首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In vitro phosphorylation of maize leaf phosphoenolpyruvate carboxylase   总被引:3,自引:2,他引:1  
Budde RJ  Chollet R 《Plant physiology》1986,82(4):1107-1114
Autoradiography of total soluble maize (Zea mays) leaf proteins incubated with 32P-labeled adenylates and separated by denaturing electrophoresis revealed that many polypeptides were phosphorylated in vitro by endogenous protein kinase(s). The most intense band was at 94 to 100 kilodaltons and was observed when using either [γ-32P]ATP or [β-32P]ADP as the phosphate donor. This band was comprised of the subunits of both pyruvate, Pi dikinase (PPDK) and phosphoenolpyruvate carboxylase (PEPCase). PPDK activity was previously shown to be dark/light-regulated via a novel ADP-dependent phosphorylation/Pi-dependent dephosphorylation of a threonyl residue. The identity of the acid-stable 94 to 100 kilodalton band phosphorylated by ATP was established unequivocally as PEPCase by two-dimensional gel electrophoresis and immunoblotting. The phosphorylated amino acid was a serine residue, as determined by two-dimensional thin-layer electrophoresis. While the in vitro phosphorylation of PEPCase from illuminated maize leaves by an endogenous protein kinase resulted in a partial inactivation (~25%) of the enzyme when assayed at pH 7 and subsaturating levels of PEP, effector modulation by l-malate and glucose-6-phosphate was relatively unaffected. Changes in the aggregation state of maize PEPCase (homotetrameric native structure) were studied by nondenaturing electrophoresis and immunoblotting. Enzyme from leaves of illuminated plants dissociated upon dilution, whereas the protein from darkened tissue did not dissociate, thus indicating a physical difference between the enzyme from light- versus dark-adapted maize plants.  相似文献   

2.
The effect of salinity on C(4) photosynthesis was examined in leaves of maize, a NADP-malic enzyme (NADP-ME) type C(4) species. Potted plants with the fourth leaf blade fully developed were treated with 3% NaCl solution for 5d. Under salt treatment, the activities of pyruvate orthophosphate dikinase (PPDK), phosphoenolpyruvate carboxylase (PEPCase), NADP-dependent malate dehydrogenase (NADP-MDH) and NAD-dependent malate dehydrogenase (NAD-MDH), which are derived mainly from mesophyll cells, increased, whereas those of NADP-ME and ribulose-1,5-bisphosphate carboxylase, which are derived mainly from bundle sheath cells (BSCs), decreased. Immunocytochemical studies by electron microscopy revealed that PPDK protein increased, while the content of ribulose-1,5-bisphosphate carboxylase/oxygenase protein decreased under salinity. In salt-treated plants, the photosynthetic metabolites malate, pyruvate and starch decreased by 40, 89 and 81%, respectively. Gas-exchange analysis revealed that the net photosynthetic rate, the transpiration rate, stomatal conductance (g(s)) and the intercellular CO(2) concentration decreased strongly in salt-treated plants. The carbon isotope ratio (δ(13)C) in these plants was significantly lower than that in control. These findings suggest that the decrease in photosynthetic metabolites under salinity was induced by a reduction in gas-exchange. Moreover, in addition to the decrease in g(s), the decrease in enzyme activities in BSCs was responsible for the decline of C(4) photosynthesis. The increase of PPDK, PEPCase, NADP-MDH, and NAD-MDH activities and the decrease of NADP-ME activity are interpreted as adaptation responses to salinity.  相似文献   

3.
4.
Light-regulated gene expression during maize leaf development   总被引:43,自引:2,他引:41       下载免费PDF全文
We have established schedules of expression during maize leaf development in light and darkness for the messenger RNAs (mRNAs) and polypeptides for ribulose 1,5-bisphosphate carboxylase (RuBPCase) subunits, phosphoenolpyruvate carboxylase (PEPCase), and the light- harvesting chlorophyll a/b-binding protein (LHCP). Levels of mRNAs were measured by hybridization with cloned probes, and proteins were measured by immunodetection on protein gel blots. The initial synthesis in leaves of all four mRNAs follows a light-independent schedule; illumination influences only the level to which each mRNA accumulates. The synthesis of RuBPCase small and large subunits and of PEPCase polypeptides also follows a light-independent schedule which is modified quantitatively by light. However, the accumulation of LHCP polypeptides absolutely requires illumination. The accumulation of each protein closely follows the accumulation of its mRNA during growth in light. Higher ratios of PEPCase and RuBPCase protein to mRNA occur during dark growth.  相似文献   

