by time and emission rate were 15N = –8.6 and 18O = 34.7 after slurry application, 15N = –4.6 and 18O = 24.0 after mineral fertilizer application and 15N = –6.4 and 18O = 35.6 in the control plots, respectively. So, in all treatments the emitted N2O was 15N-depleted compared to ambient air N2O (15N = 11.4 ± 11.6, 18O = 36.9 ± 10.7). Isotope analyses of the emitted N2O under field conditions per se allowed no unequivocal identification of the main N2O producing process. However, additional data on soil conditions and from laboratory experiments point to denitrification as the predominant N2O source. We concluded (1) that the isotope ratios of N2O emitted from the field soil were not only influenced by the source processes, but also by microbial reduction of N2O to N2 and (2) that N2O emission rates had to exceed 3.4 mol N2O m–2 h–1 to obtain reliable N2O isotope data.  相似文献   

20.
Tolerance to salinity changes and resistance to desiccation, fresh water, and freezing were studied in two hydrobiid species from the White Sea, Hydrobia ulvae(Pennant) and H. ventrosaMontagu. It was shown that H. ventrosahas a greater tolerance to low salinities in the range of 6–10 but is less tolerant to high salinities (35–45). The interspecies differences in low salinity tolerance persisted after the acclimation of snails to 20, 16, and 12. A comparison of survival in fresh water and under desiccation conditions suggests that H. ulvaeis more resistant to these factors. In fresh water, LT50was 30 and 60 days for H. ventrosaand H. ulvae, respectively. Under desiccation conditions, LT50was 6 and 25 days for H. ventrosaand H. ulvae, respectively. At subzero temperatures, H. ventrosawas shown to be a superior survivor. Within the same species of mud snail, the detrimental effect of freezing depended on the salinity: survival decreased with decreasing salinity. These data suggest significant differences in the mechanisms of resistance and tolerance to abiotic environmental factors between the two species. Despite the partial overlapping of their ecological niches, the interspecies differences may play an important role in the distribution and spatial structure dynamics of coexisting populations of these species in the White Sea region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号