5.
6.
Regulation of C4 Gene Expression in Developing Amaranth Leaves   总被引:5,自引:0,他引:5       下载免费PDF全文
  相似文献   

7.
In vitro translation of polyA+ mRNAs isolated from purified maize bundle sheath and mesophyll cells results in the production of distinctive, cell-specific polypeptides. Immunoprecipitation experiments show that translatable polyA+ mRNAs for phosphoenolpyruvate carboxylase (PEPC), pyruvate orthophosphate dikinase (PPDK) and NADP-malate dehydrogenase (MDH) are prominent in mesophyll but not bundle sheath cells. On the contrary, those for sedoheptulose-1,7-bisphosphatase (SBP), fructose-1,6-bisphosphatase (FBP), NADP-malic enzyme (ME) and the small subunit of ribulose-1,5-bisphosphate carboxylase (RuBPC SS) are present only in bundle sheath cells. Moreover, polyA+ mRNAs encoding the 33 kD, 23 kD and 16 kD polypeptides of the oxygen-evolving complex (OE33, OE23 and OE16) and the light-harvesting chlorophyll a/b binding protein of photosystem II (LHCP II) are much more abundant in mesophyll than in bundle sheath cells. Northern blot analyses with cDNA clones of PEPC, PPDK, ME, RuBPC SS, OE33, OE23, OE16 and LHCP II are consistent with the conclusion that the cell-specific expression of these genes is regulated at the RNA level. The RNA level differences are especially dramatic in dark-grown maize seedlings after illumination for 24 h.  相似文献   

8.
First leaves and flag leaves of the wheat species Triticum aestivum cv Anza (6×), T. boeoticum Boiss (2×) L. were examined for content of pyruvate, orthophosphate dikinase (PPDK), phosphoenolpyruvate carboxylase (PEPC), and ribulose 1,5-bisphosphate carboxylase (RuBPC) by protein blot analyses using antibodies to maize leaf enzymes and by activity assays. In agreement with previous reports, the amount of RuBPC per mesophyll cell was about 3 times more in the hexaploid species, T. aestivum, than in the diploid species, T. boeoticum, both in first leaves and in flag leaves. In contrast, the level of PPDK polypeptide was nearly 3-fold higher per unit leaf area in the first leaf and 63% higher in the flag leaf of this diploid species compared to this hexaploid species. There was no significant difference in the levels of polypeptide and enzyme activity of PEPC between diploid and hexaploid wheat. Despite this significantly greater level of PPDK in the diploid species, the actual amount of PPDK could still supply only a limited amount of the enzyme activity necessary to provide phosphoenolpyruvate (PEP) for any putative intracellular C4 carbon shuttle providing carbon to RuBPC. Thus, this difference in enzyme amount could not by itself account for the reported high rates of net photosynthesis at high light intensity in T. boeoticum. Together with reported anatomical differences between the diploid and hexaploid species, however, this biochemical difference may be of physiological importance.  相似文献   

9.
There is little information available on the primary products of photosynthesis and the change in the activity of the associated enzymes with altitude. We studied the same in varieties of barley and wheat grown at 1300 (low altitude, LA) and 4200 m (high altitude, HA) elevations above mean sea level in the western Himalayas. Plants at both the locations had similar photosynthetic rates, leaf water potential and the chlorophyll fluorescence kinetics. The short-term radio-labelling experiments in leaves showed appearance of 14CO2 in phosphoglyceric acid and sugar phosphates in plants at both the LA and HA, suggesting a major role of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in CO2 fixation in the plants at two altitudes, whereas the appearance of labelled carbon in aspartate (Asp) and glutamate (Glu) at HA suggested a role of phosphoenolpyruvate carboxylase (PEPCase) in photosynthesis metabolism. Plants at HA had significantly higher activities of PEPCase, carboxylase and oxygenase activity of Rubisco, aspartate aminotransferase (AspAT), and glutamine synthetase (GS). However, the activities of malate dehydrogenase, NAD-malic enzyme and citrate synthase were similar at the two locations. Such an altered metabolism at HA suggested that PEPCase probably captured CO2 directly from the atmosphere and/or that generated metabolically e.g. from photorespiration at HA. Higher oxygenase activity at HA suggests high photorespiratory activity. OAA thus produced could be additionally channelised for Asp synthesis using Glu as a source of ammonia. Higher GS activity ensures higher assimilation rate of NH3 and the synthesis of Glu through GS-GOGAT (glutamine:2-oxoglutarate aminotransferase) pathway, also as supported by the appearance of radiolabel in Glu at HA. Enhanced PEPCase activity coupled with higher activities of AspAT and GS suggests a role in conserving C and N in the HA environment.  相似文献   

10.
Immunolocalization of the bundle sheath-specific enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCase), and of the mesophyll-specific enzyme, phosphoenolpyruvate carboxylase (PEPCase), was used to follow development of the C4 pattern of photosynthetic enzyme expression during leaf growth in Atriplex rosea. The leaf tissue used for this characterization was also used in a parallel ultrastructural study, so that the temporal coordination of developmental changes in enzyme expression and cell structure could be monitored. Bundle sheath-specific accumulation of RuBPCase occurs early, at the time that bundle sheath tissue is delimited from the ground meristem, and follows the order of vein initiation. PEPCase proteins were detected 2–4 days after the first appearance of RuBPCase. PEPCase accumulation is restricted to ground meristem cells that are in direct contact with bundle sheath tissue and that will become C4 mesophyll; PEPCase was never found in more distant ground tissue. This pattern suggests that, while bundle sheath-specific accumulation of RuBPCase coincides with formation of the appropriate precursor cells, PEPCase expression is delayed until mesophyll tissue reaches a critical developmental stage. Cell-specific expression of both photosynthetic enzymes occurs well before the striking anatomical divergence of bundle sheath and mesophyll tissues, suggesting that biochemical compartmentation might serve as a developmental signal for subsequent structural differentiation.  相似文献   

11.
Regenerating maize A188 tissue cultures were examined for the presence of enzymes involved in C4 photosynthesis, for cell morphology, and for 14C labeling kinetics to study the implementation of this pathway during plant development. For comparison, sections of maize seedling leaves were examined. Protein blot analysis using antibodies to leaf enzymes showed a different profile of these enzymes during the early stages of shoot regeneration from callus from the closely-coordinated profile observed in seedling leaves. Pyruvate orthophosphate dikinase (PPDK) (EC 2.7.9.1) and phosphoenolpyruvate carboxylase (PEPC) (EC 4.1.1.31) were found in nonchlorophyllous callus while ribulose 1,5-bisphosphate carboxylase (RuBPC, EC 4.1.1.39) and malic enzyme, NADP-specific (ME-NADP) (EC 1.3.1.37) were not detectable until later.

Enzyme activity assays showed the presence of ME-NADP as well as PEPC and PPDK in nonchlorophyllous callus. However, the activities of ME-NADP and PEPC had properties similar to those of the enzymes from C3 leaves and from etiolated C4 leaf tissues, but differing from the corresponding enzymes in the mature leaf.

Immunoprecipitation of in vitro translation products of poly(A)RNA extracted from embryoid-forming callus showed both the 110 kilodalton precursor to chloroplast PPDK and the 94 kilodalton polypeptide. Therefore, the chloroplast tye of PPDK mRNA is present prior to the appearance of leaf morphology.

Analysis of the labeled products of 14CO2 fixation by nonchlorophyllous calli indicated β-carboxylation to give acids of the tricarboxylic acid cycle, but no incorporation into phosphoglycerate. With greening of the callus, some incorporation into phosphoglycerate and sugar phosphates occurred, and this increased in shoots as they developed, although with older shoots the increase in β-carboxylation products was even greater. Analysis of enzyme levels in young leaf sections by protein blot and of 14C-labeling patterns in the present study are in general agreement with enzyme activity determinations of previous studies, providing additional information about PPDK levels, and supporting the model proposed for developing young leaves.

These results suggest that maize leaves begin to express C4 enzymes during ontogeny through several stages from greening and cell differentiation as seen in the callus and then shoot formation, and finally acquire capacity for full C4 photosynthesis during leaf development concomitant with the development of Kranz anatomy and accumulation of large amounts of enzymes involved in carbon metabolism.

  相似文献   

12.
Aoyagi K  Chua NH 《Plant physiology》1988,86(2):364-368
Pyruvate, Pi dikinase (PPDK) is a key enzyme in the C4 photosynthetic pathway. However, its metabolic role in C3 plants remains uncertain. Northern blot analyses of PPDK mRNAs from wheat leaves and seeds probed with maize PPDK cDNA indicates the presence of organ-specific mRNAs. Immunofluorescent labeling of protein in wheat seed demonstrate that the PPDK polypeptide and the ribulose-1, 5-bisphosphate carboxylase small subunit polypeptide are localized predominantly in the aleurone layer and the chlorophyllous pericarp tissue, respectively. This differential distribution of the two polypeptides in wheat seed is paralleled by the differential localization of the their mRNAs as revealed by in situ hybridization. These results suggest a distinct role of cytoplasmic PPDK in seeds, which is different from the well established role in C4 photosynthesis.  相似文献   

13.
Soluble protein has been extracted from sections of wheat leaves, from base to tip, and the content of several key enzymes of photosynthetic carbon assimilation in each section has been determined by the protein blot method. In the first leaf, ribulose 1,5-bisphosphate carboxylase (RuBPC) (EC 4.1.1.39) in the basal 0 to 1 centimeter section is about 12% the level in the tip section, whereas phosphoenolpyruvate carboxylase (EC 4.1.1.31) is present in small amounts in the basal section and does not change much in the tip. Pyruvate orthophosphate dikinase (PPDK) (EC 2.7.9.1) first appears in the 4 to 6 centimeter section and increases gradually with development to 10-fold in the tip. Malic enzyme, NADP-dependent (EC 1.3.1.37) also appears in the 4 to 6 centimeter section but remains low to the tip.

Fixation of 14CO2 by wheat leaf base sections resulted in 42% of total incorporation into malate and aspartate, indicating β-carboxylation, whereas in the tip section these labeled compounds were only 8% of the total. Although the amount of PPDK in wheat leaves is only 1 to 3% of that in maize leaves, this C3 PPDK may have a limited role in photosynthesis leading to formation of C4 compounds. The possibility of a further role, similar to that in C4 plants, but for intracellular carbon transport in wheat leaves is discussed. The presence of malic dehydrogenase, NADP-specific (EC 1.1.1.82) in wheat leaf chloroplasts was shown, a necessary though not sufficient condition for such a proposed role. Assuming each of the four enzymes associated with C4 carbon transport were fully active in vivo during photosynthesis, PPDK would still be rate limiting, even in the leaf tip where its activity is maximal. Possible evolutionary and breeding implications are discussed.

  相似文献   

14.
Glycerol stabilizes the activity of pyruvate, orthophosphate dikinase extracted from darkened or illuminated maize leaves. It serves as a better protectant of activity than dithiothreitol for the active day-form and the glycerol concentration needed for full protection is inversely related to the level of protein. The night-form of the enzyme is also protected by glycerol not only against inactivation, but also against partial reactivation in storage. Glycerol does not prevent the Pi-dependent activation nor the ADP-dependent inactivation of pyruvate, orthophosphate dikinase, but the rates of both processes are substantially decreased. The ability of the inactive night-form for Pi-dependent activation is also sustained by glycerol for at least 2 h at 20°C, apparently through stabilization of the labile regulatory protein.Abbreviations BSA bovine serum albumin - G-6-P glucose-6-phosphate - MDH malate dehydrogenase - PCMB p-chloromercuribenzoate - PEP phosphoenolpyruvate - PEPCase phosphoenol-pyruvate carboxylase - PPDK pyruvate, orthophosphate dikinase - PVP polyvinylpyrrolidone  相似文献   

15.
Activities of key enzymes of the Calvin cycle and C4 metabolism, rates of CO2 fixation, and the initial products of photosynthetic 14CO2 fixation were determined in the podwall, seed coat (fruiting structures), and the subtending leaf (leaf below a receme) of Brassica campestris L. cv `Toria.' Compared to activities of ribulose-1,5-bisphosphate carboxylase and other Calvin cycle enzymes, e.g. NADP-glyceraldehyde-3-phosphate-dehydrogenase and ribulose-5-phosphate kinase, the activities of phosphoenol pyruvate carboxylase and other enzymes of C4 metabolism, viz. NADP-malate dehydrogenase, NADP-malic enzyme, glutamate pyruvate transaminase, and glutamate oxaloacetate transaminase, were generally much higher in seed than in podwall and leaf. Podwall and leaf were comparable to each other. Pulse-chase experiments showed that in seed the major product of 14CO2 assimilation was malate (in short time), whereas in podwall and leaf, the label initially appeared in 3-PGA. With time, the label moved to sucrose. In contrast to legumes, Brassica pods were able to fix net CO2 during light. However, respiratory losses were very high during the dark period.  相似文献   

16.
Osamu Ueno 《Planta》1996,199(3):394-403
Eleocharis vivipara link, an amphibious leafless sedge, develops traits of C4 photosynthesis and Kranz anatomy in the terrestrial form but develops C3-like traits with non-Kranz anatomy when submerged. The cellular localization of C3 and C4 enzymes in the photosynthetic cells of the two forms was investigated by immunogold labeling and electron microscopy. The terrestrial form has mesophyll cells and three kinds of bundle sheath cell, namely, parenchyma sheath cells, non-chlorophyllous mestome sheath cells, and Kranz cells. Phosphoenol-pyruvate carboxylase (PEPCase) was present in the cytosol of both the mesophyll cells and the parenchyma sheath cells, with higher-density labeling in the latter, but not in the Kranz cells. Pyruvate, Pi dikinase (PPDK) was found at high levels in the chloroplasts of both the mesophyll cells and the parenchyma sheath cells with some-what stronger labeling in the latter. This enzyme was also absent from the Kranz cells. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was found in the chloroplasts of all types of photosynthetic cell, but labeling was significantly less intense in the parenchyma sheath cells than in other types of cell. The submerged form also has three types of photosynthetic cell, as well as non-chlorophyllous mestome sheath cells, but it lacks the traits of Kranz anatomy as a consequence of modification of the cells. Rubisco was densely distributed in the chloroplasts of all the photosynthetic cells. However, PEPCase and PPDK were found in both the mesophyll cells and the parenchyma sheath cells but at lower levels than in the terrestrial form. These data reveal that the terrestrial form has a unique pattern of cellular localization of C3 and C4 enzymes, and they suggest that this pattern and the changes in the extent of accumulation of the various enzymes are the main factors responsible for the difference in photosynthetic traits between the two forms.Abbreviations CAM crassulacean acid metabolism - MC meso phyll cell - PSC parenchyma sheath cell - KC Kranz cell - PEP-Case phosphoenolpyruvate carboxylase - PPDK pyruvate, Pi dikinase - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - LS large subunit - RuBP ribulose-1,5-bisphosphate This study was supported by Grants-in-Aid from the Ministry of Agriculture, Forestry and Fisheries of Japan (Integrated Research Program for the Use of Biotechnological Procedures for Plant Breeding) and from the Science and Technology Agency of Japan (Enhancement of Center-of-Excellence, the Special Coordination Funds for Promoting Science and Technology). The author is grateful to Drs M. Matsuoka and S. Muto for providing the antisera and Dr. M. Samejima for his advice at the early stages of this study.  相似文献   

17.
Polyadenylated RNA was isolated from leaves and seeds of a C3 plant (Triticum aestivum L. cv Cheyenne, CI 8885) and from a C4 plant (Zea mays L. cv Golden bantam). Each polyadenylated RNA preparation was translated in vitro with micrococcal nuclease-treated reticulocyte lysate. When the in vitro translation products were probed with antibodies to pyruvate orthophosphate dikinase (PPDK) (EC 2.7.9.1), two sizes of polypeptide were identified. A 110 kilodalton polypeptide was found in the in vitro translation products of mRNA isolated exclusively from leaves of both wheat and maize. A 94 kilodalton polypeptide, similar to the PPDK polypeptide which can be extracted after in vivo synthesis in maize and wheat leaves and seeds, was found in the in vitro translation products obtained from wheat seeds and maize kernels.

These results indicate that the mRNAs for PPDK polypeptides are organ-specific in both a C4 and a C3 plant. Hague et al. (1983 Nucleic Acids Res 11: 4853-4865) proposed that the larger size polypeptide of the in vitro translation polypeptide from maize leaf RNA contains a `transit sequence' which permits entry into the chloroplasts of a polypeptide synthesized in vivo in maize leaf cell cytoplasm. It appears that in wheat leaves also the transit of synthesized PPDK polypeptide through an intracellular membrane may be required, while such a transit sequence seems not to be required within cells of wheat and maize seeds.

  相似文献   

18.
The C4 grass Arundinella hirta exhibits a unique C4 anatomy, with isolated Kranz cells (distinctive cells) and C4-type expression of photosynthetic enzymes in the leaf sheath and stem as well as in the leaf blade. The border zones between these organs are pale green. Those between the leaf blade and sheath and between the sheath and stem are called the lamina joint and sheath pulvinus, respectively, and are involved in gravity sensing. We investigated the structure and localization of C3 and C4 photosynthetic enzymes in these tissues. In both zones the epidermis lacked stomata. The inner tissue was composed of parenchyma cells and vascular bundles. The parenchyma cells were densely packed with small intercellular spaces and contained granal chloroplasts with large starch grains. No C4-type cellular differentiation was recognized. Western blot analysis showed that the lamina joint and pulvinus accumulated substantial amounts of phosphoenolpyruvate carboxylase (PEPC), pyruvate,Pi dikinase (PPDK), and ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco). Immunogold electron microscopy revealed PEPC in the cytosol and both PPDK and rubisco in the chloroplasts of parenchyma cells, suggesting the occurrence of C3 and C4 enzymes within a single type of chlorenchyma cell. These data indicate that the lamina joint and pulvinus have unique expression patterns of C3 and C4 enzymes, unlike those in C4-type anatomy.  相似文献   

19.
20.
Polyadenylated RNA was isolated from maize leaves and translated in vitro. In agreement with a previous report by others, we found among the translation products a 110-kilodalton pyruvate orthophosphate dikinase (PPDK) precursor that is about 16 kilodaltons larger than the polypeptide isolated from cells. This maize PPDK precursor polypeptide was taken up from the translation product mixture by intact spinach chloroplasts and yielded a mature PPDK polypeptide (94 kilodaltons). The uptake and processing support the proposal that the extra 16-kilodalton size of the polypeptide from in vitro translation of maize leaf mRNA represents a transit sequence which is cleaved after its entry into chloroplasts. Moreover, these results provide additional evidence that in vivo in maize leaf cells PPDK polypeptide is synthesized in the cytoplasm and is transported into the chloroplasts.

Location of PPDK in C3 plant leaves was investigated by immunochemical analysis. Intact chloroplasts were isolated from leaves of spinach, wheat, and maize. A protein blot of stromal protein in each case gave rise to bands corresponding to authentic PPDK polypeptide. This result indicates that PPDK is present in chloroplasts of C3 plant leaves as it is in the case of C4 plants.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号